xref: /openbmc/linux/arch/powerpc/platforms/pseries/lpar.c (revision 641e969114c781ff269e1bf1b1f8d3cc33bc4a1a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries_lpar.c
4  * Copyright (C) 2001 Todd Inglett, IBM Corporation
5  *
6  * pSeries LPAR support.
7  */
8 
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <linux/debugfs.h>
26 
27 #include <asm/processor.h>
28 #include <asm/mmu.h>
29 #include <asm/page.h>
30 #include <asm/setup.h>
31 #include <asm/mmu_context.h>
32 #include <asm/iommu.h>
33 #include <asm/tlb.h>
34 #include <asm/cputable.h>
35 #include <asm/papr-sysparm.h>
36 #include <asm/udbg.h>
37 #include <asm/smp.h>
38 #include <asm/trace.h>
39 #include <asm/firmware.h>
40 #include <asm/plpar_wrappers.h>
41 #include <asm/kexec.h>
42 #include <asm/fadump.h>
43 #include <asm/dtl.h>
44 #include <asm/vphn.h>
45 
46 #include "pseries.h"
47 
48 /* Flag bits for H_BULK_REMOVE */
49 #define HBR_REQUEST	0x4000000000000000UL
50 #define HBR_RESPONSE	0x8000000000000000UL
51 #define HBR_END		0xc000000000000000UL
52 #define HBR_AVPN	0x0200000000000000UL
53 #define HBR_ANDCOND	0x0100000000000000UL
54 
55 
56 /* in hvCall.S */
57 EXPORT_SYMBOL(plpar_hcall);
58 EXPORT_SYMBOL(plpar_hcall9);
59 EXPORT_SYMBOL(plpar_hcall_norets);
60 
61 #ifdef CONFIG_PPC_64S_HASH_MMU
62 /*
63  * H_BLOCK_REMOVE supported block size for this page size in segment who's base
64  * page size is that page size.
65  *
66  * The first index is the segment base page size, the second one is the actual
67  * page size.
68  */
69 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
70 #endif
71 
72 /*
73  * Due to the involved complexity, and that the current hypervisor is only
74  * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
75  * buffer size to 8 size block.
76  */
77 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
78 
79 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
80 static u8 dtl_mask = DTL_LOG_PREEMPT;
81 #else
82 static u8 dtl_mask;
83 #endif
84 
85 void alloc_dtl_buffers(unsigned long *time_limit)
86 {
87 	int cpu;
88 	struct paca_struct *pp;
89 	struct dtl_entry *dtl;
90 
91 	for_each_possible_cpu(cpu) {
92 		pp = paca_ptrs[cpu];
93 		if (pp->dispatch_log)
94 			continue;
95 		dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
96 		if (!dtl) {
97 			pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
98 				cpu);
99 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
100 			pr_warn("Stolen time statistics will be unreliable\n");
101 #endif
102 			break;
103 		}
104 
105 		pp->dtl_ridx = 0;
106 		pp->dispatch_log = dtl;
107 		pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
108 		pp->dtl_curr = dtl;
109 
110 		if (time_limit && time_after(jiffies, *time_limit)) {
111 			cond_resched();
112 			*time_limit = jiffies + HZ;
113 		}
114 	}
115 }
116 
117 void register_dtl_buffer(int cpu)
118 {
119 	long ret;
120 	struct paca_struct *pp;
121 	struct dtl_entry *dtl;
122 	int hwcpu = get_hard_smp_processor_id(cpu);
123 
124 	pp = paca_ptrs[cpu];
125 	dtl = pp->dispatch_log;
126 	if (dtl && dtl_mask) {
127 		pp->dtl_ridx = 0;
128 		pp->dtl_curr = dtl;
129 		lppaca_of(cpu).dtl_idx = 0;
130 
131 		/* hypervisor reads buffer length from this field */
132 		dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
133 		ret = register_dtl(hwcpu, __pa(dtl));
134 		if (ret)
135 			pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
136 			       cpu, hwcpu, ret);
137 
138 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
139 	}
140 }
141 
142 #ifdef CONFIG_PPC_SPLPAR
143 struct dtl_worker {
144 	struct delayed_work work;
145 	int cpu;
146 };
147 
148 struct vcpu_dispatch_data {
149 	int last_disp_cpu;
150 
151 	int total_disp;
152 
153 	int same_cpu_disp;
154 	int same_chip_disp;
155 	int diff_chip_disp;
156 	int far_chip_disp;
157 
158 	int numa_home_disp;
159 	int numa_remote_disp;
160 	int numa_far_disp;
161 };
162 
163 /*
164  * This represents the number of cpus in the hypervisor. Since there is no
165  * architected way to discover the number of processors in the host, we
166  * provision for dealing with NR_CPUS. This is currently 2048 by default, and
167  * is sufficient for our purposes. This will need to be tweaked if
168  * CONFIG_NR_CPUS is changed.
169  */
170 #define NR_CPUS_H	NR_CPUS
171 
172 DEFINE_RWLOCK(dtl_access_lock);
173 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
174 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
175 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
176 static enum cpuhp_state dtl_worker_state;
177 static DEFINE_MUTEX(dtl_enable_mutex);
178 static int vcpudispatch_stats_on __read_mostly;
179 static int vcpudispatch_stats_freq = 50;
180 static __be32 *vcpu_associativity, *pcpu_associativity;
181 
182 
183 static void free_dtl_buffers(unsigned long *time_limit)
184 {
185 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
186 	int cpu;
187 	struct paca_struct *pp;
188 
189 	for_each_possible_cpu(cpu) {
190 		pp = paca_ptrs[cpu];
191 		if (!pp->dispatch_log)
192 			continue;
193 		kmem_cache_free(dtl_cache, pp->dispatch_log);
194 		pp->dtl_ridx = 0;
195 		pp->dispatch_log = 0;
196 		pp->dispatch_log_end = 0;
197 		pp->dtl_curr = 0;
198 
199 		if (time_limit && time_after(jiffies, *time_limit)) {
200 			cond_resched();
201 			*time_limit = jiffies + HZ;
202 		}
203 	}
204 #endif
205 }
206 
207 static int init_cpu_associativity(void)
208 {
209 	vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
210 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
211 	pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
212 			VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
213 
214 	if (!vcpu_associativity || !pcpu_associativity) {
215 		pr_err("error allocating memory for associativity information\n");
216 		return -ENOMEM;
217 	}
218 
219 	return 0;
220 }
221 
222 static void destroy_cpu_associativity(void)
223 {
224 	kfree(vcpu_associativity);
225 	kfree(pcpu_associativity);
226 	vcpu_associativity = pcpu_associativity = 0;
227 }
228 
229 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
230 {
231 	__be32 *assoc;
232 	int rc = 0;
233 
234 	assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
235 	if (!assoc[0]) {
236 		rc = hcall_vphn(cpu, flag, &assoc[0]);
237 		if (rc)
238 			return NULL;
239 	}
240 
241 	return assoc;
242 }
243 
244 static __be32 *get_pcpu_associativity(int cpu)
245 {
246 	return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
247 }
248 
249 static __be32 *get_vcpu_associativity(int cpu)
250 {
251 	return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
252 }
253 
254 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
255 {
256 	__be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
257 
258 	if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
259 		return -EINVAL;
260 
261 	last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
262 	cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
263 
264 	if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
265 		return -EIO;
266 
267 	return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
268 }
269 
270 static int cpu_home_node_dispatch_distance(int disp_cpu)
271 {
272 	__be32 *disp_cpu_assoc, *vcpu_assoc;
