xref: /openbmc/linux/arch/riscv/kvm/vcpu_insn.c (revision f00093608fa790580da309bb9feb5108fbe7c331)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4  * Copyright (c) 2022 Ventana Micro Systems Inc.
5  */
6 
7 #include <linux/bitops.h>
8 #include <linux/kvm_host.h>
9 
10 #define INSN_OPCODE_MASK	0x007c
11 #define INSN_OPCODE_SHIFT	2
12 #define INSN_OPCODE_SYSTEM	28
13 
14 #define INSN_MASK_WFI		0xffffffff
15 #define INSN_MATCH_WFI		0x10500073
16 
17 #define INSN_MATCH_CSRRW	0x1073
18 #define INSN_MASK_CSRRW		0x707f
19 #define INSN_MATCH_CSRRS	0x2073
20 #define INSN_MASK_CSRRS		0x707f
21 #define INSN_MATCH_CSRRC	0x3073
22 #define INSN_MASK_CSRRC		0x707f
23 #define INSN_MATCH_CSRRWI	0x5073
24 #define INSN_MASK_CSRRWI	0x707f
25 #define INSN_MATCH_CSRRSI	0x6073
26 #define INSN_MASK_CSRRSI	0x707f
27 #define INSN_MATCH_CSRRCI	0x7073
28 #define INSN_MASK_CSRRCI	0x707f
29 
30 #define INSN_MATCH_LB		0x3
31 #define INSN_MASK_LB		0x707f
32 #define INSN_MATCH_LH		0x1003
33 #define INSN_MASK_LH		0x707f
34 #define INSN_MATCH_LW		0x2003
35 #define INSN_MASK_LW		0x707f
36 #define INSN_MATCH_LD		0x3003
37 #define INSN_MASK_LD		0x707f
38 #define INSN_MATCH_LBU		0x4003
39 #define INSN_MASK_LBU		0x707f
40 #define INSN_MATCH_LHU		0x5003
41 #define INSN_MASK_LHU		0x707f
42 #define INSN_MATCH_LWU		0x6003
43 #define INSN_MASK_LWU		0x707f
44 #define INSN_MATCH_SB		0x23
45 #define INSN_MASK_SB		0x707f
46 #define INSN_MATCH_SH		0x1023
47 #define INSN_MASK_SH		0x707f
48 #define INSN_MATCH_SW		0x2023
49 #define INSN_MASK_SW		0x707f
50 #define INSN_MATCH_SD		0x3023
51 #define INSN_MASK_SD		0x707f
52 
53 #define INSN_MATCH_C_LD		0x6000
54 #define INSN_MASK_C_LD		0xe003
55 #define INSN_MATCH_C_SD		0xe000
56 #define INSN_MASK_C_SD		0xe003
57 #define INSN_MATCH_C_LW		0x4000
58 #define INSN_MASK_C_LW		0xe003
59 #define INSN_MATCH_C_SW		0xc000
60 #define INSN_MASK_C_SW		0xe003
61 #define INSN_MATCH_C_LDSP	0x6002
62 #define INSN_MASK_C_LDSP	0xe003
63 #define INSN_MATCH_C_SDSP	0xe002
64 #define INSN_MASK_C_SDSP	0xe003
65 #define INSN_MATCH_C_LWSP	0x4002
66 #define INSN_MASK_C_LWSP	0xe003
67 #define INSN_MATCH_C_SWSP	0xc002
68 #define INSN_MASK_C_SWSP	0xe003
69 
70 #define INSN_16BIT_MASK		0x3
71 
72 #define INSN_IS_16BIT(insn)	(((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK)
73 
74 #define INSN_LEN(insn)		(INSN_IS_16BIT(insn) ? 2 : 4)
75 
76 #ifdef CONFIG_64BIT
77 #define LOG_REGBYTES		3
78 #else
79 #define LOG_REGBYTES		2
80 #endif
81 #define REGBYTES		(1 << LOG_REGBYTES)
82 
83 #define SH_RD			7
84 #define SH_RS1			15
85 #define SH_RS2			20
86 #define SH_RS2C			2
87 #define MASK_RX			0x1f
88 
89 #define RV_X(x, s, n)		(((x) >> (s)) & ((1 << (n)) - 1))
90 #define RVC_LW_IMM(x)		((RV_X(x, 6, 1) << 2) | \
91 				 (RV_X(x, 10, 3) << 3) | \
92 				 (RV_X(x, 5, 1) << 6))
93 #define RVC_LD_IMM(x)		((RV_X(x, 10, 3) << 3) | \
94 				 (RV_X(x, 5, 2) << 6))
95 #define RVC_LWSP_IMM(x)		((RV_X(x, 4, 3) << 2) | \
96 				 (RV_X(x, 12, 1) << 5) | \
97 				 (RV_X(x, 2, 2) << 6))
