xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision 3c19d5ada1bec8b97119215298df7669d3ffb3db)
1 /*
2  * Copyright 2016,2017 IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  */
9 
10 #define pr_fmt(fmt) "xive: " fmt
11 
12 #include <linux/types.h>
13 #include <linux/threads.h>
14 #include <linux/kernel.h>
15 #include <linux/irq.h>
16 #include <linux/debugfs.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/seq_file.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/of.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/msi.h>
26 
27 #include <asm/prom.h>
28 #include <asm/io.h>
29 #include <asm/smp.h>
30 #include <asm/machdep.h>
31 #include <asm/irq.h>
32 #include <asm/errno.h>
33 #include <asm/xive.h>
34 #include <asm/xive-regs.h>
35 #include <asm/xmon.h>
36 
37 #include "xive-internal.h"
38 
39 #undef DEBUG_FLUSH
40 #undef DEBUG_ALL
41 
42 #ifdef DEBUG_ALL
43 #define DBG_VERBOSE(fmt...)	pr_devel(fmt)
44 #else
45 #define DBG_VERBOSE(fmt...)	do { } while(0)
46 #endif
47 
48 bool __xive_enabled;
49 bool xive_cmdline_disabled;
50 
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
53 
54 /* TIMA */
55 void __iomem *xive_tima;
56 u32 xive_tima_offset;
57 
58 /* Backend ops */
59 static const struct xive_ops *xive_ops;
60 
61 /* Our global interrupt domain */
62 static struct irq_domain *xive_irq_domain;
63 
64 #ifdef CONFIG_SMP
65 /* The IPIs all use the same logical irq number */
66 static u32 xive_ipi_irq;
67 #endif
68 
69 /* Xive state for each CPU */
70 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
71 
72 /*
73  * A "disabled" interrupt should never fire, to catch problems
74  * we set its logical number to this
75  */
76 #define XIVE_BAD_IRQ		0x7fffffff
77 #define XIVE_MAX_IRQ		(XIVE_BAD_IRQ - 1)
78 
79 /* An invalid CPU target */
80 #define XIVE_INVALID_TARGET	(-1)
81 
82 /*
83  * Read the next entry in a queue, return its content if it's valid
84  * or 0 if there is no new entry.
85  *
86  * The queue pointer is moved forward unless "just_peek" is set
87  */
88 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
89 {
90 	u32 cur;
91 
92 	if (!q->qpage)
93 		return 0;
94 	cur = be32_to_cpup(q->qpage + q->idx);
95 
96 	/* Check valid bit (31) vs current toggle polarity */
97 	if ((cur >> 31) == q->toggle)
98 		return 0;
99 
100 	/* If consuming from the queue ... */
101 	if (!just_peek) {
102 		/* Next entry */
103 		q->idx = (q->idx + 1) & q->msk;
104 
105 		/* Wrap around: flip valid toggle */
106 		if (q->idx == 0)
107 			q->toggle ^= 1;
108 	}
109 	/* Mask out the valid bit (31) */
110 	return cur & 0x7fffffff;
111 }
112 
113 /*
114  * Scans all the queue that may have interrupts in them
115  * (based on "pending_prio") in priority order until an
116  * interrupt is found or all the queues are empty.
117  *
118  * Then updates the CPPR (Current Processor Priority
119  * Register) based on the most favored interrupt found
120  * (0xff if none) and return what was found (0 if none).
121  *
122  * If just_peek is set, return the most favored pending
123  * interrupt if any but don't update the queue pointers.
124  *
125  * Note: This function can operate generically on any number
126  * of queues (up to 8). The current implementation of the XIVE
127  * driver only uses a single queue however.
128  *
129  * Note2: This will also "flush" "the pending_count" of a queue
130  * into the "count" when that queue is observed to be empty.
131  * This is used to keep track of the amount of interrupts
132  * targetting a queue. When an interrupt is moved away from
133  * a queue, we only decrement that queue count once the queue
134  * has been observed empty to avoid races.
