1b2441318SGreg Kroah-Hartman/* SPDX-License-Identifier: GPL-2.0 */ 219c93787SHendrik Brueckner/* 319c93787SHendrik Brueckner * Hardware-accelerated CRC-32 variants for Linux on z Systems 419c93787SHendrik Brueckner * 519c93787SHendrik Brueckner * Use the z/Architecture Vector Extension Facility to accelerate the 619c93787SHendrik Brueckner * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet 719c93787SHendrik Brueckner * and Castagnoli. 819c93787SHendrik Brueckner * 919c93787SHendrik Brueckner * This CRC-32 implementation algorithm is bitreflected and processes 1019c93787SHendrik Brueckner * the least-significant bit first (Little-Endian). 1119c93787SHendrik Brueckner * 1219c93787SHendrik Brueckner * Copyright IBM Corp. 2015 1319c93787SHendrik Brueckner * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 1419c93787SHendrik Brueckner */ 1519c93787SHendrik Brueckner 1619c93787SHendrik Brueckner#include <linux/linkage.h> 17467a3bf2SMartin Schwidefsky#include <asm/nospec-insn.h> 1819c93787SHendrik Brueckner#include <asm/vx-insn.h> 1919c93787SHendrik Brueckner 2019c93787SHendrik Brueckner/* Vector register range containing CRC-32 constants */ 2119c93787SHendrik Brueckner#define CONST_PERM_LE2BE %v9 2219c93787SHendrik Brueckner#define CONST_R2R1 %v10 2319c93787SHendrik Brueckner#define CONST_R4R3 %v11 2419c93787SHendrik Brueckner#define CONST_R5 %v12 2519c93787SHendrik Brueckner#define CONST_RU_POLY %v13 2619c93787SHendrik Brueckner#define CONST_CRC_POLY %v14 2719c93787SHendrik Brueckner 2819c93787SHendrik Brueckner .data 29*b5f3c99dSHeiko Carstens .balign 8 3019c93787SHendrik Brueckner 3119c93787SHendrik Brueckner/* 3219c93787SHendrik Brueckner * The CRC-32 constant block contains reduction constants to fold and 3319c93787SHendrik Brueckner * process particular chunks of the input data stream in parallel. 3419c93787SHendrik Brueckner * 3519c93787SHendrik Brueckner * For the CRC-32 variants, the constants are precomputed according to 3619c93787SHendrik Brueckner * these definitions: 3719c93787SHendrik Brueckner * 3819c93787SHendrik Brueckner * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1 3919c93787SHendrik Brueckner * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1 4019c93787SHendrik Brueckner * R3 = [(x128+32 mod P'(x) << 32)]' << 1 4119c93787SHendrik Brueckner * R4 = [(x128-32 mod P'(x) << 32)]' << 1 4219c93787SHendrik Brueckner * R5 = [(x64 mod P'(x) << 32)]' << 1 4319c93787SHendrik Brueckner * R6 = [(x32 mod P'(x) << 32)]' << 1 4419c93787SHendrik Brueckner * 4519c93787SHendrik Brueckner * The bitreflected Barret reduction constant, u', is defined as 4619c93787SHendrik Brueckner * the bit reversal of floor(x**64 / P(x)). 4719c93787SHendrik Brueckner * 4819c93787SHendrik Brueckner * where P(x) is the polynomial in the normal domain and the P'(x) is the 4919c93787SHendrik Brueckner * polynomial in the reversed (bitreflected) domain. 