xref: /openbmc/linux/arch/powerpc/sysdev/xive/common.c (revision 29e1c1ad3ff7f345d80c7b81b08175f5a8c84122)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016,2017 IBM Corporation.
4  */
5 
6 #define pr_fmt(fmt) "xive: " fmt
7 
8 #include <linux/types.h>
9 #include <linux/threads.h>
10 #include <linux/kernel.h>
11 #include <linux/irq.h>
12 #include <linux/debugfs.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/init.h>
17 #include <linux/cpu.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/msi.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/debugfs.h>
25 #include <asm/prom.h>
26 #include <asm/io.h>
27 #include <asm/smp.h>
28 #include <asm/machdep.h>
29 #include <asm/irq.h>
30 #include <asm/errno.h>
31 #include <asm/xive.h>
32 #include <asm/xive-regs.h>
33 #include <asm/xmon.h>
34 
35 #include "xive-internal.h"
36 
37 #undef DEBUG_FLUSH
38 #undef DEBUG_ALL
39 
40 #ifdef DEBUG_ALL
41 #define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
42 					 smp_processor_id(), ## __VA_ARGS__)
43 #else
44 #define DBG_VERBOSE(fmt...)	do { } while(0)
45 #endif
46 
47 bool __xive_enabled;
48 EXPORT_SYMBOL_GPL(__xive_enabled);
49 bool xive_cmdline_disabled;
50 
51 /* We use only one priority for now */
52 static u8 xive_irq_priority;
53 
54 /* TIMA exported to KVM */
55 void __iomem *xive_tima;
56 EXPORT_SYMBOL_GPL(xive_tima);
57 u32 xive_tima_offset;
58 
59 /* Backend ops */
60 static const struct xive_ops *xive_ops;
61 
62 /* Our global interrupt domain */
63 static struct irq_domain *xive_irq_domain;
64 
65 #ifdef CONFIG_SMP
66 /* The IPIs use the same logical irq number when on the same chip */
67 static struct xive_ipi_desc {
68 	unsigned int irq;
69 	char name[16];
70 } *xive_ipis;
71 
72 /*
73  * Use early_cpu_to_node() for hot-plugged CPUs
74  */
75 static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu)
76 {
77 	return xive_ipis[early_cpu_to_node(cpu)].irq;
78 }
79 #endif
80 
81 /* Xive state for each CPU */
82 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
83 
84 /* An invalid CPU target */
85 #define XIVE_INVALID_TARGET	(-1)
86 
87 /*
88  * Read the next entry in a queue, return its content if it's valid
89  * or 0 if there is no new entry.
90  *
91  * The queue pointer is moved forward unless "just_peek" is set
92  */
93 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
94 {
95 	u32 cur;
96 
97 	if (!q->qpage)
98 		return 0;
99 	cur = be32_to_cpup(q->qpage + q->idx);
100 
101 	/* Check valid bit (31) vs current toggle polarity */
102 	if ((cur >> 31) == q->toggle)
103 		return 0;
104 
105 	/* If consuming from the queue ... */
106 	if (!just_peek) {
107 		/* Next entry */
108 		q->idx = (q->idx + 1) & q->msk;
109 
110 		/* Wrap around: flip valid toggle */
111 		if (q->idx == 0)
112 			q->toggle ^= 1;
113 	}
114 	/* Mask out the valid bit (31) */
115 	return cur & 0x7fffffff;
116 }
117 
118 /*
119  * Scans all the queue that may have interrupts in them
120  * (based on "pending_prio") in priority order until an
121  * interrupt is found or all the queues are empty.
122  *
123  * Then updates the CPPR (Current Processor Priority
124  * Register) based on the most favored interrupt found
125  * (0xff if none) and return what was found (0 if none).
126  *
127  * If just_peek is set, return the most favored pending
128  * interrupt if any but don't update the queue pointers.
129  *
130  * Note: This function can operate generically on any number
131  * of queues (up to 8). The current implementation of the XIVE
132  * driver only uses a single queue however.
133  *
134  * Note2: This will also "flush" "the pending_count" of a queue
135  * into the "count" when that queue is observed to be empty.
136  * This is used to keep track of the amount of interrupts
137  * targetting a queue. When an interrupt is moved away from
138  * a queue, we only decrement that queue count once the queue
139  * has been observed empty to avoid races.
140  */
141 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
142 {
143 	u32 irq = 0;
144 	u8 prio = 0;
145 
146 	/* Find highest pending priority */
147 	while (xc->pending_prio != 0) {
148 		struct xive_q *q;
149 
150 		prio = ffs(xc->pending_prio) - 1;
151 		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
152 
153 		/* Try to fetch */
154 		irq = xive_read_eq(&xc->queue[prio], just_peek);
155 
156 		/* Found something ? That's it */
157 		if (irq) {
158 			if (just_peek || irq_to_desc(irq))
159 				break;
160 			/*
161 			 * We should never get here; if we do then we must
162 			 * have failed to synchronize the interrupt properly
163 			 * when shutting it down.
