xref: /openbmc/linux/arch/s390/crypto/crc32le-vx.S (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1b2441318SGreg Kroah-Hartman/* SPDX-License-Identifier: GPL-2.0 */
219c93787SHendrik Brueckner/*
319c93787SHendrik Brueckner * Hardware-accelerated CRC-32 variants for Linux on z Systems
419c93787SHendrik Brueckner *
519c93787SHendrik Brueckner * Use the z/Architecture Vector Extension Facility to accelerate the
619c93787SHendrik Brueckner * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
719c93787SHendrik Brueckner * and Castagnoli.
819c93787SHendrik Brueckner *
919c93787SHendrik Brueckner * This CRC-32 implementation algorithm is bitreflected and processes
1019c93787SHendrik Brueckner * the least-significant bit first (Little-Endian).
1119c93787SHendrik Brueckner *
1219c93787SHendrik Brueckner * Copyright IBM Corp. 2015
1319c93787SHendrik Brueckner * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
1419c93787SHendrik Brueckner */
1519c93787SHendrik Brueckner
1619c93787SHendrik Brueckner#include <linux/linkage.h>
17467a3bf2SMartin Schwidefsky#include <asm/nospec-insn.h>
1819c93787SHendrik Brueckner#include <asm/vx-insn.h>
1919c93787SHendrik Brueckner
2019c93787SHendrik Brueckner/* Vector register range containing CRC-32 constants */
2119c93787SHendrik Brueckner#define CONST_PERM_LE2BE	%v9
2219c93787SHendrik Brueckner#define CONST_R2R1		%v10
2319c93787SHendrik Brueckner#define CONST_R4R3		%v11
2419c93787SHendrik Brueckner#define CONST_R5		%v12
2519c93787SHendrik Brueckner#define CONST_RU_POLY		%v13
2619c93787SHendrik Brueckner#define CONST_CRC_POLY		%v14
2719c93787SHendrik Brueckner
2819c93787SHendrik Brueckner	.data
29*b5f3c99dSHeiko Carstens	.balign	8
3019c93787SHendrik Brueckner
3119c93787SHendrik Brueckner/*
3219c93787SHendrik Brueckner * The CRC-32 constant block contains reduction constants to fold and
3319c93787SHendrik Brueckner * process particular chunks of the input data stream in parallel.
3419c93787SHendrik Brueckner *
3519c93787SHendrik Brueckner * For the CRC-32 variants, the constants are precomputed according to
3619c93787SHendrik Brueckner * these definitions:
3719c93787SHendrik Brueckner *
3819c93787SHendrik Brueckner *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
3919c93787SHendrik Brueckner *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
4019c93787SHendrik Brueckner *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1
4119c93787SHendrik Brueckner *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1
4219c93787SHendrik Brueckner *	R5 = [(x64 mod P'(x) << 32)]'	    << 1
4319c93787SHendrik Brueckner *	R6 = [(x32 mod P'(x) << 32)]'	    << 1
4419c93787SHendrik Brueckner *
4519c93787SHendrik Brueckner *	The bitreflected Barret reduction constant, u', is defined as
4619c93787SHendrik Brueckner *	the bit reversal of floor(x**64 / P(x)).
4719c93787SHendrik Brueckner *
4819c93787SHendrik Brueckner *	where P(x) is the polynomial in the normal domain and the P'(x) is the
4919c93787SHendrik Brueckner *	polynomial in the reversed (bitreflected) domain.
