1 /* 2 * SPU file system -- file contents 3 * 4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 5 * 6 * Author: Arnd Bergmann <arndb@de.ibm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #undef DEBUG 24 25 #include <linux/fs.h> 26 #include <linux/ioctl.h> 27 #include <linux/module.h> 28 #include <linux/pagemap.h> 29 #include <linux/poll.h> 30 #include <linux/ptrace.h> 31 #include <linux/seq_file.h> 32 33 #include <asm/io.h> 34 #include <asm/semaphore.h> 35 #include <asm/spu.h> 36 #include <asm/spu_info.h> 37 #include <asm/uaccess.h> 38 39 #include "spufs.h" 40 41 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000) 42 43 44 static int 45 spufs_mem_open(struct inode *inode, struct file *file) 46 { 47 struct spufs_inode_info *i = SPUFS_I(inode); 48 struct spu_context *ctx = i->i_ctx; 49 50 mutex_lock(&ctx->mapping_lock); 51 file->private_data = ctx; 52 if (!i->i_openers++) 53 ctx->local_store = inode->i_mapping; 54 mutex_unlock(&ctx->mapping_lock); 55 return 0; 56 } 57 58 static int 59 spufs_mem_release(struct inode *inode, struct file *file) 60 { 61 struct spufs_inode_info *i = SPUFS_I(inode); 62 struct spu_context *ctx = i->i_ctx; 63 64 mutex_lock(&ctx->mapping_lock); 65 if (!--i->i_openers) 66 ctx->local_store = NULL; 67 mutex_unlock(&ctx->mapping_lock); 68 return 0; 69 } 70 71 static ssize_t 72 __spufs_mem_read(struct spu_context *ctx, char __user *buffer, 73 size_t size, loff_t *pos) 74 { 75 char *local_store = ctx->ops->get_ls(ctx); 76 return simple_read_from_buffer(buffer, size, pos, local_store, 77 LS_SIZE); 78 } 79 80 static ssize_t 81 spufs_mem_read(struct file *file, char __user *buffer, 82 size_t size, loff_t *pos) 83 { 84 struct spu_context *ctx = file->private_data; 85 ssize_t ret; 86 87 spu_acquire(ctx); 88 ret = __spufs_mem_read(ctx, buffer, size, pos); 89 spu_release(ctx); 90 return ret; 91 } 92 93 static ssize_t 94 spufs_mem_write(struct file *file, const char __user *buffer, 95 size_t size, loff_t *ppos) 96 { 97 struct spu_context *ctx = file->private_data; 98 char *local_store; 99 loff_t pos = *ppos; 100 int ret; 101 102 if (pos < 0) 103 return -EINVAL; 104 if (pos > LS_SIZE) 105 return -EFBIG; 106 if (size > LS_SIZE - pos) 107 size = LS_SIZE - pos; 108 109 spu_acquire(ctx); 110 local_store = ctx->ops->get_ls(ctx); 111 ret = copy_from_user(local_store + pos, buffer, size); 112 spu_release(ctx); 113 114 if (ret) 115 return -EFAULT; 116 *ppos = pos + size; 117 return size; 118 } 119 120 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma, 121 unsigned long address) 122 { 123 struct spu_context *ctx = vma->vm_file->private_data; 124 unsigned long pfn, offset, addr0 = address; 125 #ifdef CONFIG_SPU_FS_64K_LS 126 struct spu_state *csa = &ctx->csa; 127 int psize; 128 129 /* Check what page size we are using */ 130 psize = get_slice_psize(vma->vm_mm, address); 131 132 /* Some sanity checking */ 133 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K)); 134 135 /* Wow, 64K, cool, we need to align the address though */ 136 if (csa->use_big_pages) { 137 BUG_ON(vma->vm_start & 0xffff); 138 address &= ~0xfffful; 139 } 140 #endif /* CONFIG_SPU_FS_64K_LS */ 141 142 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT); 143 if (offset >= LS_SIZE) 144 return NOPFN_SIGBUS; 145 146 pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n", 147 addr0, address, offset); 148 149 spu_acquire(ctx); 150 151 if (ctx->state == SPU_STATE_SAVED) { 152 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 153 & ~_PAGE_NO_CACHE); 154 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset); 155 } else { 156 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 157 | _PAGE_NO_CACHE); 158 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT; 159 } 160 