98 #define RVC_LDSP_IMM(x)		((RV_X(x, 5, 2) << 3) | \
99 				 (RV_X(x, 12, 1) << 5) | \
100 				 (RV_X(x, 2, 3) << 6))
101 #define RVC_SWSP_IMM(x)		((RV_X(x, 9, 4) << 2) | \
102 				 (RV_X(x, 7, 2) << 6))
103 #define RVC_SDSP_IMM(x)		((RV_X(x, 10, 3) << 3) | \
104 				 (RV_X(x, 7, 3) << 6))
105 #define RVC_RS1S(insn)		(8 + RV_X(insn, SH_RD, 3))
106 #define RVC_RS2S(insn)		(8 + RV_X(insn, SH_RS2C, 3))
107 #define RVC_RS2(insn)		RV_X(insn, SH_RS2C, 5)
108 
109 #define SHIFT_RIGHT(x, y)		\
110 	((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
111 
112 #define REG_MASK			\
113 	((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
114 
115 #define REG_OFFSET(insn, pos)		\
116 	(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
117 
118 #define REG_PTR(insn, pos, regs)	\
119 	((ulong *)((ulong)(regs) + REG_OFFSET(insn, pos)))
120 
121 #define GET_FUNCT3(insn)	(((insn) >> 12) & 7)
122 
123 #define GET_RS1(insn, regs)	(*REG_PTR(insn, SH_RS1, regs))
124 #define GET_RS2(insn, regs)	(*REG_PTR(insn, SH_RS2, regs))
125 #define GET_RS1S(insn, regs)	(*REG_PTR(RVC_RS1S(insn), 0, regs))
126 #define GET_RS2S(insn, regs)	(*REG_PTR(RVC_RS2S(insn), 0, regs))
127 #define GET_RS2C(insn, regs)	(*REG_PTR(insn, SH_RS2C, regs))
128 #define GET_SP(regs)		(*REG_PTR(2, 0, regs))
129 #define SET_RD(insn, regs, val)	(*REG_PTR(insn, SH_RD, regs) = (val))
130 #define IMM_I(insn)		((s32)(insn) >> 20)
131 #define IMM_S(insn)		(((s32)(insn) >> 25 << 5) | \
132 				 (s32)(((insn) >> 7) & 0x1f))
133 
134 struct insn_func {
135 	unsigned long mask;
136 	unsigned long match;
137 	/*
138 	 * Possible return values are as follows:
139 	 * 1) Returns < 0 for error case
140 	 * 2) Returns 0 for exit to user-space
141 	 * 3) Returns 1 to continue with next sepc
142 	 * 4) Returns 2 to continue with same sepc
143 	 * 5) Returns 3 to inject illegal instruction trap and continue
144 	 * 6) Returns 4 to inject virtual instruction trap and continue
145 	 *
146 	 * Use enum kvm_insn_return for return values
147 	 */
148 	int (*func)(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn);
149 };
150 
151 static int truly_illegal_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
152 			      ulong insn)
153 {
154 	struct kvm_cpu_trap utrap = { 0 };
155 
156 	/* Redirect trap to Guest VCPU */
157 	utrap.sepc = vcpu->arch.guest_context.sepc;
158 	utrap.scause = EXC_INST_ILLEGAL;
159 	utrap.stval = insn;
160 	utrap.htval = 0;
161 	utrap.htinst = 0;
162 	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
163 
164 	return 1;
165 }
166 
167 static int truly_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
168 			      ulong insn)
169 {
170 	struct kvm_cpu_trap utrap = { 0 };
171 
172 	/* Redirect trap to Guest VCPU */
173 	utrap.sepc = vcpu->arch.guest_context.sepc;
174 	utrap.scause = EXC_VIRTUAL_INST_FAULT;
175 	utrap.stval = insn;
176 	utrap.htval = 0;
177 	utrap.htinst = 0;
178 	kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
179 
180 	return 1;
181 }
182 
183 /**