164 			 */
165 			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
166 				irq);
167 			WARN_ON(1);
168 			continue;
169 		}
170 
171 		/* Clear pending bits */
172 		xc->pending_prio &= ~(1 << prio);
173 
174 		/*
175 		 * Check if the queue count needs adjusting due to
176 		 * interrupts being moved away. See description of
177 		 * xive_dec_target_count()
178 		 */
179 		q = &xc->queue[prio];
180 		if (atomic_read(&q->pending_count)) {
181 			int p = atomic_xchg(&q->pending_count, 0);
182 			if (p) {
183 				WARN_ON(p > atomic_read(&q->count));
184 				atomic_sub(p, &q->count);
185 			}
186 		}
187 	}
188 
189 	/* If nothing was found, set CPPR to 0xff */
190 	if (irq == 0)
191 		prio = 0xff;
192 
193 	/* Update HW CPPR to match if necessary */
194 	if (prio != xc->cppr) {
195 		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
196 		xc->cppr = prio;
197 		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
198 	}
199 
200 	return irq;
201 }
202 
203 /*
204  * This is used to perform the magic loads from an ESB
205  * described in xive-regs.h
206  */
207 static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
208 {
209 	u64 val;
210 
211 	if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
212 		offset |= XIVE_ESB_LD_ST_MO;
213 
214 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
215 		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
216 	else
217 		val = in_be64(xd->eoi_mmio + offset);
218 
219 	return (u8)val;
220 }
221 
222 static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
223 {
224 	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
225 		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
226 	else
227 		out_be64(xd->eoi_mmio + offset, data);
228 }
229 
230 #ifdef CONFIG_XMON
231 static notrace void xive_dump_eq(const char *name, struct xive_q *q)
232 {
233 	u32 i0, i1, idx;
234 
235 	if (!q->qpage)
236 		return;
237 	idx = q->idx;
238 	i0 = be32_to_cpup(q->qpage + idx);
239 	idx = (idx + 1) & q->msk;
240 	i1 = be32_to_cpup(q->qpage + idx);
241 	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
242 		     q->idx, q->toggle, i0, i1);
243 }
244 
245 notrace void xmon_xive_do_dump(int cpu)
246 {
247 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
248 
249 	xmon_printf("CPU %d:", cpu);
250 	if (xc) {
251 		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
252 
253 #ifdef CONFIG_SMP
254 		{
255 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
256 
257 			xmon_printf("IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
258 				    val & XIVE_ESB_VAL_P ? 'P' : '-',
259 				    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
260 		}
261 #endif
262 		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
263 	}
264 	xmon_printf("\n");
265 }
266 
267 static struct irq_data *xive_get_irq_data(u32 hw_irq)
268 {
269 	unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
270 
271 	return irq ? irq_get_irq_data(irq) : NULL;
272 }
273 
274 int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
275 {
276 	int rc;
277 	u32 target;
278 	u8 prio;
279 	u32 lirq;
280 
281 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
282 	if (rc) {
283 		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
284 		return rc;
285 	}
286 
287 	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
288 		    hw_irq, target, prio, lirq);
289 
290 	if (!d)
291 		d = xive_get_irq_data(hw_irq);
292 
293 	if (d) {
294 		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
295 		u64 val = xive_esb_read(xd, XIVE_ESB_GET);
296 
297 		xmon_printf("flags=%c%c%c PQ=%c%c",
298 			    xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
299 			    xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
300 			    xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
301 			    val & XIVE_ESB_VAL_P ? 'P' : '-',
302 			    val & XIVE_ESB_VAL_Q ? 'Q' : '-');
303 	}
304 
305 	xmon_printf("\n");
306 	return 0;
307 }
308 
309 void xmon_xive_get_irq_all(void)
310 {
311 	unsigned int i;
312 	struct irq_desc *desc;
313 
314 	for_each_irq_desc(i, desc) {
315 		struct irq_data *d = irq_desc_get_irq_data(desc);
316 		unsigned int hwirq = (unsigned int)irqd_to_hwirq(d);
317 
318 		if (d->domain == xive_irq_domain)
319 			xmon_xive_get_irq_config(hwirq, d);
320 	}
321 }
322 
323 #endif /* CONFIG_XMON */
324 
325 static unsigned int xive_get_irq(void)
326 {
327 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
328 	u32 irq;
329 
330 	/*
331 	 * This can be called either as a result of a HW interrupt or
332 	 * as a "replay" because EOI decided there was still something
333 	 * in one of the queues.
334 	 *
335 	 * First we perform an ACK cycle in order to update our mask
336 	 * of pending priorities. This will also have the effect of
337 	 * updating the CPPR to the most favored pending interrupts.
338 	 *
339 	 * In the future, if we have a way to differentiate a first
340 	 * entry (on HW interrupt) from a replay triggered by EOI,
341 	 * we could skip this on replays unless we soft-mask tells us
342 	 * that a new HW interrupt occurred.
343 	 */
344 	xive_ops->update_pending(xc);
345 
346 	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
347 
348 	/* Scan our queue(s) for interrupts */
349 	irq = xive_scan_interrupts(xc, false);
350 
351 	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
352 	    irq, xc->pending_prio);
353 
354 	/* Return pending interrupt if any */
355 	if (irq == XIVE_BAD_IRQ)
356 		return 0;
357 	return irq;
358 }
359 
360 /*
361  * After EOI'ing an interrupt, we need to re-check the queue
362  * to see if another interrupt is pending since multiple
363  * interrupts can coalesce into a single notification to the
364  * CPU.
365  *
366  * If we find that there is indeed more in there, we call
367  * force_external_irq_replay() to make Linux synthetize an
368  * external interrupt on the next call to local_irq_restore().
369  */
370 static void xive_do_queue_eoi(struct xive_cpu *xc)
371 {
372 	if (xive_scan_interrupts(xc, true) != 0) {
373 		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
374 		force_external_irq_replay();
375 	}
376 }
377 
378 /*
379  * EOI an interrupt at the source. There are several methods
380  * to do this depending on the HW version and source type
381  */
382 static void xive_do_source_eoi(struct xive_irq_data *xd)
383 {
384 	u8 eoi_val;
385 
386 	xd->stale_p = false;
387 
388 	/* If the XIVE supports the new "store EOI facility, use it */
389 	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) {
390 		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
391 		return;
392 	}
393 
394 	/*
395 	 * For LSIs, we use the "EOI cycle" special load rather than
396 	 * PQ bits, as they are automatically re-triggered in HW when
397 	 * still pending.
398 	 */
399 	if (xd->flags & XIVE_IRQ_FLAG_LSI) {
400 		xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
401 		return;
402 	}
403 
404 	/*
405 	 * Otherwise, we use the special MMIO that does a clear of
406 	 * both P and Q and returns the old Q. This allows us to then
407 	 * do a re-trigger if Q was set rather than synthesizing an
408 	 * interrupt in software
409 	 */
410 	eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
411 	DBG_VERBOSE("eoi_val=%x\n", eoi_val);
412 
413 	/* Re-trigger if needed */
414 	if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
415 		out_be64(xd->trig_mmio, 0);
416 }
417 
418 /* irq_chip eoi callback, called with irq descriptor lock held */
419 static void xive_irq_eoi(struct irq_data *d)
420 {
421 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
422 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
423 
424 	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
425 		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
426 
427 	/*
428 	 * EOI the source if it hasn't been disabled and hasn't
429 	 * been passed-through to a KVM guest
430 	 */
431 	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
432 	    !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
433 		xive_do_source_eoi(xd);
434 	else
435 		xd->stale_p = true;
436 
437 	/*
438 	 * Clear saved_p to indicate that it's no longer occupying
439 	 * a queue slot on the target queue
440 	 */
441 	xd->saved_p = false;
442 
443 	/* Check for more work in the queue */
444 	xive_do_queue_eoi(xc);
445 }
446 
447 /*
448  * Helper used to mask and unmask an interrupt source.
449  */
450 static void xive_do_source_set_mask(struct xive_irq_data *xd,
451 				    bool mask)
452 {
453 	u64 val;
454 
455 	/*
456 	 * If the interrupt had P set, it may be in a queue.
457 	 *
458 	 * We need to make sure we don't re-enable it until it
459 	 * has been fetched from that queue and EOId. We keep
460 	 * a copy of that P state and use it to restore the
461 	 * ESB accordingly on unmask.