5019c93787SHendrik Brueckner * 5119c93787SHendrik Brueckner * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: 5219c93787SHendrik Brueckner * 5319c93787SHendrik Brueckner * P(x) = 0x04C11DB7 5419c93787SHendrik Brueckner * P'(x) = 0xEDB88320 5519c93787SHendrik Brueckner * 5619c93787SHendrik Brueckner * CRC-32C (Castagnoli) polynomials: 5719c93787SHendrik Brueckner * 5819c93787SHendrik Brueckner * P(x) = 0x1EDC6F41 5919c93787SHendrik Brueckner * P'(x) = 0x82F63B78 6019c93787SHendrik Brueckner */ 6119c93787SHendrik Brueckner 62*b5f3c99dSHeiko CarstensSYM_DATA_START_LOCAL(constants_CRC_32_LE) 6319c93787SHendrik Brueckner .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask 6419c93787SHendrik Brueckner .quad 0x1c6e41596, 0x154442bd4 # R2, R1 6519c93787SHendrik Brueckner .quad 0x0ccaa009e, 0x1751997d0 # R4, R3 6619c93787SHendrik Brueckner .octa 0x163cd6124 # R5 6719c93787SHendrik Brueckner .octa 0x1F7011641 # u' 6819c93787SHendrik Brueckner .octa 0x1DB710641 # P'(x) << 1 69*b5f3c99dSHeiko CarstensSYM_DATA_END(constants_CRC_32_LE) 7019c93787SHendrik Brueckner 71*b5f3c99dSHeiko CarstensSYM_DATA_START_LOCAL(constants_CRC_32C_LE) 7219c93787SHendrik Brueckner .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask 7319c93787SHendrik Brueckner .quad 0x09e4addf8, 0x740eef02 # R2, R1 7419c93787SHendrik Brueckner .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3 7519c93787SHendrik Brueckner .octa 0x0dd45aab8 # R5 7619c93787SHendrik Brueckner .octa 0x0dea713f1 # u' 7719c93787SHendrik Brueckner .octa 0x105ec76f0 # P'(x) << 1 78*b5f3c99dSHeiko CarstensSYM_DATA_END(constants_CRC_32C_LE) 7919c93787SHendrik Brueckner 8019c93787SHendrik Brueckner .previous 8119c93787SHendrik Brueckner 82467a3bf2SMartin Schwidefsky GEN_BR_THUNK %r14 8319c93787SHendrik Brueckner 8419c93787SHendrik Brueckner .text 8519c93787SHendrik Brueckner 8619c93787SHendrik Brueckner/* 8719c93787SHendrik Brueckner * The CRC-32 functions use these calling conventions: 8819c93787SHendrik Brueckner * 8919c93787SHendrik Brueckner * Parameters: 9019c93787SHendrik Brueckner * 9119c93787SHendrik Brueckner * %r2: Initial CRC value, typically ~0; and final CRC (return) value. 9219c93787SHendrik Brueckner * %r3: Input buffer pointer, performance might be improved if the 9319c93787SHendrik Brueckner * buffer is on a doubleword boundary. 9419c93787SHendrik Brueckner * %r4: Length of the buffer, must be 64 bytes or greater. 9519c93787SHendrik Brueckner * 9619c93787SHendrik Brueckner * Register usage: 9719c93787SHendrik Brueckner * 9819c93787SHendrik Brueckner * %r5: CRC-32 constant pool base pointer. 9919c93787SHendrik Brueckner * V0: Initial CRC value and intermediate constants and results. 10019c93787SHendrik Brueckner * V1..V4: Data for CRC computation. 10119c93787SHendrik Brueckner * V5..V8: Next data chunks that are fetched from the input buffer. 10219c93787SHendrik Brueckner * V9: Constant for BE->LE conversion and shift operations 10319c93787SHendrik Brueckner * 10419c93787SHendrik Brueckner * V10..V14: CRC-32 constants. 