184  * kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour
185  *
186  * @vcpu: The VCPU pointer
187  */
188 void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu)
189 {
190 	if (!kvm_arch_vcpu_runnable(vcpu)) {
191 		kvm_vcpu_srcu_read_unlock(vcpu);
192 		kvm_vcpu_halt(vcpu);
193 		kvm_vcpu_srcu_read_lock(vcpu);
194 	}
195 }
196 
197 static int wfi_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
198 {
199 	vcpu->stat.wfi_exit_stat++;
200 	kvm_riscv_vcpu_wfi(vcpu);
201 	return KVM_INSN_CONTINUE_NEXT_SEPC;
202 }
203 
204 struct csr_func {
205 	unsigned int base;
206 	unsigned int count;
207 	/*
208 	 * Possible return values are as same as "func" callback in
209 	 * "struct insn_func".
210 	 */
211 	int (*func)(struct kvm_vcpu *vcpu, unsigned int csr_num,
212 		    unsigned long *val, unsigned long new_val,
213 		    unsigned long wr_mask);
214 };
215 
216 static const struct csr_func csr_funcs[] = { };
217 
218 /**
219  * kvm_riscv_vcpu_csr_return -- Handle CSR read/write after user space
220  *				emulation or in-kernel emulation
221  *
222  * @vcpu: The VCPU pointer
223  * @run:  The VCPU run struct containing the CSR data
224  *
225  * Returns > 0 upon failure and 0 upon success
226  */
227 int kvm_riscv_vcpu_csr_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
228 {
229 	ulong insn;
230 
231 	if (vcpu->arch.csr_decode.return_handled)
232 		return 0;
233 	vcpu->arch.csr_decode.return_handled = 1;
234 
235 	/* Update destination register for CSR reads */
236 	insn = vcpu->arch.csr_decode.insn;
237 	if ((insn >> SH_RD) & MASK_RX)
238 		SET_RD(insn, &vcpu->arch.guest_context,
239 		       run->riscv_csr.ret_value);
240 
241 	/* Move to next instruction */
242 	vcpu->arch.guest_context.sepc += INSN_LEN(insn);
243 
244 	return 0;
245 }
246 
247 static int csr_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
248 {
249 	int i, rc = KVM_INSN_ILLEGAL_TRAP;
250 	unsigned int csr_num = insn >> SH_RS2;
251 	unsigned int rs1_num = (insn >> SH_RS1) & MASK_RX;
252 	ulong rs1_val = GET_RS1(insn, &vcpu->arch.guest_context);
253 	const struct csr_func *tcfn, *cfn = NULL;
254 	ulong val = 0, wr_mask = 0, new_val = 0;
255 
256 	/* Decode the CSR instruction */
257 	switch (GET_FUNCT3(insn)) {
258 	case GET_FUNCT3(INSN_MATCH_CSRRW):
259 		wr_mask = -1UL;
260 		new_val = rs1_val;
261 		break;
262 	case GET_FUNCT3(INSN_MATCH_CSRRS):
263 		wr_mask = rs1_val;
264 		new_val = -1UL;
265 		break;
266 	case GET_FUNCT3(INSN_MATCH_CSRRC):
267 		wr_mask = rs1_val;
268 		new_val = 0;
269 		break;
270 	case GET_FUNCT3(INSN_MATCH_CSRRWI):
271 		wr_mask = -1UL;
272 		new_val = rs1_num;
273 		break;
274 	case GET_FUNCT3(INSN_MATCH_CSRRSI):
275 		wr_mask = rs1_num;
276 		new_val = -1UL;
277 		break;
278 	case GET_FUNCT3(INSN_MATCH_CSRRCI):
279 		wr_mask = rs1_num;
280 		new_val = 0;
281 		break;
282 	default:
283 		return rc;
284 	}
285 
286 	/* Save instruction decode info */
287 	vcpu->arch.csr_decode.insn = insn;
288 	vcpu->arch.csr_decode.return_handled = 0;
289 