5019c93787SHendrik Brueckner *
5119c93787SHendrik Brueckner * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
5219c93787SHendrik Brueckner *
5319c93787SHendrik Brueckner *	P(x)  = 0x04C11DB7
5419c93787SHendrik Brueckner *	P'(x) = 0xEDB88320
5519c93787SHendrik Brueckner *
5619c93787SHendrik Brueckner * CRC-32C (Castagnoli) polynomials:
5719c93787SHendrik Brueckner *
5819c93787SHendrik Brueckner *	P(x)  = 0x1EDC6F41
5919c93787SHendrik Brueckner *	P'(x) = 0x82F63B78
6019c93787SHendrik Brueckner */
6119c93787SHendrik Brueckner
62*b5f3c99dSHeiko CarstensSYM_DATA_START_LOCAL(constants_CRC_32_LE)
6319c93787SHendrik Brueckner	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
6419c93787SHendrik Brueckner	.quad		0x1c6e41596, 0x154442bd4		# R2, R1
6519c93787SHendrik Brueckner	.quad		0x0ccaa009e, 0x1751997d0		# R4, R3
6619c93787SHendrik Brueckner	.octa		0x163cd6124				# R5
6719c93787SHendrik Brueckner	.octa		0x1F7011641				# u'
6819c93787SHendrik Brueckner	.octa		0x1DB710641				# P'(x) << 1
69*b5f3c99dSHeiko CarstensSYM_DATA_END(constants_CRC_32_LE)
7019c93787SHendrik Brueckner
71*b5f3c99dSHeiko CarstensSYM_DATA_START_LOCAL(constants_CRC_32C_LE)
7219c93787SHendrik Brueckner	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
7319c93787SHendrik Brueckner	.quad		0x09e4addf8, 0x740eef02			# R2, R1
7419c93787SHendrik Brueckner	.quad		0x14cd00bd6, 0xf20c0dfe			# R4, R3
7519c93787SHendrik Brueckner	.octa		0x0dd45aab8				# R5
7619c93787SHendrik Brueckner	.octa		0x0dea713f1				# u'
7719c93787SHendrik Brueckner	.octa		0x105ec76f0				# P'(x) << 1
78*b5f3c99dSHeiko CarstensSYM_DATA_END(constants_CRC_32C_LE)
7919c93787SHendrik Brueckner
8019c93787SHendrik Brueckner	.previous
8119c93787SHendrik Brueckner
82467a3bf2SMartin Schwidefsky	GEN_BR_THUNK %r14
8319c93787SHendrik Brueckner
8419c93787SHendrik Brueckner	.text
8519c93787SHendrik Brueckner
8619c93787SHendrik Brueckner/*
8719c93787SHendrik Brueckner * The CRC-32 functions use these calling conventions:
8819c93787SHendrik Brueckner *
8919c93787SHendrik Brueckner * Parameters:
9019c93787SHendrik Brueckner *
9119c93787SHendrik Brueckner *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
9219c93787SHendrik Brueckner *	%r3:	Input buffer pointer, performance might be improved if the
9319c93787SHendrik Brueckner *		buffer is on a doubleword boundary.
9419c93787SHendrik Brueckner *	%r4:	Length of the buffer, must be 64 bytes or greater.
9519c93787SHendrik Brueckner *
9619c93787SHendrik Brueckner * Register usage:
9719c93787SHendrik Brueckner *
9819c93787SHendrik Brueckner *	%r5:	CRC-32 constant pool base pointer.
9919c93787SHendrik Brueckner *	V0:	Initial CRC value and intermediate constants and results.
10019c93787SHendrik Brueckner *	V1..V4:	Data for CRC computation.
10119c93787SHendrik Brueckner *	V5..V8:	Next data chunks that are fetched from the input buffer.
10219c93787SHendrik Brueckner *	V9:	Constant for BE->LE conversion and shift operations
10319c93787SHendrik Brueckner *
10419c93787SHendrik Brueckner *	V10..V14: CRC-32 constants.
10519c93787SHendrik Brueckner */
10619c93787SHendrik Brueckner
107*b5f3c99dSHeiko CarstensSYM_FUNC_START(crc32_le_vgfm_16)
108*b5f3c99dSHeiko Carstens	larl	%r5,constants_CRC_32_LE
10919c93787SHendrik Brueckner	j	crc32_le_vgfm_generic
110*b5f3c99dSHeiko CarstensSYM_FUNC_END(crc32_le_vgfm_16)
11119c93787SHendrik Brueckner
112*b5f3c99dSHeiko CarstensSYM_FUNC_START(crc32c_le_vgfm_16)
113*b5f3c99dSHeiko Carstens	larl	%r5,constants_CRC_32C_LE
11419c93787SHendrik Brueckner	j	crc32_le_vgfm_generic
115*b5f3c99dSHeiko CarstensSYM_FUNC_END(crc32c_le_vgfm_16)
11619c93787SHendrik Brueckner
117*b5f3c99dSHeiko CarstensSYM_FUNC_START(crc32_le_vgfm_generic)
11819c93787SHendrik Brueckner	/* Load CRC-32 constants */
11919c93787SHendrik Brueckner	VLM	CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
12019c93787SHendrik Brueckner
12119c93787SHendrik Brueckner	/*
12219c93787SHendrik Brueckner	 * Load the initial CRC value.