135  */
136 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
137 {
138 	u32 irq = 0;
139 	u8 prio;
140 
141 	/* Find highest pending priority */
142 	while (xc->pending_prio != 0) {
143 		struct xive_q *q;
144 
145 		prio = ffs(xc->pending_prio) - 1;
146 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
147 
148 		/* Try to fetch */
149 		irq = xive_read_eq(&xc->queue[prio], just_peek);
150 
151 		/* Found something ? That's it */
152 		if (irq)
153 			break;
154 
155 		/* Clear pending bits */
156 		xc->pending_prio &= ~(1 << prio);
157 
158 		/*
159 		 * Check if the queue count needs adjusting due to
160 		 * interrupts being moved away. See description of
161 		 * xive_dec_target_count()
162 		 */
163 		q = &xc->queue[prio];
164 		if (atomic_read(&q->pending_count)) {
165 			int p = atomic_xchg(&q->pending_count, 0);
166 			if (p) {
167 				WARN_ON(p > atomic_read(&q->count));
168 				atomic_sub(p, &q->count);
169 			}
170 		}
171 	}
172 
173 	/* If nothing was found, set CPPR to 0xff */
174 	if (irq == 0)
175 		prio = 0xff;
176 
177 	/* Update HW CPPR to match if necessary */
178 	if (prio != xc->cppr) {
179 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
180 		xc->cppr = prio;
181 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
182 	}
183 
184 	return irq;
185 }
186 
187 /*
188  * This is used to perform the magic loads from an ESB
189  * described in xive.h
190  */
191 static u8 xive_poke_esb(struct xive_irq_data *xd, u32 offset)
192 {
193 	u64 val;
194 
195 	/* Handle HW errata */
196 	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
197 		offset |= offset << 4;
198 
199 	val = in_be64(xd->eoi_mmio + offset);
200 
201 	return (u8)val;
202 }
203 
204 #ifdef CONFIG_XMON
205 static void xive_dump_eq(const char *name, struct xive_q *q)
206 {
207 	u32 i0, i1, idx;
208 
209 	if (!q->qpage)
210 		return;
211 	idx = q->idx;
212 	i0 = be32_to_cpup(q->qpage + idx);
213 	idx = (idx + 1) & q->msk;
214 	i1 = be32_to_cpup(q->qpage + idx);
215 	xmon_printf("  %s Q T=%d %08x %08x ...\n", name,
216 		    q->toggle, i0, i1);
217 }
218 
219 void xmon_xive_do_dump(int cpu)
220 {
221 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
222 
223 	xmon_printf("XIVE state for CPU %d:\n", cpu);
224 	xmon_printf("  pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
225 	xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
226 #ifdef CONFIG_SMP
227 	{
228 		u64 val = xive_poke_esb(&xc->ipi_data, XIVE_ESB_GET);
229 		xmon_printf("  IPI state: %x:%c%c\n", xc->hw_ipi,
230 			val & XIVE_ESB_VAL_P ? 'P' : 'p',
231 			val & XIVE_ESB_VAL_P ? 'Q' : 'q');
232 	}
233 #endif
234 }
235 #endif /* CONFIG_XMON */
236 
237 static unsigned int xive_get_irq(void)
238 {
239 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
240 	u32 irq;
241 
242 	/*
243 	 * This can be called either as a result of a HW interrupt or
244 	 * as a "replay" because EOI decided there was still something
245 	 * in one of the queues.
246 	 *
247 	 * First we perform an ACK cycle in order to update our mask
248 	 * of pending priorities. This will also have the effect of
249 	 * updating the CPPR to the most favored pending interrupts.
250 	 *
251 	 * In the future, if we have a way to differenciate a first
252 	 * entry (on HW interrupt) from a replay triggered by EOI,
253 	 * we could skip this on replays unless we soft-mask tells us
254 	 * that a new HW interrupt occurred.
255 	 */
256 	xive_ops->update_pending(xc);
257 
258 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
259 
260 	/* Scan our queue(s) for interrupts */
261 	irq = xive_scan_interrupts(xc, false);
262 
263 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
264 	    irq, xc->pending_prio);
265 
266 	/* Return pending interrupt if any */
267 	if (irq == XIVE_BAD_IRQ)
268 		return 0;
269 	return irq;
270 }
271 
272 /*
273  * After EOI'ing an interrupt, we need to re-check the queue
274  * to see if another interrupt is pending since multiple
275  * interrupts can coalesce into a single notification to the
276  * CPU.
277  *
278  * If we find that there is indeed more in there, we call
279  * force_external_irq_replay() to make Linux synthetize an
280  * external interrupt on the next call to local_irq_restore().
281  */
282 static void xive_do_queue_eoi(struct xive_cpu *xc)
283 {
284 	if (xive_scan_interrupts(xc, true) != 0) {
285 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
286 		force_external_irq_replay();
287 	}
288 }
289 
290 /*
291  * EOI an interrupt at the source. There are several methods
292  * to do this depending on the HW version and source type
293  */
294 void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
295 {
296 	/* If the XIVE supports the new "store EOI facility, use it */
297 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
298 		out_be64(xd->eoi_mmio, 0);
299 	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
300 		/*
301 		 * The FW told us to call it. This happens for some
302 		 * interrupt sources that need additional HW whacking
303 		 * beyond the ESB manipulation. For example LPC interrupts
304 		 * on P9 DD1.0 need a latch to be clared in the LPC bridge
305 		 * itself. The Firmware will take care of it.
306 		 */
307 		if (WARN_ON_ONCE(!xive_ops->eoi))
308 			return;
309 		xive_ops->eoi(hw_irq);
310 	} else {
311 		u8 eoi_val;
312 
313 		/*
314 		 * Otherwise for EOI, we use the special MMIO that does
315 		 * a clear of both P and Q and returns the old Q,
316 		 * except for LSIs where we use the "EOI cycle" special
317 		 * load.
318 		 *
319 		 * This allows us to then do a re-trigger if Q was set
320 		 * rather than synthesizing an interrupt in software
321 		 *
322 		 * For LSIs, using the HW EOI cycle works around a problem
323 		 * on P9 DD1 PHBs where the other ESB accesses don't work
324 		 * properly.