10519c93787SHendrik Brueckner */ 10619c93787SHendrik Brueckner 107*b5f3c99dSHeiko CarstensSYM_FUNC_START(crc32_le_vgfm_16) 108*b5f3c99dSHeiko Carstens larl %r5,constants_CRC_32_LE 10919c93787SHendrik Brueckner j crc32_le_vgfm_generic 110*b5f3c99dSHeiko CarstensSYM_FUNC_END(crc32_le_vgfm_16) 11119c93787SHendrik Brueckner 112*b5f3c99dSHeiko CarstensSYM_FUNC_START(crc32c_le_vgfm_16) 113*b5f3c99dSHeiko Carstens larl %r5,constants_CRC_32C_LE 11419c93787SHendrik Brueckner j crc32_le_vgfm_generic 115*b5f3c99dSHeiko CarstensSYM_FUNC_END(crc32c_le_vgfm_16) 11619c93787SHendrik Brueckner 117*b5f3c99dSHeiko CarstensSYM_FUNC_START(crc32_le_vgfm_generic) 11819c93787SHendrik Brueckner /* Load CRC-32 constants */ 11919c93787SHendrik Brueckner VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5 12019c93787SHendrik Brueckner 12119c93787SHendrik Brueckner /* 12219c93787SHendrik Brueckner * Load the initial CRC value. 12319c93787SHendrik Brueckner * 12419c93787SHendrik Brueckner * The CRC value is loaded into the rightmost word of the 12519c93787SHendrik Brueckner * vector register and is later XORed with the LSB portion 12619c93787SHendrik Brueckner * of the loaded input data. 12719c93787SHendrik Brueckner */ 12819c93787SHendrik Brueckner VZERO %v0 /* Clear V0 */ 12919c93787SHendrik Brueckner VLVGF %v0,%r2,3 /* Load CRC into rightmost word */ 13019c93787SHendrik Brueckner 13119c93787SHendrik Brueckner /* Load a 64-byte data chunk and XOR with CRC */ 13219c93787SHendrik Brueckner VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */ 13319c93787SHendrik Brueckner VPERM %v1,%v1,%v1,CONST_PERM_LE2BE 13419c93787SHendrik Brueckner VPERM %v2,%v2,%v2,CONST_PERM_LE2BE 13519c93787SHendrik Brueckner VPERM %v3,%v3,%v3,CONST_PERM_LE2BE 13619c93787SHendrik Brueckner VPERM %v4,%v4,%v4,CONST_PERM_LE2BE 13719c93787SHendrik Brueckner 13819c93787SHendrik Brueckner VX %v1,%v0,%v1 /* V1 ^= CRC */ 13919c93787SHendrik Brueckner aghi %r3,64 /* BUF = BUF + 64 */ 14019c93787SHendrik Brueckner aghi %r4,-64 /* LEN = LEN - 64 */ 14119c93787SHendrik Brueckner 14219c93787SHendrik Brueckner cghi %r4,64 14319c93787SHendrik Brueckner jl .Lless_than_64bytes 14419c93787SHendrik Brueckner 14519c93787SHendrik Brueckner.Lfold_64bytes_loop: 14619c93787SHendrik Brueckner /* Load the next 64-byte data chunk into V5 to V8 */ 14719c93787SHendrik Brueckner VLM %v5,%v8,0,%r3 14819c93787SHendrik Brueckner VPERM %v5,%v5,%v5,CONST_PERM_LE2BE 14919c93787SHendrik Brueckner VPERM %v6,%v6,%v6,CONST_PERM_LE2BE 15019c93787SHendrik Brueckner VPERM %v7,%v7,%v7,CONST_PERM_LE2BE 15119c93787SHendrik Brueckner VPERM %v8,%v8,%v8,CONST_PERM_LE2BE 15219c93787SHendrik Brueckner 15319c93787SHendrik Brueckner /* 15419c93787SHendrik Brueckner * Perform a GF(2) multiplication of the doublewords in V1 with 15519c93787SHendrik Brueckner * the R1 and R2 reduction constants in V0. The intermediate result 15619c93787SHendrik Brueckner * is then folded (accumulated) with the next data chunk in V5 and 15719c93787SHendrik Brueckner * stored in V1. Repeat this step for the register contents 15819c93787SHendrik Brueckner * in V2, V3, and V4 respectively. 15919c93787SHendrik Brueckner */ 16019c93787SHendrik Brueckner VGFMAG %v1,CONST_R2R1,%v1,%v5 16119c93787SHendrik Brueckner VGFMAG %v2,CONST_R2R1,%v2,%v6 16219c93787SHendrik Brueckner VGFMAG %v3,CONST_R2R1,%v3,%v7 16319c93787SHendrik Brueckner VGFMAG %v4,CONST_R2R1,%v4,%v8 16419c93787SHendrik Brueckner 16519c93787SHendrik Brueckner aghi %r3,64 /* BUF = BUF + 64 */ 16619c93787SHendrik Brueckner aghi %r4,-64 /* LEN = LEN - 64 */ 16719c93787SHendrik Brueckner 16819c93787SHendrik Brueckner cghi %r4,64 16919c93787SHendrik Brueckner jnl .Lfold_64bytes_loop 17019c93787SHendrik Brueckner 17119c93787SHendrik Brueckner.Lless_than_64bytes: 17219c93787SHendrik Brueckner /* 17319c93787SHendrik Brueckner * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3 17419c93787SHendrik Brueckner * and R4 and accumulating the next 128-bit chunk until a single 128-bit 17519c93787SHendrik Brueckner * value remains. 