290 	/* Update CSR details in kvm_run struct */
291 	run->riscv_csr.csr_num = csr_num;
292 	run->riscv_csr.new_value = new_val;
293 	run->riscv_csr.write_mask = wr_mask;
294 	run->riscv_csr.ret_value = 0;
295 
296 	/* Find in-kernel CSR function */
297 	for (i = 0; i < ARRAY_SIZE(csr_funcs); i++) {
298 		tcfn = &csr_funcs[i];
299 		if ((tcfn->base <= csr_num) &&
300 		    (csr_num < (tcfn->base + tcfn->count))) {
301 			cfn = tcfn;
302 			break;
303 		}
304 	}
305 
306 	/* First try in-kernel CSR emulation */
307 	if (cfn && cfn->func) {
308 		rc = cfn->func(vcpu, csr_num, &val, new_val, wr_mask);
309 		if (rc > KVM_INSN_EXIT_TO_USER_SPACE) {
310 			if (rc == KVM_INSN_CONTINUE_NEXT_SEPC) {
311 				run->riscv_csr.ret_value = val;
312 				vcpu->stat.csr_exit_kernel++;
313 				kvm_riscv_vcpu_csr_return(vcpu, run);
314 				rc = KVM_INSN_CONTINUE_SAME_SEPC;
315 			}
316 			return rc;
317 		}
318 	}
319 
320 	/* Exit to user-space for CSR emulation */
321 	if (rc <= KVM_INSN_EXIT_TO_USER_SPACE) {
322 		vcpu->stat.csr_exit_user++;
323 		run->exit_reason = KVM_EXIT_RISCV_CSR;
324 	}
325 
326 	return rc;
327 }
328 
329 static const struct insn_func system_opcode_funcs[] = {
330 	{
331 		.mask  = INSN_MASK_CSRRW,
332 		.match = INSN_MATCH_CSRRW,
333 		.func  = csr_insn,
334 	},
335 	{
336 		.mask  = INSN_MASK_CSRRS,
337 		.match = INSN_MATCH_CSRRS,
338 		.func  = csr_insn,
339 	},
340 	{
341 		.mask  = INSN_MASK_CSRRC,
342 		.match = INSN_MATCH_CSRRC,
343 		.func  = csr_insn,
344 	},
345 	{
346 		.mask  = INSN_MASK_CSRRWI,
347 		.match = INSN_MATCH_CSRRWI,
348 		.func  = csr_insn,
349 	},
350 	{
351 		.mask  = INSN_MASK_CSRRSI,
352 		.match = INSN_MATCH_CSRRSI,
353 		.func  = csr_insn,
354 	},
355 	{
356 		.mask  = INSN_MASK_CSRRCI,
357 		.match = INSN_MATCH_CSRRCI,
358 		.func  = csr_insn,
359 	},
360 	{
361 		.mask  = INSN_MASK_WFI,
362 		.match = INSN_MATCH_WFI,
363 		.func  = wfi_insn,
364 	},
365 };
366 
367 static int system_opcode_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
368 			      ulong insn)
369 {
370 	int i, rc = KVM_INSN_ILLEGAL_TRAP;
371 	const struct insn_func *ifn;
372 
373 	for (i = 0; i < ARRAY_SIZE(system_opcode_funcs); i++) {
374 		ifn = &system_opcode_funcs[i];
375 		if ((insn & ifn->mask) == ifn->match) {
376 			rc = ifn->func(vcpu, run, insn);
377 			break;
378 		}
379 	}
380 
381 	switch (rc) {
382 	case KVM_INSN_ILLEGAL_TRAP:
383 		return truly_illegal_insn(vcpu, run, insn);
384 	case KVM_INSN_VIRTUAL_TRAP:
385 		return truly_virtual_insn(vcpu, run, insn);
386 	case KVM_INSN_CONTINUE_NEXT_SEPC:
387 		vcpu->arch.guest_context.sepc += INSN_LEN(insn);
388 		break;
389 	default:
390 		break;
391 	}
392 
393 	return (rc <= 0) ? rc : 1;
394 }
395 
396 /**
397  * kvm_riscv_vcpu_virtual_insn -- Handle virtual instruction trap
398  *
399  * @vcpu: The VCPU pointer
400  * @run:  The VCPU run struct containing the mmio data
401  * @trap: Trap details
402  *
403  * Returns > 0 to continue run-loop
404  * Returns   0 to exit run-loop and handle in user-space.