325 		 */
326 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
327 			in_be64(xd->eoi_mmio);
328 		else {
329 			eoi_val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
330 			DBG_VERBOSE("eoi_val=%x\n", offset, eoi_val);
331 
332 			/* Re-trigger if needed */
333 			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
334 				out_be64(xd->trig_mmio, 0);
335 		}
336 	}
337 }
338 
339 /* irq_chip eoi callback */
340 static void xive_irq_eoi(struct irq_data *d)
341 {
342 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
343 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
344 
345 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
346 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
347 
348 	/* EOI the source if it hasn't been disabled */
349 	if (!irqd_irq_disabled(d))
350 		xive_do_source_eoi(irqd_to_hwirq(d), xd);
351 
352 	/*
353 	 * Clear saved_p to indicate that it's no longer occupying
354 	 * a queue slot on the target queue
355 	 */
356 	xd->saved_p = false;
357 
358 	/* Check for more work in the queue */
359 	xive_do_queue_eoi(xc);
360 }
361 
362 /*
363  * Helper used to mask and unmask an interrupt source. This
364  * is only called for normal interrupts that do not require
365  * masking/unmasking via firmware.
366  */
367 static void xive_do_source_set_mask(struct xive_irq_data *xd,
368 				    bool mask)
369 {
370 	u64 val;
371 
372 	/*
373 	 * If the interrupt had P set, it may be in a queue.
374 	 *
375 	 * We need to make sure we don't re-enable it until it
376 	 * has been fetched from that queue and EOId. We keep
377 	 * a copy of that P state and use it to restore the
378 	 * ESB accordingly on unmask.
379 	 */
380 	if (mask) {
381 		val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_01);
382 		xd->saved_p = !!(val & XIVE_ESB_VAL_P);
383 	} else if (xd->saved_p)
384 		xive_poke_esb(xd, XIVE_ESB_SET_PQ_10);
385 	else
386 		xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
387 }
388 
389 /*
390  * Try to chose "cpu" as a new interrupt target. Increments
391  * the queue accounting for that target if it's not already
392  * full.
393  */
394 static bool xive_try_pick_target(int cpu)
395 {
396 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
397 	struct xive_q *q = &xc->queue[xive_irq_priority];
398 	int max;
399 
400 	/*
401 	 * Calculate max number of interrupts in that queue.
402 	 *
403 	 * We leave a gap of 1 just in case...
404 	 */
405 	max = (q->msk + 1) - 1;
406 	return !!atomic_add_unless(&q->count, 1, max);
407 }
408 
409 /*
410  * Un-account an interrupt for a target CPU. We don't directly
411  * decrement q->count since the interrupt might still be present
412  * in the queue.
413  *
414  * Instead increment a separate counter "pending_count" which
415  * will be substracted from "count" later when that CPU observes
416  * the queue to be empty.
417  */
418 static void xive_dec_target_count(int cpu)
419 {
420 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
421 	struct xive_q *q = &xc->queue[xive_irq_priority];
422 
423 	if (unlikely(WARN_ON(cpu < 0 || !xc))) {
424 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
425 		return;
426 	}
427 
428 	/*
429 	 * We increment the "pending count" which will be used
430 	 * to decrement the target queue count whenever it's next
431 	 * processed and found empty. This ensure that we don't
432 	 * decrement while we still have the interrupt there
433 	 * occupying a slot.
434 	 */
435 	atomic_inc(&q->pending_count);
436 }
437 
438 /* Find a tentative CPU target in a CPU mask */
439 static int xive_find_target_in_mask(const struct cpumask *mask,
440 				    unsigned int fuzz)
441 {
442 	int cpu, first, num, i;
443 
444 	/* Pick up a starting point CPU in the mask based on  fuzz */
445 	num = cpumask_weight(mask);
446 	first = fuzz % num;
447 
448 	/* Locate it */
449 	cpu = cpumask_first(mask);
450 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
451 		cpu = cpumask_next(cpu, mask);
452 
453 	/* Sanity check */
454 	if (WARN_ON(cpu >= nr_cpu_ids))
455 		cpu = cpumask_first(cpu_online_mask);
456 
457 	/* Remember first one to handle wrap-around */
458 	first = cpu;
459 
460 	/*
461 	 * Now go through the entire mask until we find a valid
462 	 * target.
463 	 */
464 	for (;;) {
465 		/*
466 		 * We re-check online as the fallback case passes us
467 		 * an untested affinity mask
468 		 */
469 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
470 			return cpu;
471 		cpu = cpumask_next(cpu, mask);
472 		if (cpu == first)
473 			break;
474 		/* Wrap around */
475 		if (cpu >= nr_cpu_ids)
476 			cpu = cpumask_first(mask);
477 	}
478 	return -1;
479 }
480 
481 /*
482  * Pick a target CPU for an interrupt. This is done at
483  * startup or if the affinity is changed in a way that
484  * invalidates the current target.