273 	int vcpu_id = smp_processor_id();
274 
275 	if (disp_cpu >= NR_CPUS_H) {
276 		pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
277 						disp_cpu, NR_CPUS_H);
278 		return -EINVAL;
279 	}
280 
281 	disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
282 	vcpu_assoc = get_vcpu_associativity(vcpu_id);
283 
284 	if (!disp_cpu_assoc || !vcpu_assoc)
285 		return -EIO;
286 
287 	return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
288 }
289 
290 static void update_vcpu_disp_stat(int disp_cpu)
291 {
292 	struct vcpu_dispatch_data *disp;
293 	int distance;
294 
295 	disp = this_cpu_ptr(&vcpu_disp_data);
296 	if (disp->last_disp_cpu == -1) {
297 		disp->last_disp_cpu = disp_cpu;
298 		return;
299 	}
300 
301 	disp->total_disp++;
302 
303 	if (disp->last_disp_cpu == disp_cpu ||
304 		(cpu_first_thread_sibling(disp->last_disp_cpu) ==
305 					cpu_first_thread_sibling(disp_cpu)))
306 		disp->same_cpu_disp++;
307 	else {
308 		distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
309 								disp_cpu);
310 		if (distance < 0)
311 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
312 					smp_processor_id());
313 		else {
314 			switch (distance) {
315 			case 0:
316 				disp->same_chip_disp++;
317 				break;
318 			case 1:
319 				disp->diff_chip_disp++;
320 				break;
321 			case 2:
322 				disp->far_chip_disp++;
323 				break;
324 			default:
325 				pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
326 						 smp_processor_id(),
327 						 disp->last_disp_cpu,
328 						 disp_cpu,
329 						 distance);
330 			}
331 		}
332 	}
333 
334 	distance = cpu_home_node_dispatch_distance(disp_cpu);
335 	if (distance < 0)
336 		pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
337 				smp_processor_id());
338 	else {
339 		switch (distance) {
340 		case 0:
341 			disp->numa_home_disp++;
342 			break;
343 		case 1:
344 			disp->numa_remote_disp++;
345 			break;
346 		case 2:
347 			disp->numa_far_disp++;
348 			break;
349 		default:
350 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
351 						 smp_processor_id(),
352 						 disp_cpu,
353 						 distance);
354 		}
355 	}
356 
357 	disp->last_disp_cpu = disp_cpu;
358 }
359 
360 static void process_dtl_buffer(struct work_struct *work)
361 {
362 	struct dtl_entry dtle;
363 	u64 i = __this_cpu_read(dtl_entry_ridx);
364 	struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
365 	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
366 	struct lppaca *vpa = local_paca->lppaca_ptr;
367 	struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
368 
369 	if (!local_paca->dispatch_log)
370 		return;
371 
372 	/* if we have been migrated away, we cancel ourself */
373 	if (d->cpu != smp_processor_id()) {
374 		pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
375 						smp_processor_id());
376 		return;
377 	}
378 
379 	if (i == be64_to_cpu(vpa->dtl_idx))
380 		goto out;
381 
382 	while (i < be64_to_cpu(vpa->dtl_idx)) {
383 		dtle = *dtl;
384 		barrier();
385 		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
386 			/* buffer has overflowed */
387 			pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
388 				d->cpu,
389 				be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
390 			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
391 			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
392 			continue;
393 		}
394 		update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
395 		++i;
396 		++dtl;
397 		if (dtl == dtl_end)
398 			dtl = local_paca->dispatch_log;
399 	}
400 
401 	__this_cpu_write(dtl_entry_ridx, i);
402 
403 out:
404 	schedule_delayed_work_on(d->cpu, to_delayed_work(work),
405 					HZ / vcpudispatch_stats_freq);
406 }
407 
408 static int dtl_worker_online(unsigned int cpu)
409 {
410 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
411 
412 	memset(d, 0, sizeof(*d));
413 	INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
414 	d->cpu = cpu;
415 
416 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
417 	per_cpu(dtl_entry_ridx, cpu) = 0;
418 	register_dtl_buffer(cpu);
419 #else
420 	per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
421 #endif
422 
423 	schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
424 	return 0;
425 }
426 
427 static int dtl_worker_offline(unsigned int cpu)
428 {
429 	struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
430 
431 	cancel_delayed_work_sync(&d->work);
432 
433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
434 	unregister_dtl(get_hard_smp_processor_id(cpu));
435 #endif
436 
437 	return 0;
438 }
439 
440 static void set_global_dtl_mask(u8 mask)
441 {
442 	int cpu;
443 
444 	dtl_mask = mask;
445 	for_each_present_cpu(cpu)
446 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
447 }
448 
449 static void reset_global_dtl_mask(void)
450 {
451 	int cpu;
452 
453 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
454 	dtl_mask = DTL_LOG_PREEMPT;
455 #else
456 	dtl_mask = 0;
457 #endif
458 	for_each_present_cpu(cpu)
459 		lppaca_of(cpu).dtl_enable_mask = dtl_mask;
460 }
461 
462 static int dtl_worker_enable(unsigned long *time_limit)
463 {
464 	int rc = 0, state;
465 
466 	if (!write_trylock(&dtl_access_lock)) {
467 		rc = -EBUSY;
468 		goto out;
469 	}
470 
471 	set_global_dtl_mask(DTL_LOG_ALL);
472 
473 	/* Setup dtl buffers and register those */
474 	alloc_dtl_buffers(time_limit);
475 
476 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
477 					dtl_worker_online, dtl_worker_offline);
478 	if (state < 0) {
479 		pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
480 		free_dtl_buffers(time_limit);
481 		reset_global_dtl_mask();
482 		write_unlock(&dtl_access_lock);
483 		rc = -EINVAL;
484 		goto out;
485 	}
486 	dtl_worker_state = state;
487 
488 out:
489 	return rc;
490 }
491 
492 static void dtl_worker_disable(unsigned long *time_limit)
493 {
494 	cpuhp_remove_state(dtl_worker_state);
495 	free_dtl_buffers(time_limit);
496 	reset_global_dtl_mask();
497 	write_unlock(&dtl_access_lock);
498 }
499 
500 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
501 		size_t count, loff_t *ppos)
502 {
503 	unsigned long time_limit = jiffies + HZ;
504 	struct vcpu_dispatch_data *disp;
505 	int rc, cmd, cpu;
506 	char buf[16];
507 
508 	if (count > 15)
509 		return -EINVAL;
510 
511 	if (copy_from_user(buf, p, count))
512 		return -EFAULT;
513 
514 	buf[count] = 0;
515 	rc = kstrtoint(buf, 0, &cmd);
516 	if (rc || cmd < 0 || cmd > 1) {
517 		pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
518 		return rc ? rc : -EINVAL;
519 	}
520 
521 	mutex_lock(&dtl_enable_mutex);
522 
523 	if ((cmd == 0 && !vcpudispatch_stats_on) ||
524 			(cmd == 1 && vcpudispatch_stats_on))
525 		goto out;
526 
527 	if (cmd) {
528 		rc = init_cpu_associativity();
529 		if (rc)
530 			goto out;
531 
532 		for_each_possible_cpu(cpu) {
533 			disp = per_cpu_ptr(&vcpu_disp_data, cpu);
534 			memset(disp, 0, sizeof(*disp));
535 			disp->last_disp_cpu = -1;
536 		}
537 
538 		rc = dtl_worker_enable(&time_limit);
539 		if (rc) {
540 			destroy_cpu_associativity();
541 			goto out;
542 		}
543 	} else {
544 		dtl_worker_disable(&time_limit);
545 		destroy_cpu_associativity();
546 	}
547 
548 	vcpudispatch_stats_on = cmd;
549 