vm_insert_pfn(vma, address, pfn); 161 162 spu_release(ctx); 163 164 return NOPFN_REFAULT; 165 } 166 167 168 static struct vm_operations_struct spufs_mem_mmap_vmops = { 169 .nopfn = spufs_mem_mmap_nopfn, 170 }; 171 172 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma) 173 { 174 #ifdef CONFIG_SPU_FS_64K_LS 175 struct spu_context *ctx = file->private_data; 176 struct spu_state *csa = &ctx->csa; 177 178 /* Sanity check VMA alignment */ 179 if (csa->use_big_pages) { 180 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx," 181 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end, 182 vma->vm_pgoff); 183 if (vma->vm_start & 0xffff) 184 return -EINVAL; 185 if (vma->vm_pgoff & 0xf) 186 return -EINVAL; 187 } 188 #endif /* CONFIG_SPU_FS_64K_LS */ 189 190 if (!(vma->vm_flags & VM_SHARED)) 191 return -EINVAL; 192 193 vma->vm_flags |= VM_IO | VM_PFNMAP; 194 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 195 | _PAGE_NO_CACHE); 196 197 vma->vm_ops = &spufs_mem_mmap_vmops; 198 return 0; 199 } 200 201 #ifdef CONFIG_SPU_FS_64K_LS 202 static unsigned long spufs_get_unmapped_area(struct file *file, 203 unsigned long addr, unsigned long len, unsigned long pgoff, 204 unsigned long flags) 205 { 206 struct spu_context *ctx = file->private_data; 207 struct spu_state *csa = &ctx->csa; 208 209 /* If not using big pages, fallback to normal MM g_u_a */ 210 if (!csa->use_big_pages) 211 return current->mm->get_unmapped_area(file, addr, len, 212 pgoff, flags); 213 214 /* Else, try to obtain a 64K pages slice */ 215 return slice_get_unmapped_area(addr, len, flags, 216 MMU_PAGE_64K, 1, 0); 217 } 218 #endif /* CONFIG_SPU_FS_64K_LS */ 219 220 static const struct file_operations spufs_mem_fops = { 221 .open = spufs_mem_open, 222 .release = spufs_mem_release, 223 .read = spufs_mem_read, 224 .write = spufs_mem_write, 225 .llseek = generic_file_llseek, 226 .mmap = spufs_mem_mmap, 227 #ifdef CONFIG_SPU_FS_64K_LS 228 .get_unmapped_area = spufs_get_unmapped_area, 229 #endif 230 }; 231 232 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma, 233 unsigned long address, 234 unsigned long ps_offs, 235 unsigned long ps_size) 236 { 237 struct spu_context *ctx = vma->vm_file->private_data; 238 unsigned long area, offset = address - vma->vm_start; 239 int ret; 240 241 offset += vma->vm_pgoff << PAGE_SHIFT; 242 if (offset >= ps_size) 243 return NOPFN_SIGBUS; 244 245 /* error here usually means a signal.. we might want to test 246 * the error code more precisely though 247 */ 248 ret = spu_acquire_runnable(ctx, 0); 249 if (ret) 250 return NOPFN_REFAULT; 251 252 area = ctx->spu->problem_phys + ps_offs; 253 vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT); 254 spu_release(ctx); 255 256 return NOPFN_REFAULT; 257 } 258 259 #if SPUFS_MMAP_4K 260 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma, 261 unsigned long address) 262 { 263 return spufs_ps_nopfn(vma, address, 0x4000, 0x1000); 264 } 265 266 static struct vm_operations_struct spufs_cntl_mmap_vmops = { 267 .nopfn = spufs_cntl_mmap_nopfn, 268 }; 269 270 /* 271 * mmap support for problem state control area [0x4000 - 0x4fff]. 272 */ 273 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma) 274 { 275 if (!