485  */
486 static int xive_pick_irq_target(struct irq_data *d,
487 				const struct cpumask *affinity)
488 {
489 	static unsigned int fuzz;
490 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
491 	cpumask_var_t mask;
492 	int cpu = -1;
493 
494 	/*
495 	 * If we have chip IDs, first we try to build a mask of
496 	 * CPUs matching the CPU and find a target in there
497 	 */
498 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
499 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
500 		/* Build a mask of matching chip IDs */
501 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
502 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
503 			if (xc->chip_id == xd->src_chip)
504 				cpumask_set_cpu(cpu, mask);
505 		}
506 		/* Try to find a target */
507 		if (cpumask_empty(mask))
508 			cpu = -1;
509 		else
510 			cpu = xive_find_target_in_mask(mask, fuzz++);
511 		free_cpumask_var(mask);
512 		if (cpu >= 0)
513 			return cpu;
514 		fuzz--;
515 	}
516 
517 	/* No chip IDs, fallback to using the affinity mask */
518 	return xive_find_target_in_mask(affinity, fuzz++);
519 }
520 
521 static unsigned int xive_irq_startup(struct irq_data *d)
522 {
523 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
524 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
525 	int target, rc;
526 
527 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
528 		 d->irq, hw_irq, d);
529 
530 #ifdef CONFIG_PCI_MSI
531 	/*
532 	 * The generic MSI code returns with the interrupt disabled on the
533 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
534 	 * at that level, so we do it here by hand.
535 	 */
536 	if (irq_data_get_msi_desc(d))
537 		pci_msi_unmask_irq(d);
538 #endif
539 
540 	/* Pick a target */
541 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
542 	if (target == XIVE_INVALID_TARGET) {
543 		/* Try again breaking affinity */
544 		target = xive_pick_irq_target(d, cpu_online_mask);
545 		if (target == XIVE_INVALID_TARGET)
546 			return -ENXIO;
547 		pr_warn("irq %d started with broken affinity\n", d->irq);
548 	}
549 
550 	/* Sanity check */
551 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
552 		    target >= nr_cpu_ids))
553 		target = smp_processor_id();
554 
555 	xd->target = target;
556 
557 	/*
558 	 * Configure the logical number to be the Linux IRQ number
559 	 * and set the target queue
560 	 */
561 	rc = xive_ops->configure_irq(hw_irq,
562 				     get_hard_smp_processor_id(target),
563 				     xive_irq_priority, d->irq);
564 	if (rc)
565 		return rc;
566 
567 	/* Unmask the ESB */
568 	xive_do_source_set_mask(xd, false);
569 
570 	return 0;
571 }
572 
573 static void xive_irq_shutdown(struct irq_data *d)
574 {
575 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
576 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
577 
578 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
579 		 d->irq, hw_irq, d);
580 
581 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
582 		return;
583 
584 	/* Mask the interrupt at the source */
585 	xive_do_source_set_mask(xd, true);
586 
587 	/*
588 	 * The above may have set saved_p. We clear it otherwise it
589 	 * will prevent re-enabling later on. It is ok to forget the
590 	 * fact that the interrupt might be in a queue because we are
591 	 * accounting that already in xive_dec_target_count() and will
592 	 * be re-routing it to a new queue with proper accounting when
593 	 * it's started up again
594 	 */
595 	xd->saved_p = false;
596 
597 	/*
598 	 * Mask the interrupt in HW in the IVT/EAS and set the number
599 	 * to be the "bad" IRQ number
600 	 */
601 	xive_ops->configure_irq(hw_irq,
602 				get_hard_smp_processor_id(xd->target),
603 				0xff, XIVE_BAD_IRQ);
604 
605 	xive_dec_target_count(xd->target);
606 	xd->target = XIVE_INVALID_TARGET;
607 }
608 
609 static void xive_irq_unmask(struct irq_data *d)
610 {
611 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
612 
613 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
614 
615 	/*
616 	 * This is a workaround for PCI LSI problems on P9, for
617 	 * these, we call FW to set the mask. The problems might
618 	 * be fixed by P9 DD2.0, if that is the case, firmware
619 	 * will no longer set that flag.
620 	 */
621 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
622 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
623 		xive_ops->configure_irq(hw_irq,
624 					get_hard_smp_processor_id(xd->target),
625 					xive_irq_priority, d->irq);
626 		return;
627 	}
628 
629 	xive_do_source_set_mask(xd, false);
630 }
631 
632 static void xive_irq_mask(struct irq_data *d)
633 {
634 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
635 
636 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
637 
638 	/*
639 	 * This is a workaround for PCI LSI problems on P9, for
640 	 * these, we call OPAL to set the mask. The problems might
641 	 * be fixed by P9 DD2.0, if that is the case, firmware
642 	 * will no longer set that flag.