12319c93787SHendrik Brueckner	 *
12419c93787SHendrik Brueckner	 * The CRC value is loaded into the rightmost word of the
12519c93787SHendrik Brueckner	 * vector register and is later XORed with the LSB portion
12619c93787SHendrik Brueckner	 * of the loaded input data.
12719c93787SHendrik Brueckner	 */
12819c93787SHendrik Brueckner	VZERO	%v0			/* Clear V0 */
12919c93787SHendrik Brueckner	VLVGF	%v0,%r2,3		/* Load CRC into rightmost word */
13019c93787SHendrik Brueckner
13119c93787SHendrik Brueckner	/* Load a 64-byte data chunk and XOR with CRC */
13219c93787SHendrik Brueckner	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
13319c93787SHendrik Brueckner	VPERM	%v1,%v1,%v1,CONST_PERM_LE2BE
13419c93787SHendrik Brueckner	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
13519c93787SHendrik Brueckner	VPERM	%v3,%v3,%v3,CONST_PERM_LE2BE
13619c93787SHendrik Brueckner	VPERM	%v4,%v4,%v4,CONST_PERM_LE2BE
13719c93787SHendrik Brueckner
13819c93787SHendrik Brueckner	VX	%v1,%v0,%v1		/* V1 ^= CRC */
13919c93787SHendrik Brueckner	aghi	%r3,64			/* BUF = BUF + 64 */
14019c93787SHendrik Brueckner	aghi	%r4,-64			/* LEN = LEN - 64 */
14119c93787SHendrik Brueckner
14219c93787SHendrik Brueckner	cghi	%r4,64
14319c93787SHendrik Brueckner	jl	.Lless_than_64bytes
14419c93787SHendrik Brueckner
14519c93787SHendrik Brueckner.Lfold_64bytes_loop:
14619c93787SHendrik Brueckner	/* Load the next 64-byte data chunk into V5 to V8 */
14719c93787SHendrik Brueckner	VLM	%v5,%v8,0,%r3
14819c93787SHendrik Brueckner	VPERM	%v5,%v5,%v5,CONST_PERM_LE2BE
14919c93787SHendrik Brueckner	VPERM	%v6,%v6,%v6,CONST_PERM_LE2BE
15019c93787SHendrik Brueckner	VPERM	%v7,%v7,%v7,CONST_PERM_LE2BE
15119c93787SHendrik Brueckner	VPERM	%v8,%v8,%v8,CONST_PERM_LE2BE
15219c93787SHendrik Brueckner
15319c93787SHendrik Brueckner	/*
15419c93787SHendrik Brueckner	 * Perform a GF(2) multiplication of the doublewords in V1 with
15519c93787SHendrik Brueckner	 * the R1 and R2 reduction constants in V0.  The intermediate result
15619c93787SHendrik Brueckner	 * is then folded (accumulated) with the next data chunk in V5 and
15719c93787SHendrik Brueckner	 * stored in V1. Repeat this step for the register contents
15819c93787SHendrik Brueckner	 * in V2, V3, and V4 respectively.