550 out:
551 	mutex_unlock(&dtl_enable_mutex);
552 	if (rc)
553 		return rc;
554 	return count;
555 }
556 
557 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
558 {
559 	int cpu;
560 	struct vcpu_dispatch_data *disp;
561 
562 	if (!vcpudispatch_stats_on) {
563 		seq_puts(p, "off\n");
564 		return 0;
565 	}
566 
567 	for_each_online_cpu(cpu) {
568 		disp = per_cpu_ptr(&vcpu_disp_data, cpu);
569 		seq_printf(p, "cpu%d", cpu);
570 		seq_put_decimal_ull(p, " ", disp->total_disp);
571 		seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
572 		seq_put_decimal_ull(p, " ", disp->same_chip_disp);
573 		seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
574 		seq_put_decimal_ull(p, " ", disp->far_chip_disp);
575 		seq_put_decimal_ull(p, " ", disp->numa_home_disp);
576 		seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
577 		seq_put_decimal_ull(p, " ", disp->numa_far_disp);
578 		seq_puts(p, "\n");
579 	}
580 
581 	return 0;
582 }
583 
584 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
585 {
586 	return single_open(file, vcpudispatch_stats_display, NULL);
587 }
588 
589 static const struct proc_ops vcpudispatch_stats_proc_ops = {
590 	.proc_open	= vcpudispatch_stats_open,
591 	.proc_read	= seq_read,
592 	.proc_write	= vcpudispatch_stats_write,
593 	.proc_lseek	= seq_lseek,
594 	.proc_release	= single_release,
595 };
596 
597 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
598 		const char __user *p, size_t count, loff_t *ppos)
599 {
600 	int rc, freq;
601 	char buf[16];
602 
603 	if (count > 15)
604 		return -EINVAL;
605 
606 	if (copy_from_user(buf, p, count))
607 		return -EFAULT;
608 
609 	buf[count] = 0;
610 	rc = kstrtoint(buf, 0, &freq);
611 	if (rc || freq < 1 || freq > HZ) {
612 		pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
613 				HZ);
614 		return rc ? rc : -EINVAL;
615 	}
616 
617 	vcpudispatch_stats_freq = freq;
618 
619 	return count;
620 }
621 
622 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
623 {
624 	seq_printf(p, "%d\n", vcpudispatch_stats_freq);
625 	return 0;
626 }
627 
628 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
629 {
630 	return single_open(file, vcpudispatch_stats_freq_display, NULL);
631 }
632 
633 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
634 	.proc_open	= vcpudispatch_stats_freq_open,
635 	.proc_read	= seq_read,
636 	.proc_write	= vcpudispatch_stats_freq_write,
637 	.proc_lseek	= seq_lseek,
638 	.proc_release	= single_release,
639 };
640 
641 static int __init vcpudispatch_stats_procfs_init(void)
642 {
643 	if (!lppaca_shared_proc())
644 		return 0;
645 
646 	if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
647 					&vcpudispatch_stats_proc_ops))
648 		pr_err("vcpudispatch_stats: error creating procfs file\n");
649 	else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
650 					&vcpudispatch_stats_freq_proc_ops))
651 		pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
652 
653 	return 0;
654 }
655 
656 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
657 
658 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
659 u64 pseries_paravirt_steal_clock(int cpu)
660 {
661 	struct lppaca *lppaca = &lppaca_of(cpu);
662 
663 	return be64_to_cpu(READ_ONCE(lppaca->enqueue_dispatch_tb)) +
664 		be64_to_cpu(READ_ONCE(lppaca->ready_enqueue_tb));
665 }
666 #endif
667 
668 #endif /* CONFIG_PPC_SPLPAR */
669 
670 void vpa_init(int cpu)
671 {
672 	int hwcpu = get_hard_smp_processor_id(cpu);
673 	unsigned long addr;
674 	long ret;
675 
676 	/*
677 	 * The spec says it "may be problematic" if CPU x registers the VPA of
678 	 * CPU y. We should never do that, but wail if we ever do.
679 	 */
680 	WARN_ON(cpu != smp_processor_id());
681 
682 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
683 		lppaca_of(cpu).vmxregs_in_use = 1;
684 
685 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
686 		lppaca_of(cpu).ebb_regs_in_use = 1;
687 
688 	addr = __pa(&lppaca_of(cpu));
689 	ret = register_vpa(hwcpu, addr);
690 
691 	if (ret) {
692 		pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
693 		       "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
694 		return;
695 	}
696 
697 #ifdef CONFIG_PPC_64S_HASH_MMU
698 	/*
699 	 * PAPR says this feature is SLB-Buffer but firmware never
700 	 * reports that.  All SPLPAR support SLB shadow buffer.
701 	 */
702 	if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
703 		addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
704 		ret = register_slb_shadow(hwcpu, addr);
705 		if (ret)
706 			pr_err("WARNING: SLB shadow buffer registration for "
707 			       "cpu %d (hw %d) of area %lx failed with %ld\n",
708 			       cpu, hwcpu, addr, ret);
709 	}
710 #endif /* CONFIG_PPC_64S_HASH_MMU */
711 
712 	/*
713 	 * Register dispatch trace log, if one has been allocated.
714 	 */
715 	register_dtl_buffer(cpu);
716 }
717 
718 #ifdef CONFIG_PPC_BOOK3S_64
719 
720 static int __init pseries_lpar_register_process_table(unsigned long base,
721 			unsigned long page_size, unsigned long table_size)
722 {
723 	long rc;
724 	unsigned long flags = 0;
725 
726 	if (table_size)
727 		flags |= PROC_TABLE_NEW;
728 	if (radix_enabled()) {
729 		flags |= PROC_TABLE_RADIX;
730 		if (mmu_has_feature(MMU_FTR_GTSE))
731 			flags |= PROC_TABLE_GTSE;
732 	} else
733 		flags |= PROC_TABLE_HPT_SLB;
734 	for (;;) {
735 		rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
736 					page_size, table_size);
737 		if (!H_IS_LONG_BUSY(rc))
738 			break;
739 		mdelay(get_longbusy_msecs(rc));
740 	}
741 	if (rc != H_SUCCESS) {
742 		pr_err("Failed to register process table (rc=%ld)\n", rc);
743 		BUG();
744 	}
745 	return rc;
746 }
747 
748 #ifdef CONFIG_PPC_64S_HASH_MMU
749 
750 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
751 				     unsigned long vpn, unsigned long pa,
752 				     unsigned long rflags, unsigned long vflags,
753 				     int psize, int apsize, int ssize)
754 {
755 	unsigned long lpar_rc;
756 	unsigned long flags;
757 	unsigned long slot;
758 	unsigned long hpte_v, hpte_r;
759 
760 	if (!(vflags & HPTE_V_BOLTED))
761 		pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
762 			 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
763 			 hpte_group, vpn,  pa, rflags, vflags, psize);
764 
765 	hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
766 	hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
767 
768 	if (!(vflags & HPTE_V_BOLTED))
769 		pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
770 
771 	/* Now fill in the actual HPTE */
772 	/* Set CEC cookie to 0         */
773 	/* Zero page = 0               */
774 	/* I-cache Invalidate = 0      */
775 	/* I-cache synchronize = 0     */
776 	/* Exact = 0                   */
777 	flags = 0;
778 
779 	if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
780 		flags |= H_COALESCE_CAND;
781 
782 	lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
783 	if (unlikely(lpar_rc == H_PTEG_FULL)) {
784 		pr_devel("Hash table group is full\n");
785 		return -1;
786 	}
787 
788 	/*
789 	 * Since we try and ioremap PHBs we don't own, the pte insert
790 	 * will fail. However we must catch the failure in hash_page
791 	 * or we will loop forever, so return -2 in this case.