643 	 */
644 	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
645 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
646 		xive_ops->configure_irq(hw_irq,
647 					get_hard_smp_processor_id(xd->target),
648 					0xff, d->irq);
649 		return;
650 	}
651 
652 	xive_do_source_set_mask(xd, true);
653 }
654 
655 static int xive_irq_set_affinity(struct irq_data *d,
656 				 const struct cpumask *cpumask,
657 				 bool force)
658 {
659 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
660 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
661 	u32 target, old_target;
662 	int rc = 0;
663 
664 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
665 
666 	/* Is this valid ? */
667 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
668 		return -EINVAL;
669 
670 	/*
671 	 * If existing target is already in the new mask, and is
672 	 * online then do nothing.
673 	 */
674 	if (xd->target != XIVE_INVALID_TARGET &&
675 	    cpu_online(xd->target) &&
676 	    cpumask_test_cpu(xd->target, cpumask))
677 		return IRQ_SET_MASK_OK;
678 
679 	/* Pick a new target */
680 	target = xive_pick_irq_target(d, cpumask);
681 
682 	/* No target found */
683 	if (target == XIVE_INVALID_TARGET)
684 		return -ENXIO;
685 
686 	/* Sanity check */
687 	if (WARN_ON(target >= nr_cpu_ids))
688 		target = smp_processor_id();
689 
690 	old_target = xd->target;
691 
692 	rc = xive_ops->configure_irq(hw_irq,
693 				     get_hard_smp_processor_id(target),
694 				     xive_irq_priority, d->irq);
695 	if (rc < 0) {
696 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
697 		return rc;
698 	}
699 
700 	pr_devel("  target: 0x%x\n", target);
701 	xd->target = target;
702 
703 	/* Give up previous target */
704 	if (old_target != XIVE_INVALID_TARGET)
705 	    xive_dec_target_count(old_target);
706 
707 	return IRQ_SET_MASK_OK;
708 }
709 
710 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
711 {
712 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
713 
714 	/*
715 	 * We only support these. This has really no effect other than setting
716 	 * the corresponding descriptor bits mind you but those will in turn
717 	 * affect the resend function when re-enabling an edge interrupt.
718 	 *
719 	 * Set set the default to edge as explained in map().
720 	 */
721 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
722 		flow_type = IRQ_TYPE_EDGE_RISING;
723 
724 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
725 	    flow_type != IRQ_TYPE_LEVEL_LOW)
726 		return -EINVAL;
727 
728 	irqd_set_trigger_type(d, flow_type);
729 
730 	/*
731 	 * Double check it matches what the FW thinks
732 	 *
733 	 * NOTE: We don't know yet if the PAPR interface will provide
734 	 * the LSI vs MSI information apart from the device-tree so
735 	 * this check might have to move into an optional backend call
736 	 * that is specific to the native backend
737 	 */
738 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
739 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
740 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
741 			d->irq, (u32)irqd_to_hwirq(d),
742 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
743 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
744 	}
745 
746 	return IRQ_SET_MASK_OK_NOCOPY;
747 }
748 
749 static int xive_irq_retrigger(struct irq_data *d)
750 {
751 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
752 
753 	/* This should be only for MSIs */
754 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
755 		return 0;
756 
757 	/*
758 	 * To perform a retrigger, we first set the PQ bits to
759 	 * 11, then perform an EOI.
760 	 */
761 	xive_poke_esb(xd, XIVE_ESB_SET_PQ_11);
762 
763 	/*
764 	 * Note: We pass "0" to the hw_irq argument in order to
765 	 * avoid calling into the backend EOI code which we don't
766 	 * want to do in the case of a re-trigger. Backends typically
767 	 * only do EOI for LSIs anyway.
768 	 */
769 	xive_do_source_eoi(0, xd);
770 
771 	return 1;
772 }
773 
774 static struct irq_chip xive_irq_chip = {
775 	.name = "XIVE-IRQ",
776 	.irq_startup = xive_irq_startup,
777 	.irq_shutdown = xive_irq_shutdown,
778 	.irq_eoi = xive_irq_eoi,
779 	.irq_mask = xive_irq_mask,
780 	.irq_unmask = xive_irq_unmask,
781 	.irq_set_affinity = xive_irq_set_affinity,
782 	.irq_set_type = xive_irq_set_type,
783 	.irq_retrigger = xive_irq_retrigger,
784 };
785 
786 bool is_xive_irq(struct irq_chip *chip)
787 {
788 	return chip == &xive_irq_chip;
789 }
790 
791 void xive_cleanup_irq_data(struct xive_irq_data *xd)
792 {
793 	if (xd->eoi_mmio) {
794 		iounmap(xd->eoi_mmio);
795 		if (xd->eoi_mmio == xd->trig_mmio)
796 			xd->trig_mmio = NULL;
797 		xd->eoi_mmio = NULL;
798 	}
799 	if (xd->trig_mmio) {
800 		iounmap(xd->trig_mmio);
801 		xd->trig_mmio = NULL;
802 	}
803 }
804 
