xref: /openbmc/linux/arch/s390/mm/fault.c (revision 0edabdfe89581669609eaac5f6a8d0ae6fe95e7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (uweigand@de.ibm.com)
7  *
8  *  Derived from "arch/i386/mm/fault.c"
9  *    Copyright (C) 1995  Linus Torvalds
10  */
11 
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/diag.h>
36 #include <asm/gmap.h>
37 #include <asm/irq.h>
38 #include <asm/mmu_context.h>
39 #include <asm/facility.h>
40 #include <asm/uv.h>
41 #include "../kernel/entry.h"
42 
43 #define __FAIL_ADDR_MASK -4096L
44 #define __SUBCODE_MASK 0x0600
45 #define __PF_RES_FIELD 0x8000000000000000ULL
46 
47 #define VM_FAULT_BADCONTEXT	((__force vm_fault_t) 0x010000)
48 #define VM_FAULT_BADMAP		((__force vm_fault_t) 0x020000)
49 #define VM_FAULT_BADACCESS	((__force vm_fault_t) 0x040000)
50 #define VM_FAULT_SIGNAL		((__force vm_fault_t) 0x080000)
51 #define VM_FAULT_PFAULT		((__force vm_fault_t) 0x100000)
52 
53 enum fault_type {
54 	KERNEL_FAULT,
55 	USER_FAULT,
56 	GMAP_FAULT,
57 };
58 
59 static unsigned long store_indication __read_mostly;
60 
61 static int __init fault_init(void)
62 {
63 	if (test_facility(75))
64 		store_indication = 0xc00;
65 	return 0;
66 }
67 early_initcall(fault_init);
68 
69 /*
70  * Find out which address space caused the exception.
71  */
72 static enum fault_type get_fault_type(struct pt_regs *regs)
73 {
74 	unsigned long trans_exc_code;
75 
76 	trans_exc_code = regs->int_parm_long & 3;
77 	if (likely(trans_exc_code == 0)) {
78 		/* primary space exception */
79 		if (user_mode(regs))
80 			return USER_FAULT;
81 		if (!IS_ENABLED(CONFIG_PGSTE))
82 			return KERNEL_FAULT;
83 		if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
84 			return GMAP_FAULT;
85 		return KERNEL_FAULT;
86 	}
87 	if (trans_exc_code == 2)
88 		return USER_FAULT;
89 	if (trans_exc_code == 1) {
90 		/* access register mode, not used in the kernel */
91 		return USER_FAULT;
92 	}
93 	/* home space exception -> access via kernel ASCE */
94 	return KERNEL_FAULT;
95 }
96 
97 static int bad_address(void *p)
98 {
99 	unsigned long dummy;
100 
101 	return get_kernel_nofault(dummy, (unsigned long *)p);
102 }
103 
104 static void dump_pagetable(unsigned long asce, unsigned long address)
105 {
106 	unsigned long *table = __va(asce & _ASCE_ORIGIN);
107 
108 	pr_alert("AS:%016lx ", asce);
109 	switch (asce & _ASCE_TYPE_MASK) {
110 	case _ASCE_TYPE_REGION1:
111 		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
112 		if (bad_address(table))
113 			goto bad;
114 		pr_cont("R1:%016lx ", *table);
115 		if (*table & _REGION_ENTRY_INVALID)
116 			goto out;
117 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
118 		fallthrough;
119 	case _ASCE_TYPE_REGION2:
120 		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
121 		if (bad_address(table))
122 			goto bad;
123 		pr_cont("R2:%016lx ", *table);
124 		if (*table & _REGION_ENTRY_INVALID)
125 			goto out;
126 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
127 		fallthrough;
128 	case _ASCE_TYPE_REGION3:
129 		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
130 		if (bad_address(table))
131 			goto bad;
132 		pr_cont("R3:%016lx ", *table);
133 		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
134 			goto out;
135 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
136 		fallthrough;
137 	case _ASCE_TYPE_SEGMENT:
138 		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
139 		if (bad_address(table))
140 			goto bad;
141 		pr_cont("S:%016lx ", *table);
142 		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
143 			goto out;
144 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
145 	}
146 	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
147 	if (bad_address(table))
148 		goto bad;
149 	pr_cont("P:%016lx ", *table);