792 	 */
793 	if (unlikely(lpar_rc != H_SUCCESS)) {
794 		pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
795 		return -2;
796 	}
797 	if (!(vflags & HPTE_V_BOLTED))
798 		pr_devel(" -> slot: %lu\n", slot & 7);
799 
800 	/* Because of iSeries, we have to pass down the secondary
801 	 * bucket bit here as well
802 	 */
803 	return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
804 }
805 
806 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
807 
808 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
809 {
810 	unsigned long slot_offset;
811 	unsigned long lpar_rc;
812 	int i;
813 	unsigned long dummy1, dummy2;
814 
815 	/* pick a random slot to start at */
816 	slot_offset = mftb() & 0x7;
817 
818 	for (i = 0; i < HPTES_PER_GROUP; i++) {
819 
820 		/* don't remove a bolted entry */
821 		lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
822 					   HPTE_V_BOLTED, &dummy1, &dummy2);
823 		if (lpar_rc == H_SUCCESS)
824 			return i;
825 
826 		/*
827 		 * The test for adjunct partition is performed before the
828 		 * ANDCOND test.  H_RESOURCE may be returned, so we need to
829 		 * check for that as well.
830 		 */
831 		BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
832 
833 		slot_offset++;
834 		slot_offset &= 0x7;
835 	}
836 
837 	return -1;
838 }
839 
840 /* Called during kexec sequence with MMU off */
841 static notrace void manual_hpte_clear_all(void)
842 {
843 	unsigned long size_bytes = 1UL << ppc64_pft_size;
844 	unsigned long hpte_count = size_bytes >> 4;
845 	struct {
846 		unsigned long pteh;
847 		unsigned long ptel;
848 	} ptes[4];
849 	long lpar_rc;
850 	unsigned long i, j;
851 
852 	/* Read in batches of 4,
853 	 * invalidate only valid entries not in the VRMA
854 	 * hpte_count will be a multiple of 4
855          */
856 	for (i = 0; i < hpte_count; i += 4) {
857 		lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
858 		if (lpar_rc != H_SUCCESS) {
859 			pr_info("Failed to read hash page table at %ld err %ld\n",
860 				i, lpar_rc);
861 			continue;
862 		}
863 		for (j = 0; j < 4; j++){
864 			if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
865 				HPTE_V_VRMA_MASK)
866 				continue;
867 			if (ptes[j].pteh & HPTE_V_VALID)
868 				plpar_pte_remove_raw(0, i + j, 0,
869 					&(ptes[j].pteh), &(ptes[j].ptel));
870 		}
871 	}
872 }
873 
874 /* Called during kexec sequence with MMU off */
875 static notrace int hcall_hpte_clear_all(void)
876 {
877 	int rc;
878 
879 	do {
880 		rc = plpar_hcall_norets(H_CLEAR_HPT);
881 	} while (rc == H_CONTINUE);
882 
883 	return rc;
884 }
885 
886 /* Called during kexec sequence with MMU off */
887 static notrace void pseries_hpte_clear_all(void)
888 {
889 	int rc;
890 
891 	rc = hcall_hpte_clear_all();
892 	if (rc != H_SUCCESS)
893 		manual_hpte_clear_all();
894 
895 #ifdef __LITTLE_ENDIAN__
896 	/*
897 	 * Reset exceptions to big endian.
898 	 *
899 	 * FIXME this is a hack for kexec, we need to reset the exception
900 	 * endian before starting the new kernel and this is a convenient place
901 	 * to do it.
902 	 *
903 	 * This is also called on boot when a fadump happens. In that case we
904 	 * must not change the exception endian mode.
905 	 */
906 	if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
907 		pseries_big_endian_exceptions();
908 #endif
909 }
910 
911 /*
912  * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
913  * the low 3 bits of flags happen to line up.  So no transform is needed.
914  * We can probably optimize here and assume the high bits of newpp are
915  * already zero.  For now I am paranoid.
916  */
917 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
918 				       unsigned long newpp,
919 				       unsigned long vpn,
920 				       int psize, int apsize,
921 				       int ssize, unsigned long inv_flags)
922 {
923 	unsigned long lpar_rc;
924 	unsigned long flags;
925 	unsigned long want_v;
926 
927 	want_v = hpte_encode_avpn(vpn, psize, ssize);
928 
929 	flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
930 	flags |= (newpp & HPTE_R_KEY_HI) >> 48;
931 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
932 		/* Move pp0 into bit 8 (IBM 55) */
933 		flags |= (newpp & HPTE_R_PP0) >> 55;
934 
935 	pr_devel("    update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
936 		 want_v, slot, flags, psize);
937 
938 	lpar_rc = plpar_pte_protect(flags, slot, want_v);
939 
940 	if (lpar_rc == H_NOT_FOUND) {
941 		pr_devel("not found !\n");
942 		return -1;
943 	}
944 
945 	pr_devel("ok\n");
946 
947 	BUG_ON(lpar_rc != H_SUCCESS);
948 
949 	return 0;
950 }
951 
952 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
953 {
954 	long lpar_rc;
955 	unsigned long i, j;
956 	struct {
957 		unsigned long pteh;
958 		unsigned long ptel;
959 	} ptes[4];
960 
961 	for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
962 
963 		lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
964 		if (lpar_rc != H_SUCCESS) {
965 			pr_info("Failed to read hash page table at %ld err %ld\n",
966 				hpte_group, lpar_rc);
967 			continue;
968 		}
969 
970 		for (j = 0; j < 4; j++) {
971 			if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
972 			    (ptes[j].pteh & HPTE_V_VALID))
973 				return i + j;
974 		}
975 	}
976 
977 	return -1;
978 }
979 
980 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
981 {
982 	long slot;
983 	unsigned long hash;
984 	unsigned long want_v;
985 	unsigned long hpte_group;
986 
987 	hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
988 	want_v = hpte_encode_avpn(vpn, psize, ssize);
989 
990 	/*
991 	 * We try to keep bolted entries always in primary hash
992 	 * But in some case we can find them in secondary too.
993 	 */
994 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
995 	slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
996 	if (slot < 0) {
997 		/* Try in secondary */
998 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
999 		slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
1000 		if (slot < 0)
1001 			return -1;
1002 	}
1003 	return hpte_group + slot;
1004 }
1005 
1006 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
1007 					     unsigned long ea,
1008 					     int psize, int ssize)
1009 {
1010 	unsigned long vpn;
1011 	unsigned long lpar_rc, slot, vsid, flags;
1012 
1013 	vsid = get_kernel_vsid(ea, ssize);
1014 	vpn = hpt_vpn(ea, vsid, ssize);
1015 
1016 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1017 	BUG_ON(slot == -1);
1018 
1019 	flags = newpp & (HPTE_R_PP | HPTE_R_N);
1020 	if (mmu_has_feature(MMU_FTR_KERNEL_RO))
1021 		/* Move pp0 into bit 8 (IBM 55) */
1022 		flags |= (newpp & HPTE_R_PP0) >> 55;
1023 
1024 	flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
1025 
1026 	lpar_rc = plpar_pte_protect(flags, slot, 0);
1027 
1028 	BUG_ON(lpar_rc != H_SUCCESS);
1029 }
1030 
1031 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
1032 					 int psize, int apsize,
1033 					 int ssize, int local)
1034 {
1035 	unsigned long want_v;
1036 	unsigned long lpar_rc;
1037 	unsigned long dummy1, dummy2;
1038 
1039 	pr_devel("    inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
1040 		 slot, vpn, psize, local);
1041 
1042 	want_v = hpte_encode_avpn(vpn, psize, ssize);
1043 	lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1044 	if (lpar_rc == H_NOT_FOUND)
1045 		return;
1046 
1047 	BUG_ON(lpar_rc != H_SUCCESS);
1048 }
1049 
1050 
1051 /*
1052  * As defined in the PAPR's section 14.5.4.1.8
1053  * The control mask doesn't include the returned reference and change bit from
1054  * the processed PTE.