462 	 */
463 	if (mask) {
464 		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
465 		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
466 			xd->saved_p = true;
467 		xd->stale_p = false;
468 	} else if (xd->saved_p) {
469 		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
470 		xd->saved_p = false;
471 	} else {
472 		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
473 		xd->stale_p = false;
474 	}
475 }
476 
477 /*
478  * Try to chose "cpu" as a new interrupt target. Increments
479  * the queue accounting for that target if it's not already
480  * full.
481  */
482 static bool xive_try_pick_target(int cpu)
483 {
484 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
485 	struct xive_q *q = &xc->queue[xive_irq_priority];
486 	int max;
487 
488 	/*
489 	 * Calculate max number of interrupts in that queue.
490 	 *
491 	 * We leave a gap of 1 just in case...
492 	 */
493 	max = (q->msk + 1) - 1;
494 	return !!atomic_add_unless(&q->count, 1, max);
495 }
496 
497 /*
498  * Un-account an interrupt for a target CPU. We don't directly
499  * decrement q->count since the interrupt might still be present
500  * in the queue.
501  *
502  * Instead increment a separate counter "pending_count" which
503  * will be substracted from "count" later when that CPU observes
504  * the queue to be empty.
505  */
506 static void xive_dec_target_count(int cpu)
507 {
508 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
509 	struct xive_q *q = &xc->queue[xive_irq_priority];
510 
511 	if (WARN_ON(cpu < 0 || !xc)) {
512 		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
513 		return;
514 	}
515 
516 	/*
517 	 * We increment the "pending count" which will be used
518 	 * to decrement the target queue count whenever it's next
519 	 * processed and found empty. This ensure that we don't
520 	 * decrement while we still have the interrupt there
521 	 * occupying a slot.
522 	 */
523 	atomic_inc(&q->pending_count);
524 }
525 
526 /* Find a tentative CPU target in a CPU mask */
527 static int xive_find_target_in_mask(const struct cpumask *mask,
528 				    unsigned int fuzz)
529 {
530 	int cpu, first, num, i;
531 
532 	/* Pick up a starting point CPU in the mask based on  fuzz */
533 	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
534 	first = fuzz % num;
535 
536 	/* Locate it */
537 	cpu = cpumask_first(mask);
538 	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
539 		cpu = cpumask_next(cpu, mask);
540 
541 	/* Sanity check */
542 	if (WARN_ON(cpu >= nr_cpu_ids))
543 		cpu = cpumask_first(cpu_online_mask);
544 
545 	/* Remember first one to handle wrap-around */
546 	first = cpu;
547 
548 	/*
549 	 * Now go through the entire mask until we find a valid
550 	 * target.
551 	 */
552 	do {
553 		/*
554 		 * We re-check online as the fallback case passes us
555 		 * an untested affinity mask
556 		 */
557 		if (cpu_online(cpu) && xive_try_pick_target(cpu))
558 			return cpu;
559 		cpu = cpumask_next(cpu, mask);
560 		/* Wrap around */
561 		if (cpu >= nr_cpu_ids)
562 			cpu = cpumask_first(mask);
563 	} while (cpu != first);
564 
565 	return -1;
566 }
567 
568 /*
569  * Pick a target CPU for an interrupt. This is done at
570  * startup or if the affinity is changed in a way that
571  * invalidates the current target.
572  */
573 static int xive_pick_irq_target(struct irq_data *d,
574 				const struct cpumask *affinity)
575 {
576 	static unsigned int fuzz;
577 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
578 	cpumask_var_t mask;
579 	int cpu = -1;
580 
581 	/*
582 	 * If we have chip IDs, first we try to build a mask of
583 	 * CPUs matching the CPU and find a target in there
584 	 */
585 	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
586 		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
587 		/* Build a mask of matching chip IDs */
588 		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
589 			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
590 			if (xc->chip_id == xd->src_chip)
591 				cpumask_set_cpu(cpu, mask);
592 		}
593 		/* Try to find a target */
594 		if (cpumask_empty(mask))
595 			cpu = -1;
596 		else
597 			cpu = xive_find_target_in_mask(mask, fuzz++);
598 		free_cpumask_var(mask);
599 		if (cpu >= 0)
600 			return cpu;
601 		fuzz--;
602 	}
603 
604 	/* No chip IDs, fallback to using the affinity mask */
605 	return xive_find_target_in_mask(affinity, fuzz++);
606 }
607 
608 static unsigned int xive_irq_startup(struct irq_data *d)
609 {
610 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
611 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
612 	int target, rc;
613 
614 	xd->saved_p = false;
615 	xd->stale_p = false;
616 	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
617 		 d->irq, hw_irq, d);
618 
619 #ifdef CONFIG_PCI_MSI
620 	/*
621 	 * The generic MSI code returns with the interrupt disabled on the
622 	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
623 	 * at that level, so we do it here by hand.
624 	 */
625 	if (irq_data_get_msi_desc(d))
626 		pci_msi_unmask_irq(d);
627 #endif
628 
629 	/* Pick a target */
630 	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
631 	if (target == XIVE_INVALID_TARGET) {
632 		/* Try again breaking affinity */
633 		target = xive_pick_irq_target(d, cpu_online_mask);
634 		if (target == XIVE_INVALID_TARGET)
635 			return -ENXIO;
636 		pr_warn("irq %d started with broken affinity\n", d->irq);
637 	}
638 
639 	/* Sanity check */
640 	if (WARN_ON(target == XIVE_INVALID_TARGET ||
641 		    target >= nr_cpu_ids))
642 		target = smp_processor_id();
643 
644 	xd->target = target;
645 
646 	/*
647 	 * Configure the logical number to be the Linux IRQ number
648 	 * and set the target queue
649 	 */
650 	rc = xive_ops->configure_irq(hw_irq,
651 				     get_hard_smp_processor_id(target),
652 				     xive_irq_priority, d->irq);
653 	if (rc)
654 		return rc;
655 
656 	/* Unmask the ESB */
657 	xive_do_source_set_mask(xd, false);
658 
659 	return 0;
660 }
661 
662 /* called with irq descriptor lock held */
663 static void xive_irq_shutdown(struct irq_data *d)
664 {
665 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
666 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
667 
668 	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
669 		 d->irq, hw_irq, d);
670 
671 	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
672 		return;
673 
674 	/* Mask the interrupt at the source */
675 	xive_do_source_set_mask(xd, true);
676 
677 	/*
678 	 * Mask the interrupt in HW in the IVT/EAS and set the number
679 	 * to be the "bad" IRQ number
680 	 */
681 	xive_ops->configure_irq(hw_irq,
682 				get_hard_smp_processor_id(xd->target),
683 				0xff, XIVE_BAD_IRQ);
684 
685 	xive_dec_target_count(xd->target);
686 	xd->target = XIVE_INVALID_TARGET;
687 }
688 
689 static void xive_irq_unmask(struct irq_data *d)
690 {
691 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
692 
693 	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
694 
695 	xive_do_source_set_mask(xd, false);
696 }
697 
698 static void xive_irq_mask(struct irq_data *d)
699 {
700 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
701 
702 	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
703 
704 	xive_do_source_set_mask(xd, true);
705 }
706 
707 static int xive_irq_set_affinity(struct irq_data *d,
708 				 const struct cpumask *cpumask,
709 				 bool force)
710 {
711 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
712 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
713 	u32 target, old_target;
714 	int rc = 0;
715 
716 	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
717 
718 	/* Is this valid ? */
719 	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
720 		return -EINVAL;
721 
722 	/* Don't do anything if the interrupt isn't started */
723 	if (!irqd_is_started(d))
724 		return IRQ_SET_MASK_OK;
725 
726 	/*
727 	 * If existing target is already in the new mask, and is
728 	 * online then do nothing.