15919c93787SHendrik Brueckner	 */
16019c93787SHendrik Brueckner	VGFMAG	%v1,CONST_R2R1,%v1,%v5
16119c93787SHendrik Brueckner	VGFMAG	%v2,CONST_R2R1,%v2,%v6
16219c93787SHendrik Brueckner	VGFMAG	%v3,CONST_R2R1,%v3,%v7
16319c93787SHendrik Brueckner	VGFMAG	%v4,CONST_R2R1,%v4,%v8
16419c93787SHendrik Brueckner
16519c93787SHendrik Brueckner	aghi	%r3,64			/* BUF = BUF + 64 */
16619c93787SHendrik Brueckner	aghi	%r4,-64			/* LEN = LEN - 64 */
16719c93787SHendrik Brueckner
16819c93787SHendrik Brueckner	cghi	%r4,64
16919c93787SHendrik Brueckner	jnl	.Lfold_64bytes_loop
17019c93787SHendrik Brueckner
17119c93787SHendrik Brueckner.Lless_than_64bytes:
17219c93787SHendrik Brueckner	/*
17319c93787SHendrik Brueckner	 * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3
17419c93787SHendrik Brueckner	 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
17519c93787SHendrik Brueckner	 * value remains.
17619c93787SHendrik Brueckner	 */
17719c93787SHendrik Brueckner	VGFMAG	%v1,CONST_R4R3,%v1,%v2
17819c93787SHendrik Brueckner	VGFMAG	%v1,CONST_R4R3,%v1,%v3
17919c93787SHendrik Brueckner	VGFMAG	%v1,CONST_R4R3,%v1,%v4
18019c93787SHendrik Brueckner
18119c93787SHendrik Brueckner	cghi	%r4,16
18219c93787SHendrik Brueckner	jl	.Lfinal_fold
18319c93787SHendrik Brueckner
18419c93787SHendrik Brueckner.Lfold_16bytes_loop:
18519c93787SHendrik Brueckner
18619c93787SHendrik Brueckner	VL	%v2,0,,%r3		/* Load next data chunk */
18719c93787SHendrik Brueckner	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
18819c93787SHendrik Brueckner	VGFMAG	%v1,CONST_R4R3,%v1,%v2	/* Fold next data chunk */
18919c93787SHendrik Brueckner
19019c93787SHendrik Brueckner	aghi	%r3,16
19119c93787SHendrik Brueckner	aghi	%r4,-16
19219c93787SHendrik Brueckner
19319c93787SHendrik Brueckner	cghi	%r4,16
19419c93787SHendrik Brueckner	jnl	.Lfold_16bytes_loop
19519c93787SHendrik Brueckner
19619c93787SHendrik Brueckner.Lfinal_fold:
19719c93787SHendrik Brueckner	/*
19819c93787SHendrik Brueckner	 * Set up a vector register for byte shifts.  The shift value must
19919c93787SHendrik Brueckner	 * be loaded in bits 1-4 in byte element 7 of a vector register.
20019c93787SHendrik Brueckner	 * Shift by 8 bytes: 0x40
20119c93787SHendrik Brueckner	 * Shift by 4 bytes: 0x20
20219c93787SHendrik Brueckner	 */
20319c93787SHendrik Brueckner	VLEIB	%v9,0x40,7
20419c93787SHendrik Brueckner
20519c93787SHendrik Brueckner	/*
20619c93787SHendrik Brueckner	 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
20719c93787SHendrik Brueckner	 * to move R4 into the rightmost doubleword and set the leftmost
20819c93787SHendrik Brueckner	 * doubleword to 0x1.
20919c93787SHendrik Brueckner	 */
21019c93787SHendrik Brueckner	VSRLB	%v0,CONST_R4R3,%v9
21119c93787SHendrik Brueckner	VLEIG	%v0,1,0
21219c93787SHendrik Brueckner
21319c93787SHendrik Brueckner	/*
21419c93787SHendrik Brueckner	 * Compute GF(2) product of V1 and V0.	The rightmost doubleword
21519c93787SHendrik Brueckner	 * of V1 is multiplied with R4.  The leftmost doubleword of V1 is
21619c93787SHendrik Brueckner	 * multiplied by 0x1 and is then XORed with rightmost product.
21719c93787SHendrik Brueckner	 * Implicitly, the intermediate leftmost product becomes padded
21819c93787SHendrik Brueckner	 */
21919c93787SHendrik Brueckner	VGFMG	%v1,%v0,%v1
22019c93787SHendrik Brueckner
22119c93787SHendrik Brueckner	/*
22219c93787SHendrik Brueckner	 * Now do the final 32-bit fold by multiplying the rightmost word
22319c93787SHendrik Brueckner	 * in V1 with R5 and XOR the result with the remaining bits in V1.