1055  */
1056 #define HBLKR_AVPN		0x0100000000000000UL
1057 #define HBLKR_CTRL_MASK		0xf800000000000000UL
1058 #define HBLKR_CTRL_SUCCESS	0x8000000000000000UL
1059 #define HBLKR_CTRL_ERRNOTFOUND	0x8800000000000000UL
1060 #define HBLKR_CTRL_ERRBUSY	0xa000000000000000UL
1061 
1062 /*
1063  * Returned true if we are supporting this block size for the specified segment
1064  * base page size and actual page size.
1065  *
1066  * Currently, we only support 8 size block.
1067  */
1068 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1069 {
1070 	return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1071 }
1072 
1073 /**
1074  * H_BLOCK_REMOVE caller.
1075  * @idx should point to the latest @param entry set with a PTEX.
1076  * If PTE cannot be processed because another CPUs has already locked that
1077  * group, those entries are put back in @param starting at index 1.
1078  * If entries has to be retried and @retry_busy is set to true, these entries
1079  * are retried until success. If @retry_busy is set to false, the returned
1080  * is the number of entries yet to process.
1081  */
1082 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1083 				       bool retry_busy)
1084 {
1085 	unsigned long i, rc, new_idx;
1086 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1087 
1088 	if (idx < 2) {
1089 		pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1090 		return 0;
1091 	}
1092 again:
1093 	new_idx = 0;
1094 	if (idx > PLPAR_HCALL9_BUFSIZE) {
1095 		pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1096 		idx = PLPAR_HCALL9_BUFSIZE;
1097 	} else if (idx < PLPAR_HCALL9_BUFSIZE)
1098 		param[idx] = HBR_END;
1099 
1100 	rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1101 			  param[0], /* AVA */
1102 			  param[1],  param[2],  param[3],  param[4], /* TS0-7 */
1103 			  param[5],  param[6],  param[7],  param[8]);
1104 	if (rc == H_SUCCESS)
1105 		return 0;
1106 
1107 	BUG_ON(rc != H_PARTIAL);
1108 
1109 	/* Check that the unprocessed entries were 'not found' or 'busy' */
1110 	for (i = 0; i < idx-1; i++) {
1111 		unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1112 
1113 		if (ctrl == HBLKR_CTRL_ERRBUSY) {
1114 			param[++new_idx] = param[i+1];
1115 			continue;
1116 		}
1117 
1118 		BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1119 		       && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1120 	}
1121 
1122 	/*
1123 	 * If there were entries found busy, retry these entries if requested,
1124 	 * of if all the entries have to be retried.
1125 	 */
1126 	if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1127 		idx = new_idx + 1;
1128 		goto again;
1129 	}
1130 
1131 	return new_idx;
1132 }
1133 
1134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1135 /*
1136  * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1137  * to make sure that we avoid bouncing the hypervisor tlbie lock.
1138  */
1139 #define PPC64_HUGE_HPTE_BATCH 12
1140 
1141 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1142 				      int count, int psize, int ssize)
1143 {
1144 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1145 	unsigned long shift, current_vpgb, vpgb;
1146 	int i, pix = 0;
1147 
1148 	shift = mmu_psize_defs[psize].shift;
1149 
1150 	for (i = 0; i < count; i++) {
1151 		/*
1152 		 * Shifting 3 bits more on the right to get a
1153 		 * 8 pages aligned virtual addresse.
1154 		 */
1155 		vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1156 		if (!pix || vpgb != current_vpgb) {
1157 			/*
1158 			 * Need to start a new 8 pages block, flush
1159 			 * the current one if needed.
1160 			 */
1161 			if (pix)
1162 				(void)call_block_remove(pix, param, true);
1163 			current_vpgb = vpgb;
1164 			param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1165 			pix = 1;
1166 		}
1167 
1168 		param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1169 		if (pix == PLPAR_HCALL9_BUFSIZE) {
1170 			pix = call_block_remove(pix, param, false);
1171 			/*
1172 			 * pix = 0 means that all the entries were
1173 			 * removed, we can start a new block.
1174 			 * Otherwise, this means that there are entries
1175 			 * to retry, and pix points to latest one, so
1176 			 * we should increment it and try to continue
1177 			 * the same block.
1178 			 */
1179 			if (pix)
1180 				pix++;
1181 		}
1182 	}
1183 	if (pix)
1184 		(void)call_block_remove(pix, param, true);
1185 }
1186 
1187 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1188 				     int count, int psize, int ssize)
1189 {
1190 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1191 	int i = 0, pix = 0, rc;
1192 
1193 	for (i = 0; i < count; i++) {
1194 
1195 		if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1196 			pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1197 						     ssize, 0);
1198 		} else {
1199 			param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1200 			param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1201 			pix += 2;
1202 			if (pix == 8) {
1203 				rc = plpar_hcall9(H_BULK_REMOVE, param,
1204 						  param[0], param[1], param[2],
1205 						  param[3], param[4], param[5],
1206 						  param[6], param[7]);
1207 				BUG_ON(rc != H_SUCCESS);
1208 				pix = 0;
1209 			}
1210 		}
1211 	}
1212 	if (pix) {
1213 		param[pix] = HBR_END;
1214 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1215 				  param[2], param[3], param[4], param[5],
1216 				  param[6], param[7]);
1217 		BUG_ON(rc != H_SUCCESS);
1218 	}
1219 }
1220 
1221 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1222 						      unsigned long *vpn,
1223 						      int count, int psize,
1224 						      int ssize)
1225 {
1226 	unsigned long flags = 0;
1227 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1228 
1229 	if (lock_tlbie)
1230 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1231 
1232 	/* Assuming THP size is 16M */
1233 	if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1234 		hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1235 	else
1236 		hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1237 
1238 	if (lock_tlbie)
1239 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1240 }
1241 
1242 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1243 					     unsigned long addr,
1244 					     unsigned char *hpte_slot_array,
1245 					     int psize, int ssize, int local)
1246 {
1247 	int i, index = 0;
1248 	unsigned long s_addr = addr;
1249 	unsigned int max_hpte_count, valid;
1250 	unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1251 	unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1252 	unsigned long shift, hidx, vpn = 0, hash, slot;
1253 
1254 	shift = mmu_psize_defs[psize].shift;
1255 	max_hpte_count = 1U << (PMD_SHIFT - shift);
1256 
1257 	for (i = 0; i < max_hpte_count; i++) {
1258 		valid = hpte_valid(hpte_slot_array, i);
1259 		if (!valid)
1260 			continue;
1261 		hidx =  hpte_hash_index(hpte_slot_array, i);
1262 
1263 		/* get the vpn */
1264 		addr = s_addr + (i * (1ul << shift));
1265 		vpn = hpt_vpn(addr, vsid, ssize);
1266 		hash = hpt_hash(vpn, shift, ssize);
1267 		if (hidx & _PTEIDX_SECONDARY)
1268 			hash = ~hash;
1269 
1270 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1271 		slot += hidx & _PTEIDX_GROUP_IX;
1272 
1273 		slot_array[index] = slot;
1274 		vpn_array[index] = vpn;
1275 		if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1276 			/*
1277 			 * Now do a bluk invalidate
1278 			 */
1279 			__pSeries_lpar_hugepage_invalidate(slot_array,
1280 							   vpn_array,
1281 							   PPC64_HUGE_HPTE_BATCH,
1282 							   psize, ssize);
1283 			index = 0;
1284 		} else
1285 			index++;
1286 	}
1287 	if (index)
1288 		__pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1289 						   index, psize, ssize);
1290 }
1291 #else
1292 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1293 					     unsigned long addr,
1294 					     unsigned char *hpte_slot_array,
1295 					     int psize, int ssize, int local)
1296 {
1297 	WARN(1, "%s called without THP support\n", __func__);
1298 }
1299 #endif
1300 
1301 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1302 					  int psize, int ssize)
1303 {
1304 	unsigned long vpn;
1305 	unsigned long slot, vsid;
1306 
1307 	vsid = get_kernel_vsid(ea, ssize);
1308 	vpn = hpt_vpn(ea, vsid, ssize);
1309 
1310 	slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1311 	if (slot == -1)
1312 		return -ENOENT;
1313 
1314 	/*
1315 	 * lpar doesn't use the passed actual page size
1316 	 */
1317 	pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1318 	return 0;
1319 }
1320 
1321 
1322 static inline unsigned long compute_slot(real_pte_t pte,
1323 					 unsigned long vpn,
1324 					 unsigned long index,
1325 					 unsigned long shift,
1326 					 int ssize)
1327 {
1328 	unsigned long slot, hash, hidx;
1329 
1330 	hash = hpt_hash(vpn, shift, ssize);
1331 	hidx = __rpte_to_hidx(pte, index);
1332 	if (hidx & _PTEIDX_SECONDARY)
1333 		hash = ~hash;
1334 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1335 	slot += hidx & _PTEIDX_GROUP_IX;
1336 	return slot;
1337 }
1338 
1339 /**
1340  * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1341  * "all within the same naturally aligned 8 page virtual address block".