729 	 */
730 	if (xd->target != XIVE_INVALID_TARGET &&
731 	    cpu_online(xd->target) &&
732 	    cpumask_test_cpu(xd->target, cpumask))
733 		return IRQ_SET_MASK_OK;
734 
735 	/* Pick a new target */
736 	target = xive_pick_irq_target(d, cpumask);
737 
738 	/* No target found */
739 	if (target == XIVE_INVALID_TARGET)
740 		return -ENXIO;
741 
742 	/* Sanity check */
743 	if (WARN_ON(target >= nr_cpu_ids))
744 		target = smp_processor_id();
745 
746 	old_target = xd->target;
747 
748 	/*
749 	 * Only configure the irq if it's not currently passed-through to
750 	 * a KVM guest
751 	 */
752 	if (!irqd_is_forwarded_to_vcpu(d))
753 		rc = xive_ops->configure_irq(hw_irq,
754 					     get_hard_smp_processor_id(target),
755 					     xive_irq_priority, d->irq);
756 	if (rc < 0) {
757 		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
758 		return rc;
759 	}
760 
761 	pr_devel("  target: 0x%x\n", target);
762 	xd->target = target;
763 
764 	/* Give up previous target */
765 	if (old_target != XIVE_INVALID_TARGET)
766 	    xive_dec_target_count(old_target);
767 
768 	return IRQ_SET_MASK_OK;
769 }
770 
771 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
772 {
773 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
774 
775 	/*
776 	 * We only support these. This has really no effect other than setting
777 	 * the corresponding descriptor bits mind you but those will in turn
778 	 * affect the resend function when re-enabling an edge interrupt.
779 	 *
780 	 * Set set the default to edge as explained in map().
781 	 */
782 	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
783 		flow_type = IRQ_TYPE_EDGE_RISING;
784 
785 	if (flow_type != IRQ_TYPE_EDGE_RISING &&
786 	    flow_type != IRQ_TYPE_LEVEL_LOW)
787 		return -EINVAL;
788 
789 	irqd_set_trigger_type(d, flow_type);
790 
791 	/*
792 	 * Double check it matches what the FW thinks
793 	 *
794 	 * NOTE: We don't know yet if the PAPR interface will provide
795 	 * the LSI vs MSI information apart from the device-tree so
796 	 * this check might have to move into an optional backend call
797 	 * that is specific to the native backend
798 	 */
799 	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
800 	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
801 		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
802 			d->irq, (u32)irqd_to_hwirq(d),
803 			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
804 			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
805 	}
806 
807 	return IRQ_SET_MASK_OK_NOCOPY;
808 }
809 
810 static int xive_irq_retrigger(struct irq_data *d)
811 {
812 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
813 
814 	/* This should be only for MSIs */
815 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
816 		return 0;
817 
818 	/*
819 	 * To perform a retrigger, we first set the PQ bits to
820 	 * 11, then perform an EOI.
821 	 */
822 	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
823 	xive_do_source_eoi(xd);
824 
825 	return 1;
826 }
827 
828 /*
829  * Caller holds the irq descriptor lock, so this won't be called
830  * concurrently with xive_get_irqchip_state on the same interrupt.
831  */
832 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
833 {
834 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
835 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
836 	int rc;
837 	u8 pq;
838 
839 	/*
840 	 * This is called by KVM with state non-NULL for enabling
841 	 * pass-through or NULL for disabling it
842 	 */
843 	if (state) {
844 		irqd_set_forwarded_to_vcpu(d);
845 
846 		/* Set it to PQ=10 state to prevent further sends */
847 		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
848 		if (!xd->stale_p) {
849 			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
850 			xd->stale_p = !xd->saved_p;
851 		}
852 
853 		/* No target ? nothing to do */
854 		if (xd->target == XIVE_INVALID_TARGET) {
855 			/*
856 			 * An untargetted interrupt should have been
857 			 * also masked at the source
858 			 */
859 			WARN_ON(xd->saved_p);
860 
861 			return 0;
862 		}
863 
864 		/*
865 		 * If P was set, adjust state to PQ=11 to indicate
866 		 * that a resend is needed for the interrupt to reach
867 		 * the guest. Also remember the value of P.
868 		 *
869 		 * This also tells us that it's in flight to a host queue
870 		 * or has already been fetched but hasn't been EOIed yet
871 		 * by the host. This it's potentially using up a host
872 		 * queue slot. This is important to know because as long
873 		 * as this is the case, we must not hard-unmask it when
874 		 * "returning" that interrupt to the host.
875 		 *
876 		 * This saved_p is cleared by the host EOI, when we know
877 		 * for sure the queue slot is no longer in use.
878 		 */
879 		if (xd->saved_p) {
880 			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
881 
882 			/*
883 			 * Sync the XIVE source HW to ensure the interrupt
884 			 * has gone through the EAS before we change its
885 			 * target to the guest. That should guarantee us
886 			 * that we *will* eventually get an EOI for it on
887 			 * the host. Otherwise there would be a small window
888 			 * for P to be seen here but the interrupt going
889 			 * to the guest queue.
890 			 */
891 			if (xive_ops->sync_source)
892 				xive_ops->sync_source(hw_irq);
893 		}
894 	} else {
895 		irqd_clr_forwarded_to_vcpu(d);
896 
897 		/* No host target ? hard mask and return */
898 		if (xd->target == XIVE_INVALID_TARGET) {
899 			xive_do_source_set_mask(xd, true);
900 			return 0;
901 		}
902 
903 		/*
904 		 * Sync the XIVE source HW to ensure the interrupt
905 		 * has gone through the EAS before we change its
906 		 * target to the host.
907 		 */
908 		if (xive_ops->sync_source)
909 			xive_ops->sync_source(hw_irq);
910 
911 		/*
912 		 * By convention we are called with the interrupt in
913 		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
914 		 * have latched in Q whether there's a pending HW
915 		 * interrupt or not.