805 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
806 {
807 	struct xive_irq_data *xd;
808 	int rc;
809 
810 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
811 	if (!xd)
812 		return -ENOMEM;
813 	rc = xive_ops->populate_irq_data(hw, xd);
814 	if (rc) {
815 		kfree(xd);
816 		return rc;
817 	}
818 	xd->target = XIVE_INVALID_TARGET;
819 	irq_set_handler_data(virq, xd);
820 
821 	return 0;
822 }
823 
824 static void xive_irq_free_data(unsigned int virq)
825 {
826 	struct xive_irq_data *xd = irq_get_handler_data(virq);
827 
828 	if (!xd)
829 		return;
830 	irq_set_handler_data(virq, NULL);
831 	xive_cleanup_irq_data(xd);
832 	kfree(xd);
833 }
834 
835 #ifdef CONFIG_SMP
836 
837 static void xive_cause_ipi(int cpu, unsigned long msg)
838 {
839 	struct xive_cpu *xc;
840 	struct xive_irq_data *xd;
841 
842 	xc = per_cpu(xive_cpu, cpu);
843 
844 	DBG_VERBOSE("IPI msg#%ld CPU %d -> %d (HW IRQ 0x%x)\n",
845 		    msg, smp_processor_id(), cpu, xc->hw_ipi);
846 
847 	xd = &xc->ipi_data;
848 	if (WARN_ON(!xd->trig_mmio))
849 		return;
850 	out_be64(xd->trig_mmio, 0);
851 }
852 
853 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
854 {
855 	return smp_ipi_demux();
856 }
857 
858 static void xive_ipi_eoi(struct irq_data *d)
859 {
860 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
861 
862 	/* Handle possible race with unplug and drop stale IPIs */
863 	if (!xc)
864 		return;
865 	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
866 	xive_do_queue_eoi(xc);
867 }
868 
869 static void xive_ipi_do_nothing(struct irq_data *d)
870 {
871 	/*
872 	 * Nothing to do, we never mask/unmask IPIs, but the callback
873 	 * has to exist for the struct irq_chip.
874 	 */
875 }
876 
877 static struct irq_chip xive_ipi_chip = {
878 	.name = "XIVE-IPI",
879 	.irq_eoi = xive_ipi_eoi,
880 	.irq_mask = xive_ipi_do_nothing,
881 	.irq_unmask = xive_ipi_do_nothing,
882 };
883 
884 static void __init xive_request_ipi(void)
885 {
886 	unsigned int virq;
887 
888 	/*
889 	 * Initialization failed, move on, we might manage to
890 	 * reach the point where we display our errors before
891 	 * the system falls appart
892 	 */
893 	if (!xive_irq_domain)
894 		return;
895 
896 	/* Initialize it */
897 	virq = irq_create_mapping(xive_irq_domain, 0);
898 	xive_ipi_irq = virq;
899 
900 	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
901 			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
902 }
903 
904 static int xive_setup_cpu_ipi(unsigned int cpu)
905 {
906 	struct xive_cpu *xc;
907 	int rc;
908 
909 	pr_debug("Setting up IPI for CPU %d\n", cpu);
910 
911 	xc = per_cpu(xive_cpu, cpu);
912 
913 	/* Check if we are already setup */
914 	if (xc->hw_ipi != 0)
915 		return 0;
916 
917 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
918 	if (xive_ops->get_ipi(cpu, xc))
919 		return -EIO;
920 
921 	/*
922 	 * Populate the IRQ data in the xive_cpu structure and
923 	 * configure the HW / enable the IPIs.
924 	 */
925 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
926 	if (rc) {
927 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
928 		return -EIO;
929 	}
930 	rc = xive_ops->configure_irq(xc->hw_ipi,
931 				     get_hard_smp_processor_id(cpu),
932 				     xive_irq_priority, xive_ipi_irq);
933 	if (rc) {
934 		pr_err("Failed to map IPI CPU %d\n", cpu);
935 		return -EIO;
936 	}
937 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
938 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
939 
940 	/* Unmask it */
941 	xive_do_source_set_mask(&xc->ipi_data, false);
942 
943 	return 0;
944 }
945 
946 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
947 {
948 	/* Disable the IPI and free the IRQ data */
949 
950 	/* Already cleaned up ? */
951 	if (xc->hw_ipi == 0)
952 		return;
953 
954 	/* Mask the IPI */
955 	xive_do_source_set_mask(&xc->ipi_data, true);
956 
957 	/*
958 	 * Note: We don't call xive_cleanup_irq_data() to free
959 	 * the mappings as this is called from an IPI on kexec
960 	 * which is not a safe environment to call iounmap()
961 	 */
962 
963 	/* Deconfigure/mask in the backend */
964 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
965 				0xff, xive_ipi_irq);
966 
967 	/* Free the IPIs in the backend */
968 	xive_ops->put_ipi(cpu, xc);
969 }
970 
971 void __init xive_smp_probe(void)
972 {
973 	smp_ops->cause_ipi = xive_cause_ipi;
974 
975 	/* Register the IPI */
976 	xive_request_ipi();
977 
978 	/* Allocate and setup IPI for the boot CPU */
979 	xive_setup_cpu_ipi(smp_processor_id());
980 }
981 
982 #endif /* CONFIG_SMP */
983 
984 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
985 			       irq_hw_number_t hw)
986 {
987 	int rc;
988 
989 	/*
990 	 * Mark interrupts as edge sensitive by default so that resend
991 	 * actually works. Will fix that up below if needed.