405  * Returns < 0 to report failure and exit run-loop
406  */
407 int kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
408 				struct kvm_cpu_trap *trap)
409 {
410 	unsigned long insn = trap->stval;
411 	struct kvm_cpu_trap utrap = { 0 };
412 	struct kvm_cpu_context *ct;
413 
414 	if (unlikely(INSN_IS_16BIT(insn))) {
415 		if (insn == 0) {
416 			ct = &vcpu->arch.guest_context;
417 			insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
418 							  ct->sepc,
419 							  &utrap);
420 			if (utrap.scause) {
421 				utrap.sepc = ct->sepc;
422 				kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
423 				return 1;
424 			}
425 		}
426 		if (INSN_IS_16BIT(insn))
427 			return truly_illegal_insn(vcpu, run, insn);
428 	}
429 
430 	switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
431 	case INSN_OPCODE_SYSTEM:
432 		return system_opcode_insn(vcpu, run, insn);
433 	default:
434 		return truly_illegal_insn(vcpu, run, insn);
435 	}
436 }
437 
438 /**
439  * kvm_riscv_vcpu_mmio_load -- Emulate MMIO load instruction
440  *
441  * @vcpu: The VCPU pointer
442  * @run:  The VCPU run struct containing the mmio data
443  * @fault_addr: Guest physical address to load
444  * @htinst: Transformed encoding of the load instruction
445  *
446  * Returns > 0 to continue run-loop
447  * Returns   0 to exit run-loop and handle in user-space.
448  * Returns < 0 to report failure and exit run-loop
449  */
450 int kvm_riscv_vcpu_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
451 			     unsigned long fault_addr,
452 			     unsigned long htinst)
453 {
454 	u8 data_buf[8];
455 	unsigned long insn;
456 	int shift = 0, len = 0, insn_len = 0;
457 	struct kvm_cpu_trap utrap = { 0 };
458 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
459 
460 	/* Determine trapped instruction */
461 	if (htinst & 0x1) {
462 		/*
463 		 * Bit[0] == 1 implies trapped instruction value is
464 		 * transformed instruction or custom instruction.
465 		 */
466 		insn = htinst | INSN_16BIT_MASK;
467 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
468 	} else {
469 		/*
470 		 * Bit[0] == 0 implies trapped instruction value is
471 		 * zero or special value.