916 		 *
917 		 * First reconfigure the target.
918 		 */
919 		rc = xive_ops->configure_irq(hw_irq,
920 					     get_hard_smp_processor_id(xd->target),
921 					     xive_irq_priority, d->irq);
922 		if (rc)
923 			return rc;
924 
925 		/*
926 		 * Then if saved_p is not set, effectively re-enable the
927 		 * interrupt with an EOI. If it is set, we know there is
928 		 * still a message in a host queue somewhere that will be
929 		 * EOId eventually.
930 		 *
931 		 * Note: We don't check irqd_irq_disabled(). Effectively,
932 		 * we *will* let the irq get through even if masked if the
933 		 * HW is still firing it in order to deal with the whole
934 		 * saved_p business properly. If the interrupt triggers
935 		 * while masked, the generic code will re-mask it anyway.
936 		 */
937 		if (!xd->saved_p)
938 			xive_do_source_eoi(xd);
939 
940 	}
941 	return 0;
942 }
943 
944 /* Called with irq descriptor lock held. */
945 static int xive_get_irqchip_state(struct irq_data *data,
946 				  enum irqchip_irq_state which, bool *state)
947 {
948 	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
949 	u8 pq;
950 
951 	switch (which) {
952 	case IRQCHIP_STATE_ACTIVE:
953 		pq = xive_esb_read(xd, XIVE_ESB_GET);
954 
955 		/*
956 		 * The esb value being all 1's means we couldn't get
957 		 * the PQ state of the interrupt through mmio. It may
958 		 * happen, for example when querying a PHB interrupt
959 		 * while the PHB is in an error state. We consider the
960 		 * interrupt to be inactive in that case.
961 		 */
962 		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
963 			(xd->saved_p || !!(pq & XIVE_ESB_VAL_P));
964 		return 0;
965 	default:
966 		return -EINVAL;
967 	}
968 }
969 
970 static struct irq_chip xive_irq_chip = {
971 	.name = "XIVE-IRQ",
972 	.irq_startup = xive_irq_startup,
973 	.irq_shutdown = xive_irq_shutdown,
974 	.irq_eoi = xive_irq_eoi,
975 	.irq_mask = xive_irq_mask,
976 	.irq_unmask = xive_irq_unmask,
977 	.irq_set_affinity = xive_irq_set_affinity,
978 	.irq_set_type = xive_irq_set_type,
979 	.irq_retrigger = xive_irq_retrigger,
980 	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
981 	.irq_get_irqchip_state = xive_get_irqchip_state,
982 };
983 
984 bool is_xive_irq(struct irq_chip *chip)
985 {
986 	return chip == &xive_irq_chip;
987 }
988 EXPORT_SYMBOL_GPL(is_xive_irq);
989 
990 void xive_cleanup_irq_data(struct xive_irq_data *xd)
991 {
992 	if (xd->eoi_mmio) {
993 		iounmap(xd->eoi_mmio);
994 		if (xd->eoi_mmio == xd->trig_mmio)
995 			xd->trig_mmio = NULL;
996 		xd->eoi_mmio = NULL;
997 	}
998 	if (xd->trig_mmio) {
999 		iounmap(xd->trig_mmio);
1000 		xd->trig_mmio = NULL;
1001 	}
1002 }
1003 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1004 
1005 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1006 {
1007 	struct xive_irq_data *xd;
1008 	int rc;
1009 
1010 	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1011 	if (!xd)
1012 		return -ENOMEM;
1013 	rc = xive_ops->populate_irq_data(hw, xd);
1014 	if (rc) {
1015 		kfree(xd);
1016 		return rc;
1017 	}
1018 	xd->target = XIVE_INVALID_TARGET;
1019 	irq_set_handler_data(virq, xd);
1020 
1021 	/*
1022 	 * Turn OFF by default the interrupt being mapped. A side
1023 	 * effect of this check is the mapping the ESB page of the
1024 	 * interrupt in the Linux address space. This prevents page
1025 	 * fault issues in the crash handler which masks all
1026 	 * interrupts.
1027 	 */
1028 	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1029 
1030 	return 0;
1031 }
1032 
1033 static void xive_irq_free_data(unsigned int virq)
1034 {
1035 	struct xive_irq_data *xd = irq_get_handler_data(virq);
1036 
1037 	if (!xd)
1038 		return;
1039 	irq_set_handler_data(virq, NULL);
1040 	xive_cleanup_irq_data(xd);
1041 	kfree(xd);
1042 }
1043 
1044 #ifdef CONFIG_SMP
1045 
1046 static void xive_cause_ipi(int cpu)
1047 {
1048 	struct xive_cpu *xc;
1049 	struct xive_irq_data *xd;
1050 
1051 	xc = per_cpu(xive_cpu, cpu);
1052 
1053 	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1054 		    smp_processor_id(), cpu, xc->hw_ipi);
1055 
1056 	xd = &xc->ipi_data;
1057 	if (WARN_ON(!xd->trig_mmio))
1058 		return;
1059 	out_be64(xd->trig_mmio, 0);
1060 }
1061 
1062 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1063 {
1064 	return smp_ipi_demux();
1065 }
1066 
1067 static void xive_ipi_eoi(struct irq_data *d)
1068 {
1069 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1070 
1071 	/* Handle possible race with unplug and drop stale IPIs */
1072 	if (!xc)
1073 		return;
1074 
1075 	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1076 		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1077 
1078 	xive_do_source_eoi(&xc->ipi_data);
1079 	xive_do_queue_eoi(xc);
1080 }
1081 
1082 static void xive_ipi_do_nothing(struct irq_data *d)
1083 {
1084 	/*
1085 	 * Nothing to do, we never mask/unmask IPIs, but the callback
1086 	 * has to exist for the struct irq_chip.