992 	 */
993 	irq_clear_status_flags(virq, IRQ_LEVEL);
994 
995 #ifdef CONFIG_SMP
996 	/* IPIs are special and come up with HW number 0 */
997 	if (hw == 0) {
998 		/*
999 		 * IPIs are marked per-cpu. We use separate HW interrupts under
1000 		 * the hood but associated with the same "linux" interrupt
1001 		 */
1002 		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1003 					 handle_percpu_irq);
1004 		return 0;
1005 	}
1006 #endif
1007 
1008 	rc = xive_irq_alloc_data(virq, hw);
1009 	if (rc)
1010 		return rc;
1011 
1012 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1013 
1014 	return 0;
1015 }
1016 
1017 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1018 {
1019 	struct irq_data *data = irq_get_irq_data(virq);
1020 	unsigned int hw_irq;
1021 
1022 	/* XXX Assign BAD number */
1023 	if (!data)
1024 		return;
1025 	hw_irq = (unsigned int)irqd_to_hwirq(data);
1026 	if (hw_irq)
1027 		xive_irq_free_data(virq);
1028 }
1029 
1030 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1031 				 const u32 *intspec, unsigned int intsize,
1032 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1033 
1034 {
1035 	*out_hwirq = intspec[0];
1036 
1037 	/*
1038 	 * If intsize is at least 2, we look for the type in the second cell,
1039 	 * we assume the LSB indicates a level interrupt.
1040 	 */
1041 	if (intsize > 1) {
1042 		if (intspec[1] & 1)
1043 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1044 		else
1045 			*out_flags = IRQ_TYPE_EDGE_RISING;
1046 	} else
1047 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1048 
1049 	return 0;
1050 }
1051 
1052 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1053 				 enum irq_domain_bus_token bus_token)
1054 {
1055 	return xive_ops->match(node);
1056 }
1057 
1058 static const struct irq_domain_ops xive_irq_domain_ops = {
1059 	.match = xive_irq_domain_match,
1060 	.map = xive_irq_domain_map,
1061 	.unmap = xive_irq_domain_unmap,
1062 	.xlate = xive_irq_domain_xlate,
1063 };
1064 
1065 static void __init xive_init_host(void)
1066 {
1067 	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1068 					       &xive_irq_domain_ops, NULL);
1069 	if (WARN_ON(xive_irq_domain == NULL))
1070 		return;
1071 	irq_set_default_host(xive_irq_domain);
1072 }
1073 
1074 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1075 {
1076 	if (xc->queue[xive_irq_priority].qpage)
1077 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1078 }
1079 
1080 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1081 {
1082 	int rc = 0;
1083 
1084 	/* We setup 1 queues for now with a 64k page */
1085 	if (!xc->queue[xive_irq_priority].qpage)
1086 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1087 
1088 	return rc;
1089 }
1090 
1091 static int xive_prepare_cpu(unsigned int cpu)
1092 {
1093 	struct xive_cpu *xc;
1094 
1095 	xc = per_cpu(xive_cpu, cpu);
1096 	if (!xc) {
1097 		struct device_node *np;
1098 
1099 		xc = kzalloc_node(sizeof(struct xive_cpu),
1100 				  GFP_KERNEL, cpu_to_node(cpu));
1101 		if (!xc)
1102 			return -ENOMEM;
1103 		np = of_get_cpu_node(cpu, NULL);
1104 		if (np)
1105 			xc->chip_id = of_get_ibm_chip_id(np);
1106 		of_node_put(np);
1107 
1108 		per_cpu(xive_cpu, cpu) = xc;
1109 	}
1110 
1111 	/* Setup EQs if not already */
1112 	return xive_setup_cpu_queues(cpu, xc);
1113 }
1114 
1115 static void xive_setup_cpu(void)
1116 {
1117 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1118 
1119 	/* Debug: Dump the TM state */
1120 	pr_devel("CPU %d [HW 0x%02x] VT=%02x\n",
1121 	    smp_processor_id(), hard_smp_processor_id(),
1122 	    in_8(xive_tima + xive_tima_offset + TM_WORD2));
1123 
1124 	/* The backend might have additional things to do */
1125 	if (xive_ops->setup_cpu)
1126 		xive_ops->setup_cpu(smp_processor_id(), xc);
1127 
1128 	/* Set CPPR to 0xff to enable flow of interrupts */
1129 	xc->cppr = 0xff;
1130 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1131 }
1132 
1133 #ifdef CONFIG_SMP
1134 void xive_smp_setup_cpu(void)
1135 {
1136 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1137 
1138 	/* This will have already been done on the boot CPU */
1139 	if (smp_processor_id() != boot_cpuid)
1140 		xive_setup_cpu();
1141 
1142 }
1143 
1144 int xive_smp_prepare_cpu(unsigned int cpu)
1145 {
1146 	int rc;
1147 
1148 	/* Allocate per-CPU data and queues */
1149 	rc = xive_prepare_cpu(cpu);
1150 	if (rc)
1151 		return rc;
1152 
1153 	/* Allocate and setup IPI for the new CPU */
1154 	return xive_setup_cpu_ipi(cpu);
1155 }
1156 
1157 #ifdef CONFIG_HOTPLUG_CPU
1158 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1159 {
1160 	u32 irq;
1161 
1162 	/* We assume local irqs are disabled */
1163 	WARN_ON(!irqs_disabled());
1164 
1165 	/* Check what's already in the CPU queue */
1166 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1167 		/*
1168 		 * We need to re-route that interrupt to its new destination.