150 out:
151 	pr_cont("\n");
152 	return;
153 bad:
154 	pr_cont("BAD\n");
155 }
156 
157 static void dump_fault_info(struct pt_regs *regs)
158 {
159 	unsigned long asce;
160 
161 	pr_alert("Failing address: %016lx TEID: %016lx\n",
162 		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
163 	pr_alert("Fault in ");
164 	switch (regs->int_parm_long & 3) {
165 	case 3:
166 		pr_cont("home space ");
167 		break;
168 	case 2:
169 		pr_cont("secondary space ");
170 		break;
171 	case 1:
172 		pr_cont("access register ");
173 		break;
174 	case 0:
175 		pr_cont("primary space ");
176 		break;
177 	}
178 	pr_cont("mode while using ");
179 	switch (get_fault_type(regs)) {
180 	case USER_FAULT:
181 		asce = S390_lowcore.user_asce;
182 		pr_cont("user ");
183 		break;
184 	case GMAP_FAULT:
185 		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
186 		pr_cont("gmap ");
187 		break;
188 	case KERNEL_FAULT:
189 		asce = S390_lowcore.kernel_asce;
190 		pr_cont("kernel ");
191 		break;
192 	default:
193 		unreachable();
194 	}
195 	pr_cont("ASCE.\n");
196 	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
197 }
198 
199 int show_unhandled_signals = 1;
200 
201 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
202 {
203 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
204 		return;
205 	if (!unhandled_signal(current, signr))
206 		return;
207 	if (!printk_ratelimit())
208 		return;
209 	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
210 	       regs->int_code & 0xffff, regs->int_code >> 17);
211 	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
212 	printk(KERN_CONT "\n");
213 	if (is_mm_fault)
214 		dump_fault_info(regs);
215 	show_regs(regs);
216 }
217 
218 /*
219  * Send SIGSEGV to task.  This is an external routine
220  * to keep the stack usage of do_page_fault small.
221  */
222 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
223 {
224 	report_user_fault(regs, SIGSEGV, 1);
225 	force_sig_fault(SIGSEGV, si_code,
226 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
227 }
228 
229 const struct exception_table_entry *s390_search_extables(unsigned long addr)
230 {
231 	const struct exception_table_entry *fixup;
232 
233 	fixup = search_extable(__start_dma_ex_table,
234 			       __stop_dma_ex_table - __start_dma_ex_table,
235 			       addr);
236 	if (!fixup)
237 		fixup = search_exception_tables(addr);
238 	return fixup;
239 }
240 
241 static noinline void do_no_context(struct pt_regs *regs)
242 {
243 	const struct exception_table_entry *fixup;
244 
245 	/* Are we prepared to handle this kernel fault?  */
246 	fixup = s390_search_extables(regs->psw.addr);
247 	if (fixup && ex_handle(fixup, regs))
248 		return;
249 
250 	/*
251 	 * Oops. The kernel tried to access some bad page. We'll have to
252 	 * terminate things with extreme prejudice.
253 	 */
254 	if (get_fault_type(regs) == KERNEL_FAULT)
255 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
256 		       " in virtual kernel address space\n");
257 	else
258 		printk(KERN_ALERT "Unable to handle kernel paging request"
259 		       " in virtual user address space\n");
260 	dump_fault_info(regs);
261 	die(regs, "Oops");
262 	do_exit(SIGKILL);
263 }
264 
265 static noinline void do_low_address(struct pt_regs *regs)
266 {
267 	/* Low-address protection hit in kernel mode means
268 	   NULL pointer write access in kernel mode.  */
269 	if (regs->psw.mask & PSW_MASK_PSTATE) {
270 		/* Low-address protection hit in user mode 'cannot happen'. */
271 		die (regs, "Low-address protection");
272 		do_exit(SIGKILL);
273 	}
274 
275 	do_no_context(regs);
276 }
277 
278 static noinline void do_sigbus(struct pt_regs *regs)
279 {
280 	/*
281 	 * Send a sigbus, regardless of whether we were in kernel
282 	 * or user mode.