1087 	 */
1088 }
1089 
1090 static struct irq_chip xive_ipi_chip = {
1091 	.name = "XIVE-IPI",
1092 	.irq_eoi = xive_ipi_eoi,
1093 	.irq_mask = xive_ipi_do_nothing,
1094 	.irq_unmask = xive_ipi_do_nothing,
1095 };
1096 
1097 /*
1098  * IPIs are marked per-cpu. We use separate HW interrupts under the
1099  * hood but associated with the same "linux" interrupt
1100  */
1101 struct xive_ipi_alloc_info {
1102 	irq_hw_number_t hwirq;
1103 };
1104 
1105 static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1106 				     unsigned int nr_irqs, void *arg)
1107 {
1108 	struct xive_ipi_alloc_info *info = arg;
1109 	int i;
1110 
1111 	for (i = 0; i < nr_irqs; i++) {
1112 		irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip,
1113 				    domain->host_data, handle_percpu_irq,
1114 				    NULL, NULL);
1115 	}
1116 	return 0;
1117 }
1118 
1119 static const struct irq_domain_ops xive_ipi_irq_domain_ops = {
1120 	.alloc  = xive_ipi_irq_domain_alloc,
1121 };
1122 
1123 static int __init xive_request_ipi(void)
1124 {
1125 	struct fwnode_handle *fwnode;
1126 	struct irq_domain *ipi_domain;
1127 	unsigned int node;
1128 	int ret = -ENOMEM;
1129 
1130 	fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI");
1131 	if (!fwnode)
1132 		goto out;
1133 
1134 	ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids,
1135 					      &xive_ipi_irq_domain_ops, NULL);
1136 	if (!ipi_domain)
1137 		goto out_free_fwnode;
1138 
1139 	xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL);
1140 	if (!xive_ipis)
1141 		goto out_free_domain;
1142 
1143 	for_each_node(node) {
1144 		struct xive_ipi_desc *xid = &xive_ipis[node];
1145 		struct xive_ipi_alloc_info info = { node };
1146 
1147 		/* Skip nodes without CPUs */
1148 		if (cpumask_empty(cpumask_of_node(node)))
1149 			continue;
1150 
1151 		/*
1152 		 * Map one IPI interrupt per node for all cpus of that node.
1153 		 * Since the HW interrupt number doesn't have any meaning,
1154 		 * simply use the node number.
1155 		 */
1156 		xid->irq = irq_domain_alloc_irqs(ipi_domain, 1, node, &info);
1157 		if (xid->irq < 0) {
1158 			ret = xid->irq;
1159 			goto out_free_xive_ipis;
1160 		}
1161 
1162 		snprintf(xid->name, sizeof(xid->name), "IPI-%d", node);
1163 
1164 		ret = request_irq(xid->irq, xive_muxed_ipi_action,
1165 				  IRQF_PERCPU | IRQF_NO_THREAD, xid->name, NULL);
1166 
1167 		WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret);
1168 	}
1169 
1170 	return ret;
1171 
1172 out_free_xive_ipis:
1173 	kfree(xive_ipis);
1174 out_free_domain:
1175 	irq_domain_remove(ipi_domain);
1176 out_free_fwnode:
1177 	irq_domain_free_fwnode(fwnode);
1178 out:
1179 	return ret;
1180 }
1181 
1182 static int xive_setup_cpu_ipi(unsigned int cpu)
1183 {
1184 	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1185 	struct xive_cpu *xc;
1186 	int rc;
1187 
1188 	pr_debug("Setting up IPI for CPU %d\n", cpu);
1189 
1190 	xc = per_cpu(xive_cpu, cpu);
1191 
1192 	/* Check if we are already setup */
1193 	if (xc->hw_ipi != XIVE_BAD_IRQ)
1194 		return 0;
1195 
1196 	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1197 	if (xive_ops->get_ipi(cpu, xc))
1198 		return -EIO;
1199 
1200 	/*
1201 	 * Populate the IRQ data in the xive_cpu structure and
1202 	 * configure the HW / enable the IPIs.
1203 	 */
1204 	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1205 	if (rc) {
1206 		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1207 		return -EIO;
1208 	}
1209 	rc = xive_ops->configure_irq(xc->hw_ipi,
1210 				     get_hard_smp_processor_id(cpu),
1211 				     xive_irq_priority, xive_ipi_irq);
1212 	if (rc) {
1213 		pr_err("Failed to map IPI CPU %d\n", cpu);
1214 		return -EIO;
1215 	}
1216 	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1217 	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1218 
1219 	/* Unmask it */
1220 	xive_do_source_set_mask(&xc->ipi_data, false);
1221 
1222 	return 0;
1223 }
1224 
1225 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1226 {
1227 	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1228 
1229 	/* Disable the IPI and free the IRQ data */
1230 
1231 	/* Already cleaned up ? */
1232 	if (xc->hw_ipi == XIVE_BAD_IRQ)
1233 		return;
1234 
1235 	/* Mask the IPI */
1236 	xive_do_source_set_mask(&xc->ipi_data, true);
1237 
1238 	/*
1239 	 * Note: We don't call xive_cleanup_irq_data() to free
1240 	 * the mappings as this is called from an IPI on kexec
1241 	 * which is not a safe environment to call iounmap()
1242 	 */
1243 
1244 	/* Deconfigure/mask in the backend */
1245 	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1246 				0xff, xive_ipi_irq);
1247 
1248 	/* Free the IPIs in the backend */
1249 	xive_ops->put_ipi(cpu, xc);
1250 }
1251 
1252 void __init xive_smp_probe(void)
1253 {
1254 	smp_ops->cause_ipi = xive_cause_ipi;
1255 
1256 	/* Register the IPI */
1257 	xive_request_ipi();
1258 
1259 	/* Allocate and setup IPI for the boot CPU */
1260 	xive_setup_cpu_ipi(smp_processor_id());
1261 }
1262 
1263 #endif /* CONFIG_SMP */
1264 
1265 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1266 			       irq_hw_number_t hw)
1267 {
1268 	int rc;
1269 
1270 	/*
1271 	 * Mark interrupts as edge sensitive by default so that resend
1272 	 * actually works. Will fix that up below if needed.
1273 	 */
1274 	irq_clear_status_flags(virq, IRQ_LEVEL);
1275 
1276 	rc = xive_irq_alloc_data(virq, hw);
1277 	if (rc)
1278 		return rc;
1279 
1280 	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1281 
1282 	return 0;
1283 }
1284 
1285 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1286 {
1287 	xive_irq_free_data(virq);
1288 }
1289 
1290 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1291 				 const u32 *intspec, unsigned int intsize,
1292 				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1293 
1294 {
1295 	*out_hwirq = intspec[0];
1296 
1297 	/*
1298 	 * If intsize is at least 2, we look for the type in the second cell,
1299 	 * we assume the LSB indicates a level interrupt.