(vma->vm_flags & VM_SHARED)) 276 return -EINVAL; 277 278 vma->vm_flags |= VM_IO | VM_PFNMAP; 279 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 280 | _PAGE_NO_CACHE | _PAGE_GUARDED); 281 282 vma->vm_ops = &spufs_cntl_mmap_vmops; 283 return 0; 284 } 285 #else /* SPUFS_MMAP_4K */ 286 #define spufs_cntl_mmap NULL 287 #endif /* !SPUFS_MMAP_4K */ 288 289 static u64 spufs_cntl_get(void *data) 290 { 291 struct spu_context *ctx = data; 292 u64 val; 293 294 spu_acquire(ctx); 295 val = ctx->ops->status_read(ctx); 296 spu_release(ctx); 297 298 return val; 299 } 300 301 static void spufs_cntl_set(void *data, u64 val) 302 { 303 struct spu_context *ctx = data; 304 305 spu_acquire(ctx); 306 ctx->ops->runcntl_write(ctx, val); 307 spu_release(ctx); 308 } 309 310 static int spufs_cntl_open(struct inode *inode, struct file *file) 311 { 312 struct spufs_inode_info *i = SPUFS_I(inode); 313 struct spu_context *ctx = i->i_ctx; 314 315 mutex_lock(&ctx->mapping_lock); 316 file->private_data = ctx; 317 if (!i->i_openers++) 318 ctx->cntl = inode->i_mapping; 319 mutex_unlock(&ctx->mapping_lock); 320 return simple_attr_open(inode, file, spufs_cntl_get, 321 spufs_cntl_set, "0x%08lx"); 322 } 323 324 static int 325 spufs_cntl_release(struct inode *inode, struct file *file) 326 { 327 struct spufs_inode_info *i = SPUFS_I(inode); 328 struct spu_context *ctx = i->i_ctx; 329 330 simple_attr_close(inode, file); 331 332 mutex_lock(&ctx->mapping_lock); 333 if (!--i->i_openers) 334 ctx->cntl = NULL; 335 mutex_unlock(&ctx->mapping_lock); 336 return 0; 337 } 338 339 static const struct file_operations spufs_cntl_fops = { 340 .open = spufs_cntl_open, 341 .release = spufs_cntl_release, 342 .read = simple_attr_read, 343 .write = simple_attr_write, 344 .mmap = spufs_cntl_mmap, 345 }; 346 347 static int 348 spufs_regs_open(struct inode *inode, struct file *file) 349 { 350 struct spufs_inode_info *i = SPUFS_I(inode); 351 file->private_data = i->i_ctx; 352 return 0; 353 } 354 355 static ssize_t 356 __spufs_regs_read(struct spu_context *ctx, char __user *buffer, 357 size_t size, loff_t *pos) 358 { 359 struct spu_lscsa *lscsa = ctx->csa.lscsa; 360 return simple_read_from_buffer(buffer, size, pos, 361 lscsa->gprs, sizeof lscsa->gprs); 362 } 363 364 static ssize_t 365 spufs_regs_read(struct file *file, char __user *buffer, 366 size_t size, loff_t *pos) 367 { 368 int ret; 369 struct spu_context *ctx = file->private_data; 370 371 spu_acquire_saved(ctx); 372 ret = __spufs_regs_read(ctx, buffer, size, pos); 373 spu_release_saved(ctx); 374 return ret; 375 } 376 377 static ssize_t 378 spufs_regs_write(struct file *file, const char __user *buffer, 379 size_t size, loff_t *pos) 380 { 381 struct spu_context *ctx = file->private_data; 382 struct spu_lscsa *lscsa = ctx->csa.lscsa; 383 int ret; 384 385 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size); 386 if (size <= 0) 387 return -EFBIG; 388 *pos += size; 389 390 spu_acquire_saved(ctx); 391 392 ret = copy_from_user(lscsa->gprs + *pos - size, 393 buffer, size) ? -EFAULT : size; 394 395 spu_release_saved(ctx); 396 return ret; 397 } 398 399 static const struct file_operations spufs_regs_fops = { 400 .open = spufs_regs_open, 401 .read = spufs_regs_read, 402 .write = spufs_regs_write, 403 .llseek = generic_file_llseek, 404 }; 405 406 static ssize_t 407 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer, 408 size_t size, loff_t * pos) 409 { 410 struct spu_lscsa *lscsa = ctx->csa.lscsa; 411 return simple_read_from_buffer(buffer, size, pos, 412 &lscsa->fpcr, sizeof(lscsa->fpcr)); 413 } 414 415 static ssize_t 416 spufs_fpcr_read(struct file *file, char __user * buffer, 417 size_t size, loff_t * pos) 418 { 419 int ret; 420 struct spu_context *ctx = file->private_data; 421 422 spu_acquire_saved(ctx); 423 ret = __spufs_fpcr_read(ctx, buffer, size, pos); 424 spu_release_saved(ctx); 425 return ret; 426 } 427 428 static ssize_t 429 spufs_fpcr_write(struct file *file, const char __user * buffer, 430 size_t size, loff_t * pos) 431 { 432 struct spu_context *ctx = file->private_data; 433 struct spu_lscsa *lscsa = ctx->csa.lscsa; 434 int ret; 435 436 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size); 437 if (size <= 0) 438 return -EFBIG; 439 *pos += size; 440 441 spu_acquire_saved(ctx); 442 443 