17619c93787SHendrik Brueckner */ 17719c93787SHendrik Brueckner VGFMAG %v1,CONST_R4R3,%v1,%v2 17819c93787SHendrik Brueckner VGFMAG %v1,CONST_R4R3,%v1,%v3 17919c93787SHendrik Brueckner VGFMAG %v1,CONST_R4R3,%v1,%v4 18019c93787SHendrik Brueckner 18119c93787SHendrik Brueckner cghi %r4,16 18219c93787SHendrik Brueckner jl .Lfinal_fold 18319c93787SHendrik Brueckner 18419c93787SHendrik Brueckner.Lfold_16bytes_loop: 18519c93787SHendrik Brueckner 18619c93787SHendrik Brueckner VL %v2,0,,%r3 /* Load next data chunk */ 18719c93787SHendrik Brueckner VPERM %v2,%v2,%v2,CONST_PERM_LE2BE 18819c93787SHendrik Brueckner VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */ 18919c93787SHendrik Brueckner 19019c93787SHendrik Brueckner aghi %r3,16 19119c93787SHendrik Brueckner aghi %r4,-16 19219c93787SHendrik Brueckner 19319c93787SHendrik Brueckner cghi %r4,16 19419c93787SHendrik Brueckner jnl .Lfold_16bytes_loop 19519c93787SHendrik Brueckner 19619c93787SHendrik Brueckner.Lfinal_fold: 19719c93787SHendrik Brueckner /* 19819c93787SHendrik Brueckner * Set up a vector register for byte shifts. The shift value must 19919c93787SHendrik Brueckner * be loaded in bits 1-4 in byte element 7 of a vector register. 20019c93787SHendrik Brueckner * Shift by 8 bytes: 0x40 20119c93787SHendrik Brueckner * Shift by 4 bytes: 0x20 20219c93787SHendrik Brueckner */ 20319c93787SHendrik Brueckner VLEIB %v9,0x40,7 20419c93787SHendrik Brueckner 20519c93787SHendrik Brueckner /* 20619c93787SHendrik Brueckner * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes 20719c93787SHendrik Brueckner * to move R4 into the rightmost doubleword and set the leftmost 20819c93787SHendrik Brueckner * doubleword to 0x1. 20919c93787SHendrik Brueckner */ 21019c93787SHendrik Brueckner VSRLB %v0,CONST_R4R3,%v9 21119c93787SHendrik Brueckner VLEIG %v0,1,0 21219c93787SHendrik Brueckner 21319c93787SHendrik Brueckner /* 21419c93787SHendrik Brueckner * Compute GF(2) product of V1 and V0. The rightmost doubleword 21519c93787SHendrik Brueckner * of V1 is multiplied with R4. The leftmost doubleword of V1 is 21619c93787SHendrik Brueckner * multiplied by 0x1 and is then XORed with rightmost product. 21719c93787SHendrik Brueckner * Implicitly, the intermediate leftmost product becomes padded 21819c93787SHendrik Brueckner */ 21919c93787SHendrik Brueckner VGFMG %v1,%v0,%v1 22019c93787SHendrik Brueckner 22119c93787SHendrik Brueckner /* 22219c93787SHendrik Brueckner * Now do the final 32-bit fold by multiplying the rightmost word 22319c93787SHendrik Brueckner * in V1 with R5 and XOR the result with the remaining bits in V1. 