1342  */
1343 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1344 			    unsigned long *param)
1345 {
1346 	unsigned long vpn;
1347 	unsigned long i, pix = 0;
1348 	unsigned long index, shift, slot, current_vpgb, vpgb;
1349 	real_pte_t pte;
1350 	int psize, ssize;
1351 
1352 	psize = batch->psize;
1353 	ssize = batch->ssize;
1354 
1355 	for (i = 0; i < number; i++) {
1356 		vpn = batch->vpn[i];
1357 		pte = batch->pte[i];
1358 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1359 			/*
1360 			 * Shifting 3 bits more on the right to get a
1361 			 * 8 pages aligned virtual addresse.
1362 			 */
1363 			vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1364 			if (!pix || vpgb != current_vpgb) {
1365 				/*
1366 				 * Need to start a new 8 pages block, flush
1367 				 * the current one if needed.
1368 				 */
1369 				if (pix)
1370 					(void)call_block_remove(pix, param,
1371 								true);
1372 				current_vpgb = vpgb;
1373 				param[0] = hpte_encode_avpn(vpn, psize,
1374 							    ssize);
1375 				pix = 1;
1376 			}
1377 
1378 			slot = compute_slot(pte, vpn, index, shift, ssize);
1379 			param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1380 
1381 			if (pix == PLPAR_HCALL9_BUFSIZE) {
1382 				pix = call_block_remove(pix, param, false);
1383 				/*
1384 				 * pix = 0 means that all the entries were
1385 				 * removed, we can start a new block.
1386 				 * Otherwise, this means that there are entries
1387 				 * to retry, and pix points to latest one, so
1388 				 * we should increment it and try to continue
1389 				 * the same block.
1390 				 */
1391 				if (pix)
1392 					pix++;
1393 			}
1394 		} pte_iterate_hashed_end();
1395 	}
1396 
1397 	if (pix)
1398 		(void)call_block_remove(pix, param, true);
1399 }
1400 
1401 /*
1402  * TLB Block Invalidate Characteristics
1403  *
1404  * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1405  * is able to process for each couple segment base page size, actual page size.
1406  *
1407  * The ibm,get-system-parameter properties is returning a buffer with the
1408  * following layout:
1409  *
1410  * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1411  * -----------------
1412  * TLB Block Invalidate Specifiers:
1413  * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1414  * [ 1 byte Number of page sizes (N) that are supported for the specified
1415  *          TLB invalidate block size ]
1416  * [ 1 byte Encoded segment base page size and actual page size
1417  *          MSB=0 means 4k segment base page size and actual page size
1418  *          MSB=1 the penc value in mmu_psize_def ]
1419  * ...
1420  * -----------------
1421  * Next TLB Block Invalidate Specifiers...
1422  * -----------------
1423  * [ 0 ]
1424  */
1425 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1426 					unsigned int block_size)
1427 {
1428 	if (block_size > hblkrm_size[bpsize][psize])
1429 		hblkrm_size[bpsize][psize] = block_size;
1430 }
1431 
1432 /*
1433  * Decode the Encoded segment base page size and actual page size.
1434  * PAPR specifies:
1435  *   - bit 7 is the L bit
1436  *   - bits 0-5 are the penc value
1437  * If the L bit is 0, this means 4K segment base page size and actual page size
1438  * otherwise the penc value should be read.
1439  */
1440 #define HBLKRM_L_MASK		0x80
1441 #define HBLKRM_PENC_MASK	0x3f
1442 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1443 					      unsigned int block_size)
1444 {
1445 	unsigned int bpsize, psize;
1446 
1447 	/* First, check the L bit, if not set, this means 4K */
1448 	if ((lp & HBLKRM_L_MASK) == 0) {
1449 		set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1450 		return;
1451 	}
1452 
1453 	lp &= HBLKRM_PENC_MASK;
1454 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1455 		struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1456 
1457 		for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1458 			if (def->penc[psize] == lp) {
1459 				set_hblkrm_bloc_size(bpsize, psize, block_size);
1460 				return;
1461 			}
1462 		}
1463 	}
1464 }
1465 
1466 /*
1467  * The size of the TLB Block Invalidate Characteristics is variable. But at the
1468  * maximum it will be the number of possible page sizes *2 + 10 bytes.
1469  * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1470  * (128 bytes) for the buffer to get plenty of space.
1471  */
1472 #define SPLPAR_TLB_BIC_MAXLENGTH	128
1473 
1474 void __init pseries_lpar_read_hblkrm_characteristics(void)
1475 {
1476 	static struct papr_sysparm_buf buf __initdata;
1477 	int len, idx, bpsize;
1478 
1479 	if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1480 		return;
1481 
1482 	if (papr_sysparm_get(PAPR_SYSPARM_TLB_BLOCK_INVALIDATE_ATTRS, &buf))
1483 		return;
1484 
1485 	len = be16_to_cpu(buf.len);
1486 	if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1487 		pr_warn("%s too large returned buffer %d", __func__, len);
1488 		return;
1489 	}
1490 
1491 	idx = 0;
1492 	while (idx < len) {
1493 		u8 block_shift = buf.val[idx++];
1494 		u32 block_size;
1495 		unsigned int npsize;
1496 
1497 		if (!block_shift)
1498 			break;
1499 
1500 		block_size = 1 << block_shift;
1501 
1502 		for (npsize = buf.val[idx++];
1503 		     npsize > 0 && idx < len; npsize--)
1504 			check_lp_set_hblkrm((unsigned int)buf.val[idx++],
1505 					    block_size);
1506 	}
1507 
1508 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1509 		for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1510 			if (hblkrm_size[bpsize][idx])
1511 				pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1512 					bpsize, idx, hblkrm_size[bpsize][idx]);
1513 }
1514 
1515 /*
1516  * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1517  * lock.