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size, 444 buffer, size) ? -EFAULT : size; 445 446 spu_release_saved(ctx); 447 return ret; 448 } 449 450 static const struct file_operations spufs_fpcr_fops = { 451 .open = spufs_regs_open, 452 .read = spufs_fpcr_read, 453 .write = spufs_fpcr_write, 454 .llseek = generic_file_llseek, 455 }; 456 457 /* generic open function for all pipe-like files */ 458 static int spufs_pipe_open(struct inode *inode, struct file *file) 459 { 460 struct spufs_inode_info *i = SPUFS_I(inode); 461 file->private_data = i->i_ctx; 462 463 return nonseekable_open(inode, file); 464 } 465 466 /* 467 * Read as many bytes from the mailbox as possible, until 468 * one of the conditions becomes true: 469 * 470 * - no more data available in the mailbox 471 * - end of the user provided buffer 472 * - end of the mapped area 473 */ 474 static ssize_t spufs_mbox_read(struct file *file, char __user *buf, 475 size_t len, loff_t *pos) 476 { 477 struct spu_context *ctx = file->private_data; 478 u32 mbox_data, __user *udata; 479 ssize_t count; 480 481 if (len < 4) 482 return -EINVAL; 483 484 if (!access_ok(VERIFY_WRITE, buf, len)) 485 return -EFAULT; 486 487 udata = (void __user *)buf; 488 489 spu_acquire(ctx); 490 for (count = 0; (count + 4) <= len; count += 4, udata++) { 491 int ret; 492 ret = ctx->ops->mbox_read(ctx, &mbox_data); 493 if (ret == 0) 494 break; 495 496 /* 497 * at the end of the mapped area, we can fault 498 * but still need to return the data we have 499 * read successfully so far. 500 */ 501 ret = __put_user(mbox_data, udata); 502 if (ret) { 503 if (!count) 504 count = -EFAULT; 505 break; 506 } 507 } 508 spu_release(ctx); 509 510 if (!count) 511 count = -EAGAIN; 512 513 return count; 514 } 515 516 static const struct file_operations spufs_mbox_fops = { 517 .open = spufs_pipe_open, 518 .read = spufs_mbox_read, 519 }; 520 521 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf, 522 size_t len, loff_t *pos) 523 { 524 struct spu_context *ctx = file->private_data; 525 u32 mbox_stat; 526 527 if (len < 4) 528 return -EINVAL; 529 530 spu_acquire(ctx); 531 532 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff; 533 534 spu_release(ctx); 535 536 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat)) 537 return -EFAULT; 538 539 return 4; 540 } 541 542 static const struct file_operations spufs_mbox_stat_fops = { 543 .open = spufs_pipe_open, 544 .read = spufs_mbox_stat_read, 545 }; 546 547 /* low-level ibox access function */ 548 size_t spu_ibox_read(struct spu_context *ctx, u32 *data) 549 { 550 return ctx->ops->ibox_read(ctx, data); 551 } 552 553 static int spufs_ibox_fasync(int fd, struct file *file, int on) 554 { 555 struct spu_context *ctx = file->private_data; 556 557 return fasync_helper(fd, file, on, &ctx->ibox_fasync); 558 } 559 560 /* interrupt-level ibox callback function. */ 561 void spufs_ibox_callback(struct spu *spu) 562 { 563 struct spu_context *ctx = spu->ctx; 564 565 wake_up_all(&ctx->ibox_wq); 566 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN); 567 } 568 569 /* 570 * Read as many bytes from the interrupt mailbox as possible, until 571 * one of the conditions becomes true: 572 * 573 * - no more data available in the mailbox 574 * - end of the user provided buffer 575 * - end of the mapped area 576 * 577 * If the file is opened without O_NONBLOCK, we wait here until 578 * any data is available, but return when we have been able to 579 * read something. 