22419c93787SHendrik Brueckner * 22519c93787SHendrik Brueckner * To achieve this by a single VGFMAG, right shift V1 by a word 22619c93787SHendrik Brueckner * and store the result in V2 which is then accumulated. Use the 22719c93787SHendrik Brueckner * vector unpack instruction to load the rightmost half of the 22819c93787SHendrik Brueckner * doubleword into the rightmost doubleword element of V1; the other 22919c93787SHendrik Brueckner * half is loaded in the leftmost doubleword. 23019c93787SHendrik Brueckner * The vector register with CONST_R5 contains the R5 constant in the 23119c93787SHendrik Brueckner * rightmost doubleword and the leftmost doubleword is zero to ignore 23219c93787SHendrik Brueckner * the leftmost product of V1. 23319c93787SHendrik Brueckner */ 23419c93787SHendrik Brueckner VLEIB %v9,0x20,7 /* Shift by words */ 23519c93787SHendrik Brueckner VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */ 23619c93787SHendrik Brueckner VUPLLF %v1,%v1 /* Split rightmost doubleword */ 23719c93787SHendrik Brueckner VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */ 23819c93787SHendrik Brueckner 23919c93787SHendrik Brueckner /* 24019c93787SHendrik Brueckner * Apply a Barret reduction to compute the final 32-bit CRC value. 24119c93787SHendrik Brueckner * 24219c93787SHendrik Brueckner * The input values to the Barret reduction are the degree-63 polynomial 24319c93787SHendrik Brueckner * in V1 (R(x)), degree-32 generator polynomial, and the reduction 24419c93787SHendrik Brueckner * constant u. The Barret reduction result is the CRC value of R(x) mod 24519c93787SHendrik Brueckner * P(x). 24619c93787SHendrik Brueckner * 24719c93787SHendrik Brueckner * The Barret reduction algorithm is defined as: 24819c93787SHendrik Brueckner * 24919c93787SHendrik Brueckner * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u 25019c93787SHendrik Brueckner * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) 25119c93787SHendrik Brueckner * 3. C(x) = R(x) XOR T2(x) mod x^32 25219c93787SHendrik Brueckner * 25319c93787SHendrik Brueckner * Note: The leftmost doubleword of vector register containing 25419c93787SHendrik Brueckner * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product 25519c93787SHendrik Brueckner * is zero and does not contribute to the final result. 25619c93787SHendrik Brueckner */ 25719c93787SHendrik Brueckner 25819c93787SHendrik Brueckner /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ 25919c93787SHendrik Brueckner VUPLLF %v2,%v1 26019c93787SHendrik Brueckner VGFMG %v2,CONST_RU_POLY,%v2 26119c93787SHendrik Brueckner 26219c93787SHendrik Brueckner /* 26319c93787SHendrik Brueckner * Compute the GF(2) product of the CRC polynomial with T1(x) in 26419c93787SHendrik Brueckner * V2 and XOR the intermediate result, T2(x), with the value in V1. 26519c93787SHendrik Brueckner * The final result is stored in word element 2 of V2. 26619c93787SHendrik Brueckner */ 26719c93787SHendrik Brueckner VUPLLF %v2,%v2 26819c93787SHendrik Brueckner VGFMAG %v2,CONST_CRC_POLY,%v2,%v1 26919c93787SHendrik Brueckner 27019c93787SHendrik Brueckner.Ldone: 27119c93787SHendrik Brueckner VLGVF %r2,%v2,2 272467a3bf2SMartin Schwidefsky BR_EX %r14 273*b5f3c99dSHeiko CarstensSYM_FUNC_END(crc32_le_vgfm_generic) 27419c93787SHendrik Brueckner 27519c93787SHendrik Brueckner.previous 276