1300 	 */
1301 	if (intsize > 1) {
1302 		if (intspec[1] & 1)
1303 			*out_flags = IRQ_TYPE_LEVEL_LOW;
1304 		else
1305 			*out_flags = IRQ_TYPE_EDGE_RISING;
1306 	} else
1307 		*out_flags = IRQ_TYPE_LEVEL_LOW;
1308 
1309 	return 0;
1310 }
1311 
1312 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1313 				 enum irq_domain_bus_token bus_token)
1314 {
1315 	return xive_ops->match(node);
1316 }
1317 
1318 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1319 static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1320 
1321 static const struct {
1322 	u64  mask;
1323 	char *name;
1324 } xive_irq_flags[] = {
1325 	{ XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1326 	{ XIVE_IRQ_FLAG_LSI,       "LSI"       },
1327 	{ XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1328 	{ XIVE_IRQ_FLAG_NO_EOI,    "NO_EOI"    },
1329 };
1330 
1331 static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1332 				       struct irq_data *irqd, int ind)
1333 {
1334 	struct xive_irq_data *xd;
1335 	u64 val;
1336 	int i;
1337 
1338 	/* No IRQ domain level information. To be done */
1339 	if (!irqd)
1340 		return;
1341 
1342 	if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1343 		return;
1344 
1345 	seq_printf(m, "%*sXIVE:\n", ind, "");
1346 	ind++;
1347 
1348 	xd = irq_data_get_irq_handler_data(irqd);
1349 	if (!xd) {
1350 		seq_printf(m, "%*snot assigned\n", ind, "");
1351 		return;
1352 	}
1353 
1354 	val = xive_esb_read(xd, XIVE_ESB_GET);
1355 	seq_printf(m, "%*sESB:      %s\n", ind, "", esb_names[val & 0x3]);
1356 	seq_printf(m, "%*sPstate:   %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1357 		   xd->saved_p ? "saved" : "");
1358 	seq_printf(m, "%*sTarget:   %d\n", ind, "", xd->target);
1359 	seq_printf(m, "%*sChip:     %d\n", ind, "", xd->src_chip);
1360 	seq_printf(m, "%*sTrigger:  0x%016llx\n", ind, "", xd->trig_page);
1361 	seq_printf(m, "%*sEOI:      0x%016llx\n", ind, "", xd->eoi_page);
1362 	seq_printf(m, "%*sFlags:    0x%llx\n", ind, "", xd->flags);
1363 	for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1364 		if (xd->flags & xive_irq_flags[i].mask)
1365 			seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1366 	}
1367 }
1368 #endif
1369 
1370 static const struct irq_domain_ops xive_irq_domain_ops = {
1371 	.match = xive_irq_domain_match,
1372 	.map = xive_irq_domain_map,
1373 	.unmap = xive_irq_domain_unmap,
1374 	.xlate = xive_irq_domain_xlate,
1375 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1376 	.debug_show = xive_irq_domain_debug_show,
1377 #endif
1378 };
1379 
1380 static void __init xive_init_host(struct device_node *np)
1381 {
1382 	xive_irq_domain = irq_domain_add_nomap(np, XIVE_MAX_IRQ,
1383 					       &xive_irq_domain_ops, NULL);
1384 	if (WARN_ON(xive_irq_domain == NULL))
1385 		return;
1386 	irq_set_default_host(xive_irq_domain);
1387 }
1388 
1389 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1390 {
1391 	if (xc->queue[xive_irq_priority].qpage)
1392 		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1393 }
1394 
1395 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1396 {
1397 	int rc = 0;
1398 
1399 	/* We setup 1 queues for now with a 64k page */
1400 	if (!xc->queue[xive_irq_priority].qpage)
1401 		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1402 
1403 	return rc;
1404 }
1405 
1406 static int xive_prepare_cpu(unsigned int cpu)
1407 {
1408 	struct xive_cpu *xc;
1409 
1410 	xc = per_cpu(xive_cpu, cpu);
1411 	if (!xc) {
1412 		xc = kzalloc_node(sizeof(struct xive_cpu),
1413 				  GFP_KERNEL, cpu_to_node(cpu));
1414 		if (!xc)
1415 			return -ENOMEM;
1416 		xc->hw_ipi = XIVE_BAD_IRQ;
1417 		xc->chip_id = XIVE_INVALID_CHIP_ID;
1418 		if (xive_ops->prepare_cpu)
1419 			xive_ops->prepare_cpu(cpu, xc);
1420 
1421 		per_cpu(xive_cpu, cpu) = xc;
1422 	}
1423 
1424 	/* Setup EQs if not already */
1425 	return xive_setup_cpu_queues(cpu, xc);
1426 }
1427 
1428 static void xive_setup_cpu(void)
1429 {
1430 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1431 
1432 	/* The backend might have additional things to do */
1433 	if (xive_ops->setup_cpu)
1434 		xive_ops->setup_cpu(smp_processor_id(), xc);
1435 
1436 	/* Set CPPR to 0xff to enable flow of interrupts */
1437 	xc->cppr = 0xff;
1438 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1439 }
1440 
1441 #ifdef CONFIG_SMP
1442 void xive_smp_setup_cpu(void)
1443 {
1444 	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1445 
1446 	/* This will have already been done on the boot CPU */
1447 	if (smp_processor_id() != boot_cpuid)
1448 		xive_setup_cpu();
1449 
1450 }
1451 
1452 int xive_smp_prepare_cpu(unsigned int cpu)
1453 {
1454 	int rc;
1455 
1456 	/* Allocate per-CPU data and queues */
1457 	rc = xive_prepare_cpu(cpu);
1458 	if (rc)
1459 		return rc;
1460 
1461 	/* Allocate and setup IPI for the new CPU */
1462 	return xive_setup_cpu_ipi(cpu);
1463 }
1464 
1465 #ifdef CONFIG_HOTPLUG_CPU
1466 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1467 {
1468 	u32 irq;
1469 
1470 	/* We assume local irqs are disabled */
1471 	WARN_ON(!irqs_disabled());
1472 
1473 	/* Check what's already in the CPU queue */
1474 	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1475 		/*
1476 		 * We need to re-route that interrupt to its new destination.
1477 		 * First get and lock the descriptor
1478 		 */
1479 		struct irq_desc *desc = irq_to_desc(irq);
1480 		struct irq_data *d = irq_desc_get_irq_data(desc);
1481 		struct xive_irq_data *xd;
1482 
1483 		/*
1484 		 * Ignore anything that isn't a XIVE irq and ignore
1485 		 * IPIs, so can just be dropped.
1486 		 */
1487 		if (d->domain != xive_irq_domain)
1488 			continue;
1489 
1490 		/*
1491 		 * The IRQ should have already been re-routed, it's just a
1492 		 * stale in the old queue, so re-trigger it in order to make
1493 		 * it reach is new destination.
1494 		 */
1495 #ifdef DEBUG_FLUSH
1496 		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1497 			cpu, irq);
1498 #endif
1499 		raw_spin_lock(&desc->lock);
1500 		xd = irq_desc_get_handler_data(desc);
1501 
1502 		/*
1503 		 * Clear saved_p to indicate that it's no longer pending
1504 		 */
1505 		xd->saved_p = false;
1506 
1507 		/*
1508 		 * For LSIs, we EOI, this will cause a resend if it's
1509 		 * still asserted. Otherwise do an MSI retrigger.