580 */ 581 static ssize_t spufs_ibox_read(struct file *file, char __user *buf, 582 size_t len, loff_t *pos) 583 { 584 struct spu_context *ctx = file->private_data; 585 u32 ibox_data, __user *udata; 586 ssize_t count; 587 588 if (len < 4) 589 return -EINVAL; 590 591 if (!access_ok(VERIFY_WRITE, buf, len)) 592 return -EFAULT; 593 594 udata = (void __user *)buf; 595 596 spu_acquire(ctx); 597 598 /* wait only for the first element */ 599 count = 0; 600 if (file->f_flags & O_NONBLOCK) { 601 if (!spu_ibox_read(ctx, &ibox_data)) 602 count = -EAGAIN; 603 } else { 604 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data)); 605 } 606 if (count) 607 goto out; 608 609 /* if we can't write at all, return -EFAULT */ 610 count = __put_user(ibox_data, udata); 611 if (count) 612 goto out; 613 614 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 615 int ret; 616 ret = ctx->ops->ibox_read(ctx, &ibox_data); 617 if (ret == 0) 618 break; 619 /* 620 * at the end of the mapped area, we can fault 621 * but still need to return the data we have 622 * read successfully so far. 623 */ 624 ret = __put_user(ibox_data, udata); 625 if (ret) 626 break; 627 } 628 629 out: 630 spu_release(ctx); 631 632 return count; 633 } 634 635 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait) 636 { 637 struct spu_context *ctx = file->private_data; 638 unsigned int mask; 639 640 poll_wait(file, &ctx->ibox_wq, wait); 641 642 spu_acquire(ctx); 643 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM); 644 spu_release(ctx); 645 646 return mask; 647 } 648 649 static const struct file_operations spufs_ibox_fops = { 650 .open = spufs_pipe_open, 651 .read = spufs_ibox_read, 652 .poll = spufs_ibox_poll, 653 .fasync = spufs_ibox_fasync, 654 }; 655 656 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf, 657 size_t len, loff_t *pos) 658 { 659 struct spu_context *ctx = file->private_data; 660 u32 ibox_stat; 661 662 if (len < 4) 663 return -EINVAL; 664 665 spu_acquire(ctx); 666 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff; 667 spu_release(ctx); 668 669 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat)) 670 return -EFAULT; 671 672 return 4; 673 } 674 675 static const struct file_operations spufs_ibox_stat_fops = { 676 .open = spufs_pipe_open, 677 .read = spufs_ibox_stat_read, 678 }; 679 680 /* low-level mailbox write */ 681 size_t spu_wbox_write(struct spu_context *ctx, u32 data) 682 { 683 return ctx->ops->wbox_write(ctx, data); 684 } 685 686 static int spufs_wbox_fasync(int fd, struct file *file, int on) 687 { 688 struct spu_context *ctx = file->private_data; 689 int ret; 690 691 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync); 692 693 return ret; 694 } 695 696 /* interrupt-level wbox callback function. */ 697 void spufs_wbox_callback(struct spu *spu) 698 { 699 struct spu_context *ctx = spu->ctx; 700 701 wake_up_all(&ctx->wbox_wq); 702 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT); 703 } 704 705 /* 706 * Write as many bytes to the interrupt mailbox as possible, until 707 * one of the conditions becomes true: 708 * 709 * - the mailbox is full 710 * - end of the user provided buffer 711 * - end of the mapped area 712 * 713 * If the file is opened without O_NONBLOCK, we wait here until 714 * space is availabyl, but return when we have been able to 715 * write something. 716 */ 717 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf, 718 size_t len, loff_t *pos) 719 { 720 struct spu_context *ctx = file->private_data; 721 u32 wbox_data, __user *udata; 722 ssize_t count; 723 724 if (len < 4) 725 return -EINVAL; 726 727 udata = (void __user *)buf; 728 if (!access_ok(VERIFY_READ, buf, len)) 729 return -EFAULT; 730 731 if (__get_user(wbox_data, udata)) 732 return -EFAULT; 733 734 spu_acquire(ctx); 735 736 /* 737 * make sure we can at least write one element, by waiting 738 * in case of !O_NONBLOCK 739 */ 740 count = 0; 741 if (file->f_flags & O_NONBLOCK) { 742 if (!spu_wbox_write(ctx, wbox_data)) 743 count = -EAGAIN; 744 } else { 745 