283 	 */
284 	force_sig_fault(SIGBUS, BUS_ADRERR,
285 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
286 }
287 
288 static noinline int signal_return(struct pt_regs *regs)
289 {
290 	u16 instruction;
291 	int rc;
292 
293 	rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
294 	if (rc)
295 		return rc;
296 	if (instruction == 0x0a77) {
297 		set_pt_regs_flag(regs, PIF_SYSCALL);
298 		regs->int_code = 0x00040077;
299 		return 0;
300 	} else if (instruction == 0x0aad) {
301 		set_pt_regs_flag(regs, PIF_SYSCALL);
302 		regs->int_code = 0x000400ad;
303 		return 0;
304 	}
305 	return -EACCES;
306 }
307 
308 static noinline void do_fault_error(struct pt_regs *regs, int access,
309 					vm_fault_t fault)
310 {
311 	int si_code;
312 
313 	switch (fault) {
314 	case VM_FAULT_BADACCESS:
315 		if (access == VM_EXEC && signal_return(regs) == 0)
316 			break;
317 		fallthrough;
318 	case VM_FAULT_BADMAP:
319 		/* Bad memory access. Check if it is kernel or user space. */
320 		if (user_mode(regs)) {
321 			/* User mode accesses just cause a SIGSEGV */
322 			si_code = (fault == VM_FAULT_BADMAP) ?
323 				SEGV_MAPERR : SEGV_ACCERR;
324 			do_sigsegv(regs, si_code);
325 			break;
326 		}
327 		fallthrough;
328 	case VM_FAULT_BADCONTEXT:
329 	case VM_FAULT_PFAULT:
330 		do_no_context(regs);
331 		break;
332 	case VM_FAULT_SIGNAL:
333 		if (!user_mode(regs))
334 			do_no_context(regs);
335 		break;
336 	default: /* fault & VM_FAULT_ERROR */
337 		if (fault & VM_FAULT_OOM) {
338 			if (!user_mode(regs))
339 				do_no_context(regs);
340 			else
341 				pagefault_out_of_memory();
342 		} else if (fault & VM_FAULT_SIGSEGV) {
343 			/* Kernel mode? Handle exceptions or die */
344 			if (!user_mode(regs))
345 				do_no_context(regs);
346 			else
347 				do_sigsegv(regs, SEGV_MAPERR);
348 		} else if (fault & VM_FAULT_SIGBUS) {
349 			/* Kernel mode? Handle exceptions or die */
350 			if (!user_mode(regs))
351 				do_no_context(regs);
352 			else
353 				do_sigbus(regs);
354 		} else
355 			BUG();
356 		break;
357 	}
358 }
359 
360 /*
361  * This routine handles page faults.  It determines the address,
362  * and the problem, and then passes it off to one of the appropriate
363  * routines.
364  *
365  * interruption code (int_code):
366  *   04       Protection           ->  Write-Protection  (suppression)
367  *   10       Segment translation  ->  Not present       (nullification)
368  *   11       Page translation     ->  Not present       (nullification)
369  *   3b       Region third trans.  ->  Not present       (nullification)
370  */
371 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
372 {
373 	struct gmap *gmap;
374 	struct task_struct *tsk;
375 	struct mm_struct *mm;
376 	struct vm_area_struct *vma;
377 	enum fault_type type;
378 	unsigned long trans_exc_code;
379 	unsigned long address;
380 	unsigned int flags;
381 	vm_fault_t fault;
382 
383 	tsk = current;
384 	/*
385 	 * The instruction that caused the program check has
386 	 * been nullified. Don't signal single step via SIGTRAP.
387 	 */
388 	clear_thread_flag(TIF_PER_TRAP);
389 
390 	if (kprobe_page_fault(regs, 14))
391 		return 0;
392 
393 	mm = tsk->mm;
394 	trans_exc_code = regs->int_parm_long;
395 
396 	/*
397 	 * Verify that the fault happened in user space, that
398 	 * we are not in an interrupt and that there is a
399 	 * user context.