1518  */
1519 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1520 {
1521 	unsigned long vpn;
1522 	unsigned long i, pix, rc;
1523 	unsigned long flags = 0;
1524 	struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1525 	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1526 	unsigned long param[PLPAR_HCALL9_BUFSIZE];
1527 	unsigned long index, shift, slot;
1528 	real_pte_t pte;
1529 	int psize, ssize;
1530 
1531 	if (lock_tlbie)
1532 		spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1533 
1534 	if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1535 		do_block_remove(number, batch, param);
1536 		goto out;
1537 	}
1538 
1539 	psize = batch->psize;
1540 	ssize = batch->ssize;
1541 	pix = 0;
1542 	for (i = 0; i < number; i++) {
1543 		vpn = batch->vpn[i];
1544 		pte = batch->pte[i];
1545 		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1546 			slot = compute_slot(pte, vpn, index, shift, ssize);
1547 			if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1548 				/*
1549 				 * lpar doesn't use the passed actual page size
1550 				 */
1551 				pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1552 							     0, ssize, local);
1553 			} else {
1554 				param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1555 				param[pix+1] = hpte_encode_avpn(vpn, psize,
1556 								ssize);
1557 				pix += 2;
1558 				if (pix == 8) {
1559 					rc = plpar_hcall9(H_BULK_REMOVE, param,
1560 						param[0], param[1], param[2],
1561 						param[3], param[4], param[5],
1562 						param[6], param[7]);
1563 					BUG_ON(rc != H_SUCCESS);
1564 					pix = 0;
1565 				}
1566 			}
1567 		} pte_iterate_hashed_end();
1568 	}
1569 	if (pix) {
1570 		param[pix] = HBR_END;
1571 		rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1572 				  param[2], param[3], param[4], param[5],
1573 				  param[6], param[7]);
1574 		BUG_ON(rc != H_SUCCESS);
1575 	}
1576 
1577 out:
1578 	if (lock_tlbie)
1579 		spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1580 }
1581 
1582 static int __init disable_bulk_remove(char *str)
1583 {
1584 	if (strcmp(str, "off") == 0 &&
1585 	    firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1586 		pr_info("Disabling BULK_REMOVE firmware feature");
1587 		powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1588 	}
1589 	return 1;
1590 }
1591 
1592 __setup("bulk_remove=", disable_bulk_remove);
1593 
1594 #define HPT_RESIZE_TIMEOUT	10000 /* ms */
1595 
1596 struct hpt_resize_state {
1597 	unsigned long shift;
1598 	int commit_rc;
1599 };
1600 
1601 static int pseries_lpar_resize_hpt_commit(void *data)
1602 {
1603 	struct hpt_resize_state *state = data;
1604 
1605 	state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1606 	if (state->commit_rc != H_SUCCESS)
1607 		return -EIO;
1608 
1609 	/* Hypervisor has transitioned the HTAB, update our globals */
1610 	ppc64_pft_size = state->shift;
1611 	htab_size_bytes = 1UL << ppc64_pft_size;
1612 	htab_hash_mask = (htab_size_bytes >> 7) - 1;
1613 
1614 	return 0;
1615 }
1616 
1617 /*
1618  * Must be called in process context. The caller must hold the
1619  * cpus_lock.
1620  */
1621 static int pseries_lpar_resize_hpt(unsigned long shift)
1622 {
1623 	struct hpt_resize_state state = {
1624 		.shift = shift,
1625 		.commit_rc = H_FUNCTION,
1626 	};
1627 	unsigned int delay, total_delay = 0;
1628 	int rc;
1629 	ktime_t t0, t1, t2;
1630 
1631 	might_sleep();
1632 
1633 	if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1634 		return -ENODEV;
1635 
1636 	pr_info("Attempting to resize HPT to shift %lu\n", shift);
1637 
1638 	t0 = ktime_get();
1639 
1640 	rc = plpar_resize_hpt_prepare(0, shift);
1641 	while (H_IS_LONG_BUSY(rc)) {
1642 		delay = get_longbusy_msecs(rc);
1643 		total_delay += delay;
1644 		if (total_delay > HPT_RESIZE_TIMEOUT) {
1645 			/* prepare with shift==0 cancels an in-progress resize */
1646 			rc = plpar_resize_hpt_prepare(0, 0);
1647 			if (rc != H_SUCCESS)
1648 				pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1649 				       rc);
1650 			return -ETIMEDOUT;
1651 		}
1652 		msleep(delay);
1653 		rc = plpar_resize_hpt_prepare(0, shift);
1654 	}
1655 
1656 	switch (rc) {
1657 	case H_SUCCESS:
1658 		/* Continue on */
1659 		break;
1660 
1661 	case H_PARAMETER:
1662 		pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1663 		return -EINVAL;
1664 	case H_RESOURCE:
1665 		pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1666 		return -EPERM;
1667 	default:
1668 		pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1669 		return -EIO;
1670 	}
1671 
1672 	t1 = ktime_get();
1673 
1674 	rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1675 				     &state, NULL);
1676 
1677 	t2 = ktime_get();
1678 
1679 	if (rc != 0) {
1680 		switch (state.commit_rc) {
1681 		case H_PTEG_FULL:
1682 			return -ENOSPC;
1683 
1684 		default:
1685 			pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1686 				state.commit_rc);
1687 			return -EIO;
1688 		};
1689 	}
1690 
1691 	pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1692 		shift, (long long) ktime_ms_delta(t1, t0),
1693 		(long long) ktime_ms_delta(t2, t1));
1694 
1695 	return 0;
1696 }
1697 
1698 void __init hpte_init_pseries(void)
1699 {
1700 	mmu_hash_ops.hpte_invalidate	 = pSeries_lpar_hpte_invalidate;
1701 	mmu_hash_ops.hpte_updatepp	 = pSeries_lpar_hpte_updatepp;
1702 	mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1703 	mmu_hash_ops.hpte_insert	 = pSeries_lpar_hpte_insert;
1704 	mmu_hash_ops.hpte_remove	 = pSeries_lpar_hpte_remove;
1705 	mmu_hash_ops.hpte_removebolted   = pSeries_lpar_hpte_removebolted;
1706 	mmu_hash_ops.flush_hash_range	 = pSeries_lpar_flush_hash_range;
1707 	mmu_hash_ops.hpte_clear_all      = pseries_hpte_clear_all;
1708 	mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1709 
1710 	if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1711 		mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1712 
1713 	/*
1714 	 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1715 	 * to inform the hypervisor that we wish to use the HPT.
1716 	 */
1717 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1718 		pseries_lpar_register_process_table(0, 0, 0);
1719 }
1720 #endif /* CONFIG_PPC_64S_HASH_MMU */
1721 
1722 #ifdef CONFIG_PPC_RADIX_MMU
1723 void __init radix_init_pseries(void)
1724 {
1725 	pr_info("Using radix MMU under hypervisor\n");
1726 
1727 	pseries_lpar_register_process_table(__pa(process_tb),
1728 						0, PRTB_SIZE_SHIFT - 12);
1729 }
1730 #endif
1731 
1732 #ifdef CONFIG_PPC_SMLPAR
1733 #define CMO_FREE_HINT_DEFAULT 1
1734 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1735 
1736 static int __init cmo_free_hint(char *str)
1737 {
1738 	char *parm;
1739 	parm = strstrip(str);
1740 
1741 	if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1742 		pr_info("%s: CMO free page hinting is not active.\n", __func__);
1743 		cmo_free_hint_flag = 0;
1744 		return 1;
1745 	}
1746 
1747 	cmo_free_hint_flag = 1;
1748 	pr_info("%s: CMO free page hinting is active.\n", __func__);
1749 
1750 	if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1751 		return 1;
1752 
1753 	return 0;
1754 }
1755 
1756 __setup("cmo_free_hint=", cmo_free_hint);
1757 
1758 static void pSeries_set_page_state(struct page *page, int order,
1759 				   unsigned long state)
1760 {
1761 	int i, j;
1762 	unsigned long cmo_page_sz, addr;
1763 
1764 	cmo_page_sz = cmo_get_page_size();
1765 	addr = __pa((unsigned long)page_address(page));
1766 
1767 	for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1768 		for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1769 			plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1770 	}
1771 }
1772 
1773 void arch_free_page(struct page *page, int order)
1774 {
1775 	if (radix_enabled())
1776 		return;
1777 	if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1778 		return;
1779 
1780 	pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1781 }
1782 EXPORT_SYMBOL(arch_free_page);
1783 
1784 #endif /* CONFIG_PPC_SMLPAR */
1785 #endif /* CONFIG_PPC_BOOK3S_64 */
1786 
1787 #ifdef CONFIG_TRACEPOINTS
1788 #ifdef CONFIG_JUMP_LABEL
1789 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1790 
1791 int hcall_tracepoint_regfunc(void)
1792 {
1793 	static_key_slow_inc(&hcall_tracepoint_key);
1794 	return 0;
1795 }
1796 
1797 void hcall_tracepoint_unregfunc(void)
1798 {
1799 	static_key_slow_dec(&hcall_tracepoint_key);
1800 }
1801 #else
1802 /*
1803  * We optimise our hcall path by placing hcall_tracepoint_refcount
1804  * directly in the TOC so we can check if the hcall tracepoints are
1805  * enabled via a single load.