1510 		 */
1511 		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1512 			xive_do_source_eoi(xd);
1513 		else
1514 			xive_irq_retrigger(d);
1515 
1516 		raw_spin_unlock(&desc->lock);
1517 	}
1518 }
1519 
1520 void xive_smp_disable_cpu(void)
1521 {
1522 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1523 	unsigned int cpu = smp_processor_id();
1524 
1525 	/* Migrate interrupts away from the CPU */
1526 	irq_migrate_all_off_this_cpu();
1527 
1528 	/* Set CPPR to 0 to disable flow of interrupts */
1529 	xc->cppr = 0;
1530 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1531 
1532 	/* Flush everything still in the queue */
1533 	xive_flush_cpu_queue(cpu, xc);
1534 
1535 	/* Re-enable CPPR  */
1536 	xc->cppr = 0xff;
1537 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1538 }
1539 
1540 void xive_flush_interrupt(void)
1541 {
1542 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1543 	unsigned int cpu = smp_processor_id();
1544 
1545 	/* Called if an interrupt occurs while the CPU is hot unplugged */
1546 	xive_flush_cpu_queue(cpu, xc);
1547 }
1548 
1549 #endif /* CONFIG_HOTPLUG_CPU */
1550 
1551 #endif /* CONFIG_SMP */
1552 
1553 void xive_teardown_cpu(void)
1554 {
1555 	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1556 	unsigned int cpu = smp_processor_id();
1557 
1558 	/* Set CPPR to 0 to disable flow of interrupts */
1559 	xc->cppr = 0;
1560 	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1561 
1562 	if (xive_ops->teardown_cpu)
1563 		xive_ops->teardown_cpu(cpu, xc);
1564 
1565 #ifdef CONFIG_SMP
1566 	/* Get rid of IPI */
1567 	xive_cleanup_cpu_ipi(cpu, xc);
1568 #endif
1569 
1570 	/* Disable and free the queues */
1571 	xive_cleanup_cpu_queues(cpu, xc);
1572 }
1573 
1574 void xive_shutdown(void)
1575 {
1576 	xive_ops->shutdown();
1577 }
1578 
1579 bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1580 			   void __iomem *area, u32 offset, u8 max_prio)
1581 {
1582 	xive_tima = area;
1583 	xive_tima_offset = offset;
1584 	xive_ops = ops;
1585 	xive_irq_priority = max_prio;
1586 
1587 	ppc_md.get_irq = xive_get_irq;
1588 	__xive_enabled = true;
1589 
1590 	pr_devel("Initializing host..\n");
1591 	xive_init_host(np);
1592 
1593 	pr_devel("Initializing boot CPU..\n");
1594 
1595 	/* Allocate per-CPU data and queues */
1596 	xive_prepare_cpu(smp_processor_id());
1597 
1598 	/* Get ready for interrupts */
1599 	xive_setup_cpu();
1600 
1601 	pr_info("Interrupt handling initialized with %s backend\n",
1602 		xive_ops->name);
1603 	pr_info("Using priority %d for all interrupts\n", max_prio);
1604 
1605 	return true;
1606 }
1607 
1608 __be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1609 {
1610 	unsigned int alloc_order;
1611 	struct page *pages;
1612 	__be32 *qpage;
1613 
1614 	alloc_order = xive_alloc_order(queue_shift);
1615 	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1616 	if (!pages)
1617 		return ERR_PTR(-ENOMEM);
1618 	qpage = (__be32 *)page_address(pages);
1619 	memset(qpage, 0, 1 << queue_shift);
1620 
1621 	return qpage;
1622 }
1623 
1624 static int __init xive_off(char *arg)
1625 {
1626 	xive_cmdline_disabled = true;
1627 	return 0;
1628 }
1629 __setup("xive=off", xive_off);
1630 
1631 static void xive_debug_show_cpu(struct seq_file *m, int cpu)
1632 {
1633 	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1634 
1635 	seq_printf(m, "CPU %d:", cpu);
1636 	if (xc) {
1637 		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1638 
1639 #ifdef CONFIG_SMP
1640 		{
1641 			u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
1642 
1643 			seq_printf(m, "IPI=0x%08x PQ=%c%c ", xc->hw_ipi,
1644 				   val & XIVE_ESB_VAL_P ? 'P' : '-',
1645 				   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1646 		}
1647 #endif
1648 		{
1649 			struct xive_q *q = &xc->queue[xive_irq_priority];
1650 			u32 i0, i1, idx;
1651 
1652 			if (q->qpage) {
1653 				idx = q->idx;
1654 				i0 = be32_to_cpup(q->qpage + idx);
1655 				idx = (idx + 1) & q->msk;
1656 				i1 = be32_to_cpup(q->qpage + idx);
1657 				seq_printf(m, "EQ idx=%d T=%d %08x %08x ...",
1658 					   q->idx, q->toggle, i0, i1);
1659 			}
1660 		}
1661 	}
1662 	seq_puts(m, "\n");
1663 }
1664 
1665 static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d)
1666 {
1667 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1668 	int rc;
1669 	u32 target;
1670 	u8 prio;
1671 	u32 lirq;
1672 	struct xive_irq_data *xd;
1673 	u64 val;
1674 
1675 	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1676 	if (rc) {
1677 		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1678 		return;
1679 	}
1680 
1681 	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1682 		   hw_irq, target, prio, lirq);
1683 
1684 	xd = irq_data_get_irq_handler_data(d);
1685 	val = xive_esb_read(xd, XIVE_ESB_GET);
1686 	seq_printf(m, "flags=%c%c%c PQ=%c%c",
1687 		   xd->flags & XIVE_IRQ_FLAG_STORE_EOI ? 'S' : ' ',
1688 		   xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
1689 		   xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
1690 		   val & XIVE_ESB_VAL_P ? 'P' : '-',
1691 		   val & XIVE_ESB_VAL_Q ? 'Q' : '-');
1692 	seq_puts(m, "\n");
1693 }
1694 
1695 static int xive_core_debug_show(struct seq_file *m, void *private)
1696 {
1697 	unsigned int i;
1698 	struct irq_desc *desc;
1699 	int cpu;
1700 
1701 	if (xive_ops->debug_show)
1702 		xive_ops->debug_show(m, private);
1703 
1704 	for_each_possible_cpu(cpu)
1705 		xive_debug_show_cpu(m, cpu);
1706 
1707 	for_each_irq_desc(i, desc) {
1708 		struct irq_data *d = irq_desc_get_irq_data(desc);
1709 
1710 		if (d->domain == xive_irq_domain)
1711 			xive_debug_show_irq(m, d);
1712 	}
1713 	return 0;
1714 }
1715 DEFINE_SHOW_ATTRIBUTE(xive_core_debug);
1716 
1717 int xive_core_debug_init(void)
1718 {
1719 	if (xive_enabled())
1720 		debugfs_create_file("xive", 0400, powerpc_debugfs_root,
1721 				    NULL, &xive_core_debug_fops);
1722 	return 0;
1723 }
1724