400 	 */
401 	fault = VM_FAULT_BADCONTEXT;
402 	type = get_fault_type(regs);
403 	switch (type) {
404 	case KERNEL_FAULT:
405 		goto out;
406 	case USER_FAULT:
407 	case GMAP_FAULT:
408 		if (faulthandler_disabled() || !mm)
409 			goto out;
410 		break;
411 	}
412 
413 	address = trans_exc_code & __FAIL_ADDR_MASK;
414 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
415 	flags = FAULT_FLAG_DEFAULT;
416 	if (user_mode(regs))
417 		flags |= FAULT_FLAG_USER;
418 	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
419 		flags |= FAULT_FLAG_WRITE;
420 	mmap_read_lock(mm);
421 
422 	gmap = NULL;
423 	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
424 		gmap = (struct gmap *) S390_lowcore.gmap;
425 		current->thread.gmap_addr = address;
426 		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
427 		current->thread.gmap_int_code = regs->int_code & 0xffff;
428 		address = __gmap_translate(gmap, address);
429 		if (address == -EFAULT) {
430 			fault = VM_FAULT_BADMAP;
431 			goto out_up;
432 		}
433 		if (gmap->pfault_enabled)
434 			flags |= FAULT_FLAG_RETRY_NOWAIT;
435 	}
436 
437 retry:
438 	fault = VM_FAULT_BADMAP;
439 	vma = find_vma(mm, address);
440 	if (!vma)
441 		goto out_up;
442 
443 	if (unlikely(vma->vm_start > address)) {
444 		if (!(vma->vm_flags & VM_GROWSDOWN))
445 			goto out_up;
446 		if (expand_stack(vma, address))
447 			goto out_up;
448 	}
449 
450 	/*
451 	 * Ok, we have a good vm_area for this memory access, so
452 	 * we can handle it..
453 	 */
454 	fault = VM_FAULT_BADACCESS;
455 	if (unlikely(!(vma->vm_flags & access)))
456 		goto out_up;
457 
458 	if (is_vm_hugetlb_page(vma))
459 		address &= HPAGE_MASK;
460 	/*
461 	 * If for any reason at all we couldn't handle the fault,
462 	 * make sure we exit gracefully rather than endlessly redo
463 	 * the fault.
464 	 */
465 	fault = handle_mm_fault(vma, address, flags, regs);
466 	if (fault_signal_pending(fault, regs)) {
467 		fault = VM_FAULT_SIGNAL;
468 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
469 			goto out_up;
470 		goto out;
471 	}
472 	if (unlikely(fault & VM_FAULT_ERROR))
473 		goto out_up;
474 
475 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
476 		if (fault & VM_FAULT_RETRY) {
477 			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
478 			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
479 				/* FAULT_FLAG_RETRY_NOWAIT has been set,
480 				 * mmap_lock has not been released */
481 				current->thread.gmap_pfault = 1;
482 				fault = VM_FAULT_PFAULT;
483 				goto out_up;
484 			}
485 			flags &= ~FAULT_FLAG_RETRY_NOWAIT;
486 			flags |= FAULT_FLAG_TRIED;
487 			mmap_read_lock(mm);
488 			goto retry;
489 		}
490 	}
491 	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
492 		address =  __gmap_link(gmap, current->thread.gmap_addr,
493 				       address);
494 		if (address == -EFAULT) {
495 			fault = VM_FAULT_BADMAP;
496 			goto out_up;
497 		}
498 		if (address == -ENOMEM) {
499 			fault = VM_FAULT_OOM;
500 			goto out_up;
501 		}
502 	}
503 	fault = 0;
504 out_up:
505 	mmap_read_unlock(mm);
506 out:
507 	return fault;
508 }
509 
510 void do_protection_exception(struct pt_regs *regs)
511 {
512 	unsigned long trans_exc_code;
513 	int access;
514 	vm_fault_t fault;
515 
516 	trans_exc_code = regs->int_parm_long;
517 	/*
518 	 * Protection exceptions are suppressing, decrement psw address.