1806  */
1807 
1808 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1809 extern long hcall_tracepoint_refcount;
1810 
1811 int hcall_tracepoint_regfunc(void)
1812 {
1813 	hcall_tracepoint_refcount++;
1814 	return 0;
1815 }
1816 
1817 void hcall_tracepoint_unregfunc(void)
1818 {
1819 	hcall_tracepoint_refcount--;
1820 }
1821 #endif
1822 
1823 /*
1824  * Keep track of hcall tracing depth and prevent recursion. Warn if any is
1825  * detected because it may indicate a problem. This will not catch all
1826  * problems with tracing code making hcalls, because the tracing might have
1827  * been invoked from a non-hcall, so the first hcall could recurse into it
1828  * without warning here, but this better than nothing.
1829  *
1830  * Hcalls with specific problems being traced should use the _notrace
1831  * plpar_hcall variants.
1832  */
1833 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1834 
1835 
1836 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1837 {
1838 	unsigned long flags;
1839 	unsigned int *depth;
1840 
1841 	local_irq_save(flags);
1842 
1843 	depth = this_cpu_ptr(&hcall_trace_depth);
1844 
1845 	if (WARN_ON_ONCE(*depth))
1846 		goto out;
1847 
1848 	(*depth)++;
1849 	preempt_disable();
1850 	trace_hcall_entry(opcode, args);
1851 	(*depth)--;
1852 
1853 out:
1854 	local_irq_restore(flags);
1855 }
1856 
1857 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1858 {
1859 	unsigned long flags;
1860 	unsigned int *depth;
1861 
1862 	local_irq_save(flags);
1863 
1864 	depth = this_cpu_ptr(&hcall_trace_depth);
1865 
1866 	if (*depth) /* Don't warn again on the way out */
1867 		goto out;
1868 
1869 	(*depth)++;
1870 	trace_hcall_exit(opcode, retval, retbuf);
1871 	preempt_enable();
1872 	(*depth)--;
1873 
1874 out:
1875 	local_irq_restore(flags);
1876 }
1877 #endif
1878 
1879 /**
1880  * h_get_mpp
1881  * H_GET_MPP hcall returns info in 7 parms
1882  */
1883 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1884 {
1885 	int rc;
1886 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1887 
1888 	rc = plpar_hcall9(H_GET_MPP, retbuf);
1889 
1890 	mpp_data->entitled_mem = retbuf[0];
1891 	mpp_data->mapped_mem = retbuf[1];
1892 
1893 	mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1894 	mpp_data->pool_num = retbuf[2] & 0xffff;
1895 
1896 	mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1897 	mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1898 	mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1899 
1900 	mpp_data->pool_size = retbuf[4];
1901 	mpp_data->loan_request = retbuf[5];
1902 	mpp_data->backing_mem = retbuf[6];
1903 
1904 	return rc;
1905 }
1906 EXPORT_SYMBOL(h_get_mpp);
1907 
1908 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1909 {
1910 	int rc;
1911 	unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1912 
1913 	rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1914 
1915 	mpp_x_data->coalesced_bytes = retbuf[0];
1916 	mpp_x_data->pool_coalesced_bytes = retbuf[1];
1917 	mpp_x_data->pool_purr_cycles = retbuf[2];
1918 	mpp_x_data->pool_spurr_cycles = retbuf[3];
1919 
1920 	return rc;
1921 }
1922 
1923 #ifdef CONFIG_PPC_64S_HASH_MMU
1924 static unsigned long __init vsid_unscramble(unsigned long vsid, int ssize)
1925 {
1926 	unsigned long protovsid;
1927 	unsigned long va_bits = VA_BITS;
1928 	unsigned long modinv, vsid_modulus;
1929 	unsigned long max_mod_inv, tmp_modinv;
1930 
1931 	if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1932 		va_bits = 65;
1933 
1934 	if (ssize == MMU_SEGSIZE_256M) {
1935 		modinv = VSID_MULINV_256M;
1936 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1937 	} else {
1938 		modinv = VSID_MULINV_1T;
1939 		vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1940 	}
1941 
1942 	/*
1943 	 * vsid outside our range.
1944 	 */
1945 	if (vsid >= vsid_modulus)
1946 		return 0;
1947 
1948 	/*
1949 	 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1950 	 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1951 	 *   protovsid = (vsid * modinv) % vsid_modulus
1952 	 */
1953 
1954 	/* Check if (vsid * modinv) overflow (63 bits) */
1955 	max_mod_inv = 0x7fffffffffffffffull / vsid;
1956 	if (modinv < max_mod_inv)
1957 		return (vsid * modinv) % vsid_modulus;
1958 
1959 	tmp_modinv = modinv/max_mod_inv;
1960 	modinv %= max_mod_inv;
1961 
1962 	protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1963 	protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1964 
1965 	return protovsid;
1966 }
1967 
1968 static int __init reserve_vrma_context_id(void)
1969 {
1970 	unsigned long protovsid;
1971 
1972 	/*
1973 	 * Reserve context ids which map to reserved virtual addresses. For now
1974 	 * we only reserve the context id which maps to the VRMA VSID. We ignore
1975 	 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1976 	 * enable adjunct support via the "ibm,client-architecture-support"
1977 	 * interface.
1978 	 */
1979 	protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1980 	hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1981 	return 0;
1982 }
1983 machine_device_initcall(pseries, reserve_vrma_context_id);
1984 #endif
1985 
1986 #ifdef CONFIG_DEBUG_FS
1987 /* debugfs file interface for vpa data */
1988 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1989 			      loff_t *pos)
1990 {
1991 	int cpu = (long)filp->private_data;
1992 	struct lppaca *lppaca = &lppaca_of(cpu);
1993 
1994 	return simple_read_from_buffer(buf, len, pos, lppaca,
1995 				sizeof(struct lppaca));
1996 }
1997 
1998 static const struct file_operations vpa_fops = {
1999 	.open		= simple_open,
2000 	.read		= vpa_file_read,
2001 	.llseek		= default_llseek,
2002 };
2003 
2004 static int __init vpa_debugfs_init(void)
2005 {
2006 	char name[16];
2007 	long i;
2008 	struct dentry *vpa_dir;
2009 
2010 	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2011 		return 0;
2012 
2013 	vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
2014 
2015 	/* set up the per-cpu vpa file*/
2016 	for_each_possible_cpu(i) {
2017 		sprintf(name, "cpu-%ld", i);
2018 		debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2019 	}
2020 
2021 	return 0;
2022 }
2023 machine_arch_initcall(pseries, vpa_debugfs_init);
2024 #endif /* CONFIG_DEBUG_FS */
2025