22419c93787SHendrik Brueckner	 *
22519c93787SHendrik Brueckner	 * To achieve this by a single VGFMAG, right shift V1 by a word
22619c93787SHendrik Brueckner	 * and store the result in V2 which is then accumulated.  Use the
22719c93787SHendrik Brueckner	 * vector unpack instruction to load the rightmost half of the
22819c93787SHendrik Brueckner	 * doubleword into the rightmost doubleword element of V1; the other
22919c93787SHendrik Brueckner	 * half is loaded in the leftmost doubleword.
23019c93787SHendrik Brueckner	 * The vector register with CONST_R5 contains the R5 constant in the
23119c93787SHendrik Brueckner	 * rightmost doubleword and the leftmost doubleword is zero to ignore
23219c93787SHendrik Brueckner	 * the leftmost product of V1.
23319c93787SHendrik Brueckner	 */
23419c93787SHendrik Brueckner	VLEIB	%v9,0x20,7		  /* Shift by words */
23519c93787SHendrik Brueckner	VSRLB	%v2,%v1,%v9		  /* Store remaining bits in V2 */
23619c93787SHendrik Brueckner	VUPLLF	%v1,%v1			  /* Split rightmost doubleword */
23719c93787SHendrik Brueckner	VGFMAG	%v1,CONST_R5,%v1,%v2	  /* V1 = (V1 * R5) XOR V2 */
23819c93787SHendrik Brueckner
23919c93787SHendrik Brueckner	/*
24019c93787SHendrik Brueckner	 * Apply a Barret reduction to compute the final 32-bit CRC value.
24119c93787SHendrik Brueckner	 *
24219c93787SHendrik Brueckner	 * The input values to the Barret reduction are the degree-63 polynomial
24319c93787SHendrik Brueckner	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
24419c93787SHendrik Brueckner	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
24519c93787SHendrik Brueckner	 * P(x).
24619c93787SHendrik Brueckner	 *
24719c93787SHendrik Brueckner	 * The Barret reduction algorithm is defined as:
24819c93787SHendrik Brueckner	 *
24919c93787SHendrik Brueckner	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
25019c93787SHendrik Brueckner	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
25119c93787SHendrik Brueckner	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
25219c93787SHendrik Brueckner	 *
25319c93787SHendrik Brueckner	 *  Note: The leftmost doubleword of vector register containing
25419c93787SHendrik Brueckner	 *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
25519c93787SHendrik Brueckner	 *  is zero and does not contribute to the final result.
25619c93787SHendrik Brueckner	 */
25719c93787SHendrik Brueckner
25819c93787SHendrik Brueckner	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
25919c93787SHendrik Brueckner	VUPLLF	%v2,%v1
26019c93787SHendrik Brueckner	VGFMG	%v2,CONST_RU_POLY,%v2
26119c93787SHendrik Brueckner
26219c93787SHendrik Brueckner	/*
26319c93787SHendrik Brueckner	 * Compute the GF(2) product of the CRC polynomial with T1(x) in
26419c93787SHendrik Brueckner	 * V2 and XOR the intermediate result, T2(x), with the value in V1.
26519c93787SHendrik Brueckner	 * The final result is stored in word element 2 of V2.
26619c93787SHendrik Brueckner	 */
26719c93787SHendrik Brueckner	VUPLLF	%v2,%v2
26819c93787SHendrik Brueckner	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
26919c93787SHendrik Brueckner
27019c93787SHendrik Brueckner.Ldone:
27119c93787SHendrik Brueckner	VLGVF	%r2,%v2,2
272467a3bf2SMartin Schwidefsky	BR_EX	%r14
273*b5f3c99dSHeiko CarstensSYM_FUNC_END(crc32_le_vgfm_generic)
27419c93787SHendrik Brueckner
27519c93787SHendrik Brueckner.previous
276