519 	 * The exception to this rule are aborted transactions, for these
520 	 * the PSW already points to the correct location.
521 	 */
522 	if (!(regs->int_code & 0x200))
523 		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
524 	/*
525 	 * Check for low-address protection.  This needs to be treated
526 	 * as a special case because the translation exception code
527 	 * field is not guaranteed to contain valid data in this case.
528 	 */
529 	if (unlikely(!(trans_exc_code & 4))) {
530 		do_low_address(regs);
531 		return;
532 	}
533 	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
534 		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
535 					(regs->psw.addr & PAGE_MASK);
536 		access = VM_EXEC;
537 		fault = VM_FAULT_BADACCESS;
538 	} else {
539 		access = VM_WRITE;
540 		fault = do_exception(regs, access);
541 	}
542 	if (unlikely(fault))
543 		do_fault_error(regs, access, fault);
544 }
545 NOKPROBE_SYMBOL(do_protection_exception);
546 
547 void do_dat_exception(struct pt_regs *regs)
548 {
549 	int access;
550 	vm_fault_t fault;
551 
552 	access = VM_ACCESS_FLAGS;
553 	fault = do_exception(regs, access);
554 	if (unlikely(fault))
555 		do_fault_error(regs, access, fault);
556 }
557 NOKPROBE_SYMBOL(do_dat_exception);
558 
559 #ifdef CONFIG_PFAULT
560 /*
561  * 'pfault' pseudo page faults routines.
562  */
563 static int pfault_disable;
564 
565 static int __init nopfault(char *str)
566 {
567 	pfault_disable = 1;
568 	return 1;
569 }
570 
571 __setup("nopfault", nopfault);
572 
573 struct pfault_refbk {
574 	u16 refdiagc;
575 	u16 reffcode;
576 	u16 refdwlen;
577 	u16 refversn;
578 	u64 refgaddr;
579 	u64 refselmk;
580 	u64 refcmpmk;
581 	u64 reserved;
582 } __attribute__ ((packed, aligned(8)));
583 
584 static struct pfault_refbk pfault_init_refbk = {
585 	.refdiagc = 0x258,
586 	.reffcode = 0,
587 	.refdwlen = 5,
588 	.refversn = 2,
589 	.refgaddr = __LC_LPP,
590 	.refselmk = 1ULL << 48,
591 	.refcmpmk = 1ULL << 48,
592 	.reserved = __PF_RES_FIELD
593 };
594 
595 int pfault_init(void)
596 {
597         int rc;
598 
599 	if (pfault_disable)
600 		return -1;
601 	diag_stat_inc(DIAG_STAT_X258);
602 	asm volatile(
603 		"	diag	%1,%0,0x258\n"
604 		"0:	j	2f\n"
605 		"1:	la	%0,8\n"
606 		"2:\n"
607 		EX_TABLE(0b,1b)
608 		: "=d" (rc)
609 		: "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
610         return rc;
611 }
612 
613 static struct pfault_refbk pfault_fini_refbk = {
614 	.refdiagc = 0x258,
615 	.reffcode = 1,
616 	.refdwlen = 5,
617 	.refversn = 2,
618 };
619 
620 void pfault_fini(void)
621 {
622 
623 	if (pfault_disable)
624 		return;
625 	diag_stat_inc(DIAG_STAT_X258);
626 	asm volatile(
627 		"	diag	%0,0,0x258\n"
628 		"0:	nopr	%%r7\n"
629 		EX_TABLE(0b,0b)
630 		: : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
631 }
632 
633 static DEFINE_SPINLOCK(pfault_lock);
634 static LIST_HEAD(pfault_list);
635 
636 #define PF_COMPLETE	0x0080
637 
638 /*
639  * The mechanism of our pfault code: if Linux is running as guest, runs a user
640  * space process and the user space process accesses a page that the host has
641  * paged out we get a pfault interrupt.
642  *
643  * This allows us, within the guest, to schedule a different process. Without
644  * this mechanism the host would have to suspend the whole virtual cpu until
645  * the page has been paged in.