1169 		 * First get and lock the descriptor
1170 		 */
1171 		struct irq_desc *desc = irq_to_desc(irq);
1172 		struct irq_data *d = irq_desc_get_irq_data(desc);
1173 		struct xive_irq_data *xd;
1174 		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1175 
1176 		/*
1177 		 * Ignore anything that isn't a XIVE irq and ignore
1178 		 * IPIs, so can just be dropped.
1179 		 */
1180 		if (d->domain != xive_irq_domain || hw_irq == 0)
1181 			continue;
1182 
1183 		/*
1184 		 * The IRQ should have already been re-routed, it's just a
1185 		 * stale in the old queue, so re-trigger it in order to make
1186 		 * it reach is new destination.
1187 		 */
1188 #ifdef DEBUG_FLUSH
1189 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1190 			cpu, irq);
1191 #endif
1192 		raw_spin_lock(&desc->lock);
1193 		xd = irq_desc_get_handler_data(desc);
1194 
1195 		/*
1196 		 * For LSIs, we EOI, this will cause a resend if it's
1197 		 * still asserted. Otherwise do an MSI retrigger.
1198 		 */
1199 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1200 			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1201 		else
1202 			xive_irq_retrigger(d);
1203 
1204 		raw_spin_unlock(&desc->lock);
1205 	}
1206 }
1207 
1208 void xive_smp_disable_cpu(void)
1209 {
1210 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1211 	unsigned int cpu = smp_processor_id();
1212 
1213 	/* Migrate interrupts away from the CPU */
1214 	irq_migrate_all_off_this_cpu();
1215 
1216 	/* Set CPPR to 0 to disable flow of interrupts */
1217 	xc->cppr = 0;
1218 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1219 
1220 	/* Flush everything still in the queue */
1221 	xive_flush_cpu_queue(cpu, xc);
1222 
1223 	/* Re-enable CPPR  */
1224 	xc->cppr = 0xff;
1225 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1226 }
1227 
1228 void xive_flush_interrupt(void)
1229 {
1230 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1231 	unsigned int cpu = smp_processor_id();
1232 
1233 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1234 	xive_flush_cpu_queue(cpu, xc);
1235 }
1236 
1237 #endif /* CONFIG_HOTPLUG_CPU */
1238 
1239 #endif /* CONFIG_SMP */
1240 
1241 void xive_kexec_teardown_cpu(int secondary)
1242 {
1243 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1244 	unsigned int cpu = smp_processor_id();
1245 
1246 	/* Set CPPR to 0 to disable flow of interrupts */
1247 	xc->cppr = 0;
1248 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1249 
1250 	/* Backend cleanup if any */
1251 	if (xive_ops->teardown_cpu)
1252 		xive_ops->teardown_cpu(cpu, xc);
1253 
1254 #ifdef CONFIG_SMP
1255 	/* Get rid of IPI */
1256 	xive_cleanup_cpu_ipi(cpu, xc);
1257 #endif
1258 
1259 	/* Disable and free the queues */
1260 	xive_cleanup_cpu_queues(cpu, xc);
1261 }
1262 
1263 void xive_shutdown(void)
1264 {
1265 	xive_ops->shutdown();
1266 }
1267 
1268 bool xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1269 		    u8 max_prio)
1270 {
1271 	xive_tima = area;
1272 	xive_tima_offset = offset;
1273 	xive_ops = ops;
1274 	xive_irq_priority = max_prio;
1275 
1276 	ppc_md.get_irq = xive_get_irq;
1277 	__xive_enabled = true;
1278 
1279 	pr_devel("Initializing host..\n");
1280 	xive_init_host();
1281 
1282 	pr_devel("Initializing boot CPU..\n");
1283 
1284 	/* Allocate per-CPU data and queues */
1285 	xive_prepare_cpu(smp_processor_id());
1286 
1287 	/* Get ready for interrupts */
1288 	xive_setup_cpu();
1289 
1290 	pr_info("Interrupt handling intialized with %s backend\n",
1291 		xive_ops->name);
1292 	pr_info("Using priority %d for all interrupts\n", max_prio);
1293 
1294 	return true;
1295 }
1296 
1297 static int __init xive_off(char *arg)
1298 {
1299 	xive_cmdline_disabled = true;
1300 	return 0;
1301 }
1302 __setup("xive=off", xive_off);
1303