472 		 */
473 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
474 						  &utrap);
475 		if (utrap.scause) {
476 			/* Redirect trap if we failed to read instruction */
477 			utrap.sepc = ct->sepc;
478 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
479 			return 1;
480 		}
481 		insn_len = INSN_LEN(insn);
482 	}
483 
484 	/* Decode length of MMIO and shift */
485 	if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
486 		len = 4;
487 		shift = 8 * (sizeof(ulong) - len);
488 	} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
489 		len = 1;
490 		shift = 8 * (sizeof(ulong) - len);
491 	} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
492 		len = 1;
493 		shift = 8 * (sizeof(ulong) - len);
494 #ifdef CONFIG_64BIT
495 	} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
496 		len = 8;
497 		shift = 8 * (sizeof(ulong) - len);
498 	} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
499 		len = 4;
500 #endif
501 	} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
502 		len = 2;
503 		shift = 8 * (sizeof(ulong) - len);
504 	} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
505 		len = 2;
506 #ifdef CONFIG_64BIT
507 	} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
508 		len = 8;
509 		shift = 8 * (sizeof(ulong) - len);
510 		insn = RVC_RS2S(insn) << SH_RD;
511 	} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
512 		   ((insn >> SH_RD) & 0x1f)) {
513 		len = 8;
514 		shift = 8 * (sizeof(ulong) - len);
515 #endif
516 	} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
517 		len = 4;
518 		shift = 8 * (sizeof(ulong) - len);
519 		insn = RVC_RS2S(insn) << SH_RD;
520 	} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
521 		   ((insn >> SH_RD) & 0x1f)) {
522 		len = 4;
523 		shift = 8 * (sizeof(ulong) - len);
524 	} else {
525 		return -EOPNOTSUPP;
526 	}
527 
528 	/* Fault address should be aligned to length of MMIO */
529 	if (fault_addr & (len - 1))
530 		return -EIO;
531 
532 	/* Save instruction decode info */
533 	vcpu->arch.mmio_decode.insn = insn;
534 	vcpu->arch.mmio_decode.insn_len = insn_len;
535 	vcpu->arch.mmio_decode.shift = shift;
536 	vcpu->arch.mmio_decode.len = len;
537 	vcpu->arch.mmio_decode.return_handled = 0;
538 
539 	/* Update MMIO details in kvm_run struct */
540 	run->mmio.is_write = false;
541 	run->mmio.phys_addr = fault_addr;
542 	run->mmio.len = len;
543 
544 	/* Try to handle MMIO access in the kernel */
545 	if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
546 		/* Successfully handled MMIO access in the kernel so resume */
547 		memcpy(run->mmio.data, data_buf, len);
548 		vcpu->stat.mmio_exit_kernel++;
549 		kvm_riscv_vcpu_mmio_return(vcpu, run);
550 		return 1;
551 	}
552 
553 	/* Exit to userspace for MMIO emulation */
554 	vcpu->stat.mmio_exit_user++;
555 	run->exit_reason = KVM_EXIT_MMIO;
556 
557 	return 0;
558 }
559 
560 /**
561  * kvm_riscv_vcpu_mmio_store -- Emulate MMIO store instruction
562  *
563  * @vcpu: The VCPU pointer
564  * @run:  The VCPU run struct containing the mmio data
565  * @fault_addr: Guest physical address to store
566  * @htinst: Transformed encoding of the store instruction
567  *
568  * Returns > 0 to continue run-loop
569  * Returns   0 to exit run-loop and handle in user-space.
570  * Returns < 0 to report failure and exit run-loop
571  */
572 int kvm_riscv_vcpu_mmio_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
573 			      unsigned long fault_addr,
574 			      unsigned long htinst)
575 {
576 	u8 data8;
577 	u16 data16;
578 	u32 data32;
579 	u64 data64;
580 	ulong data;
581 	unsigned long insn;
582 	int len = 0, insn_len = 0;
583 	struct kvm_cpu_trap utrap = { 0 };
584 	struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
585 
586 	/* Determine trapped instruction */
587 	if (htinst & 0x1) {
588 		/*
589 		 * Bit[0] == 1 implies trapped instruction value is
590 		 * transformed instruction or custom instruction.
591 		 */
592 		insn = htinst | INSN_16BIT_MASK;
593 		insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
594 	} else {
595 		/*
596 		 * Bit[0] == 0 implies trapped instruction value is
597 		 * zero or special value.