646  *
647  * So when we get such an interrupt then we set the state of the current task
648  * to uninterruptible and also set the need_resched flag. Both happens within
649  * interrupt context(!). If we later on want to return to user space we
650  * recognize the need_resched flag and then call schedule().  It's not very
651  * obvious how this works...
652  *
653  * Of course we have a lot of additional fun with the completion interrupt (->
654  * host signals that a page of a process has been paged in and the process can
655  * continue to run). This interrupt can arrive on any cpu and, since we have
656  * virtual cpus, actually appear before the interrupt that signals that a page
657  * is missing.
658  */
659 static void pfault_interrupt(struct ext_code ext_code,
660 			     unsigned int param32, unsigned long param64)
661 {
662 	struct task_struct *tsk;
663 	__u16 subcode;
664 	pid_t pid;
665 
666 	/*
667 	 * Get the external interruption subcode & pfault initial/completion
668 	 * signal bit. VM stores this in the 'cpu address' field associated
669 	 * with the external interrupt.
670 	 */
671 	subcode = ext_code.subcode;
672 	if ((subcode & 0xff00) != __SUBCODE_MASK)
673 		return;
674 	inc_irq_stat(IRQEXT_PFL);
675 	/* Get the token (= pid of the affected task). */
676 	pid = param64 & LPP_PID_MASK;
677 	rcu_read_lock();
678 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
679 	if (tsk)
680 		get_task_struct(tsk);
681 	rcu_read_unlock();
682 	if (!tsk)
683 		return;
684 	spin_lock(&pfault_lock);
685 	if (subcode & PF_COMPLETE) {
686 		/* signal bit is set -> a page has been swapped in by VM */
687 		if (tsk->thread.pfault_wait == 1) {
688 			/* Initial interrupt was faster than the completion
689 			 * interrupt. pfault_wait is valid. Set pfault_wait
690 			 * back to zero and wake up the process. This can
691 			 * safely be done because the task is still sleeping
692 			 * and can't produce new pfaults. */
693 			tsk->thread.pfault_wait = 0;
694 			list_del(&tsk->thread.list);
695 			wake_up_process(tsk);
696 			put_task_struct(tsk);
697 		} else {
698 			/* Completion interrupt was faster than initial
699 			 * interrupt. Set pfault_wait to -1 so the initial
700 			 * interrupt doesn't put the task to sleep.
701 			 * If the task is not running, ignore the completion
702 			 * interrupt since it must be a leftover of a PFAULT
703 			 * CANCEL operation which didn't remove all pending
704 			 * completion interrupts. */
705 			if (tsk->state == TASK_RUNNING)
706 				tsk->thread.pfault_wait = -1;
707 		}
708 	} else {
709 		/* signal bit not set -> a real page is missing. */
710 		if (WARN_ON_ONCE(tsk != current))
711 			goto out;
712 		if (tsk->thread.pfault_wait == 1) {
713 			/* Already on the list with a reference: put to sleep */
714 			goto block;
715 		} else if (tsk->thread.pfault_wait == -1) {
716 			/* Completion interrupt was faster than the initial
717 			 * interrupt (pfault_wait == -1). Set pfault_wait
718 			 * back to zero and exit. */
719 			tsk->thread.pfault_wait = 0;
720 		} else {
721 			/* Initial interrupt arrived before completion
722 			 * interrupt. Let the task sleep.