598 		 */
599 		insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
600 						  &utrap);
601 		if (utrap.scause) {
602 			/* Redirect trap if we failed to read instruction */
603 			utrap.sepc = ct->sepc;
604 			kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
605 			return 1;
606 		}
607 		insn_len = INSN_LEN(insn);
608 	}
609 
610 	data = GET_RS2(insn, &vcpu->arch.guest_context);
611 	data8 = data16 = data32 = data64 = data;
612 
613 	if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
614 		len = 4;
615 	} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
616 		len = 1;
617 #ifdef CONFIG_64BIT
618 	} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
619 		len = 8;
620 #endif
621 	} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
622 		len = 2;
623 #ifdef CONFIG_64BIT
624 	} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
625 		len = 8;
626 		data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
627 	} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
628 		   ((insn >> SH_RD) & 0x1f)) {
629 		len = 8;
630 		data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
631 #endif
632 	} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
633 		len = 4;
634 		data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
635 	} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
636 		   ((insn >> SH_RD) & 0x1f)) {
637 		len = 4;
638 		data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
639 	} else {
640 		return -EOPNOTSUPP;
641 	}
642 
643 	/* Fault address should be aligned to length of MMIO */
644 	if (fault_addr & (len - 1))
645 		return -EIO;
646 
647 	/* Save instruction decode info */
648 	vcpu->arch.mmio_decode.insn = insn;
649 	vcpu->arch.mmio_decode.insn_len = insn_len;
650 	vcpu->arch.mmio_decode.shift = 0;
651 	vcpu->arch.mmio_decode.len = len;
652 	vcpu->arch.mmio_decode.return_handled = 0;
653 
654 	/* Copy data to kvm_run instance */
655 	switch (len) {
656 	case 1:
657 		*((u8 *)run->mmio.data) = data8;
658 		break;
659 	case 2:
660 		*((u16 *)run->mmio.data) = data16;
661 		break;
662 	case 4:
663 		*((u32 *)run->mmio.data) = data32;
664 		break;
665 	case 8:
666 		*((u64 *)run->mmio.data) = data64;
667 		break;
668 	default:
669 		return -EOPNOTSUPP;
670 	}
671 
672 	/* Update MMIO details in kvm_run struct */
673 	run->mmio.is_write = true;
674 	run->mmio.phys_addr = fault_addr;
675 	run->mmio.len = len;
676 
677 	/* Try to handle MMIO access in the kernel */
678 	if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
679 			      fault_addr, len, run->mmio.data)) {
680 		/* Successfully handled MMIO access in the kernel so resume */
681 		vcpu->stat.mmio_exit_kernel++;
682 		kvm_riscv_vcpu_mmio_return(vcpu, run);
683 		return 1;
684 	}
685 
686 	/* Exit to userspace for MMIO emulation */
687 	vcpu->stat.mmio_exit_user++;
688 	run->exit_reason = KVM_EXIT_MMIO;
689 
690 	return 0;
691 }
692 
693 /**
694  * kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation
695  *			     or in-kernel IO emulation
696  *
697  * @vcpu: The VCPU pointer
698  * @run:  The VCPU run struct containing the mmio data
699  */
700 int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
701 {
702 	u8 data8;
703 	u16 data16;
704 	u32 data32;
705 	u64 data64;
706 	ulong insn;
707 	int len, shift;
708 
709 	if (vcpu->arch.mmio_decode.return_handled)
710 		return 0;
711 
712 	vcpu->arch.mmio_decode.return_handled = 1;
713 	insn = vcpu->arch.mmio_decode.insn;
714 
715 	if (run->mmio.is_write)
716 		goto done;
717 
718 	len = vcpu->arch.mmio_decode.len;
719 	shift = vcpu->arch.mmio_decode.shift;
720 
721 	switch (len) {
722 	case 1:
723 		data8 = *((u8 *)run->mmio.data);
724 		SET_RD(insn, &vcpu->arch.guest_context,
725 			(ulong)data8 << shift >> shift);
726 		break;
727 	case 2:
728 		data16 = *((u16 *)run->mmio.data);
729 		SET_RD(insn, &vcpu->arch.guest_context,
730 			(ulong)data16 << shift >> shift);
731 		break;
732 	case 4:
733 		data32 = *((u32 *)run->mmio.data);
734 		SET_RD(insn, &vcpu->arch.guest_context,
735 			(ulong)data32 << shift >> shift);
736 		break;
737 	case 8:
738 		data64 = *((u64 *)run->mmio.data);
739 		SET_RD(insn, &vcpu->arch.guest_context,
740 			(ulong)data64 << shift >> shift);
741 		break;
742 	default:
743 		return -EOPNOTSUPP;
744 	}
745 
746 done:
747 	/* Move to next instruction */
748 	vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;
749 
750 	return 0;
751 }
752