723 			 * An extra task reference is needed since a different
724 			 * cpu may set the task state to TASK_RUNNING again
725 			 * before the scheduler is reached. */
726 			get_task_struct(tsk);
727 			tsk->thread.pfault_wait = 1;
728 			list_add(&tsk->thread.list, &pfault_list);
729 block:
730 			/* Since this must be a userspace fault, there
731 			 * is no kernel task state to trample. Rely on the
732 			 * return to userspace schedule() to block. */
733 			__set_current_state(TASK_UNINTERRUPTIBLE);
734 			set_tsk_need_resched(tsk);
735 			set_preempt_need_resched();
736 		}
737 	}
738 out:
739 	spin_unlock(&pfault_lock);
740 	put_task_struct(tsk);
741 }
742 
743 static int pfault_cpu_dead(unsigned int cpu)
744 {
745 	struct thread_struct *thread, *next;
746 	struct task_struct *tsk;
747 
748 	spin_lock_irq(&pfault_lock);
749 	list_for_each_entry_safe(thread, next, &pfault_list, list) {
750 		thread->pfault_wait = 0;
751 		list_del(&thread->list);
752 		tsk = container_of(thread, struct task_struct, thread);
753 		wake_up_process(tsk);
754 		put_task_struct(tsk);
755 	}
756 	spin_unlock_irq(&pfault_lock);
757 	return 0;
758 }
759 
760 static int __init pfault_irq_init(void)
761 {
762 	int rc;
763 
764 	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
765 	if (rc)
766 		goto out_extint;
767 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
768 	if (rc)
769 		goto out_pfault;
770 	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
771 	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
772 				  NULL, pfault_cpu_dead);
773 	return 0;
774 
775 out_pfault:
776 	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
777 out_extint:
778 	pfault_disable = 1;
779 	return rc;
780 }
781 early_initcall(pfault_irq_init);
782 
783 #endif /* CONFIG_PFAULT */
784 
785 #if IS_ENABLED(CONFIG_PGSTE)
786 void do_secure_storage_access(struct pt_regs *regs)
787 {
788 	unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
789 	struct vm_area_struct *vma;
790 	struct mm_struct *mm;
791 	struct page *page;
792 	int rc;
793 
794 	switch (get_fault_type(regs)) {
795 	case USER_FAULT:
796 		mm = current->mm;
797 		mmap_read_lock(mm);
798 		vma = find_vma(mm, addr);
799 		if (!vma) {
800 			mmap_read_unlock(mm);
801 			do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
802 			break;
803 		}
804 		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
805 		if (IS_ERR_OR_NULL(page)) {
806 			mmap_read_unlock(mm);
807 			break;
808 		}
809 		if (arch_make_page_accessible(page))
810 			send_sig(SIGSEGV, current, 0);
811 		put_page(page);
812 		mmap_read_unlock(mm);
813 		break;
814 	case KERNEL_FAULT:
815 		page = phys_to_page(addr);
816 		if (unlikely(!try_get_page(page)))
817 			break;
818 		rc = arch_make_page_accessible(page);
819 		put_page(page);
820 		if (rc)
821 			BUG();
822 		break;
823 	case GMAP_FAULT:
824 	default:
825 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
826 		WARN_ON_ONCE(1);
827 	}
828 }
829 NOKPROBE_SYMBOL(do_secure_storage_access);
830 
831 void do_non_secure_storage_access(struct pt_regs *regs)
832 {
833 	unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
834 	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
835 
836 	if (get_fault_type(regs) != GMAP_FAULT) {
837 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
838 		WARN_ON_ONCE(1);
839 		return;
840 	}
841 
842 	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
843 		send_sig(SIGSEGV, current, 0);
844 }
845 NOKPROBE_SYMBOL(do_non_secure_storage_access);
846 
847 void do_secure_storage_violation(struct pt_regs *regs)
848 {
849 	/*
850 	 * Either KVM messed up the secure guest mapping or the same
851 	 * page is mapped into multiple secure guests.
852 	 *
853 	 * This exception is only triggered when a guest 2 is running
854 	 * and can therefore never occur in kernel context.
855 	 */
856 	printk_ratelimited(KERN_WARNING
857 			   "Secure storage violation in task: %s, pid %d\n",
858 			   current->comm, current->pid);
859 	send_sig(SIGSEGV, current, 0);
860 }
861 
862 #else
863 void do_secure_storage_access(struct pt_regs *regs)
864 {
865 	default_trap_handler(regs);
866 }
867 
868 void do_non_secure_storage_access(struct pt_regs *regs)
869 {
870 	default_trap_handler(regs);
871 }
872 
873 void do_secure_storage_violation(struct pt_regs *regs)
874 {
875 	default_trap_handler(regs);
876 }
877 #endif
878