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data)); 746 } 747 748 if (count) 749 goto out; 750 751 /* write as much as possible */ 752 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) { 753 int ret; 754 ret = __get_user(wbox_data, udata); 755 if (ret) 756 break; 757 758 ret = spu_wbox_write(ctx, wbox_data); 759 if (ret == 0) 760 break; 761 } 762 763 out: 764 spu_release(ctx); 765 return count; 766 } 767 768 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait) 769 { 770 struct spu_context *ctx = file->private_data; 771 unsigned int mask; 772 773 poll_wait(file, &ctx->wbox_wq, wait); 774 775 spu_acquire(ctx); 776 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM); 777 spu_release(ctx); 778 779 return mask; 780 } 781 782 static const struct file_operations spufs_wbox_fops = { 783 .open = spufs_pipe_open, 784 .write = spufs_wbox_write, 785 .poll = spufs_wbox_poll, 786 .fasync = spufs_wbox_fasync, 787 }; 788 789 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf, 790 size_t len, loff_t *pos) 791 { 792 struct spu_context *ctx = file->private_data; 793 u32 wbox_stat; 794 795 if (len < 4) 796 return -EINVAL; 797 798 spu_acquire(ctx); 799 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff; 800 spu_release(ctx); 801 802 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat)) 803 return -EFAULT; 804 805 return 4; 806 } 807 808 static const struct file_operations spufs_wbox_stat_fops = { 809 .open = spufs_pipe_open, 810 .read = spufs_wbox_stat_read, 811 }; 812 813 static int spufs_signal1_open(struct inode *inode, struct file *file) 814 { 815 struct spufs_inode_info *i = SPUFS_I(inode); 816 struct spu_context *ctx = i->i_ctx; 817 818 mutex_lock(&ctx->mapping_lock); 819 file->private_data = ctx; 820 if (!i->i_openers++) 821 ctx->signal1 = inode->i_mapping; 822 mutex_unlock(&ctx->mapping_lock); 823 return nonseekable_open(inode, file); 824 } 825 826 static int 827 spufs_signal1_release(struct inode *inode, struct file *file) 828 { 829 struct spufs_inode_info *i = SPUFS_I(inode); 830 struct spu_context *ctx = i->i_ctx; 831 832 mutex_lock(&ctx->mapping_lock); 833 if (!--i->i_openers) 834 ctx->signal1 = NULL; 835 mutex_unlock(&ctx->mapping_lock); 836 return 0; 837 } 838 839 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf, 840 size_t len, loff_t *pos) 841 { 842 int ret = 0; 843 u32 data; 844 845 if (len < 4) 846 return -EINVAL; 847 848 if (ctx->csa.spu_chnlcnt_RW[3]) { 849 data = ctx->csa.spu_chnldata_RW[3]; 850 ret = 4; 851 } 852 853 if (!ret) 854 goto out; 855 856 if (copy_to_user(buf, &data, 4)) 857 return -EFAULT; 858 859 out: 860 return ret; 861 } 862 863 static ssize_t spufs_signal1_read(struct file *file, char __user *buf, 864 size_t len, loff_t *pos) 865 { 866 int ret; 867 struct spu_context *ctx = file->private_data; 868 869 spu_acquire_saved(ctx); 870 ret = __spufs_signal1_read(ctx, buf, len, pos); 871 spu_release_saved(ctx); 872 873 return ret; 874 } 875 876 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf, 877 size_t len, loff_t *pos) 878 { 879 struct spu_context *ctx; 880 u32 data; 881 882 ctx = file->private_data; 883 884 if (len < 4) 885 return -EINVAL; 886 887 if (copy_from_user(&data, buf, 4)) 888 return -EFAULT; 889 890 spu_acquire(ctx); 891 ctx->ops->signal1_write(ctx, data); 892 spu_release(ctx); 893 894 return 4; 895 } 896 897 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma, 898 unsigned long address) 899 { 900 #if PAGE_SIZE == 0x1000 901 return spufs_ps_nopfn(vma, address, 0x14000, 0x1000); 902 #elif PAGE_SIZE == 0x10000 903 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 904 * signal 1 and 2 area 905 */ 906 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000); 907 #else 908 #error unsupported page size 909 #endif 910 } 911 912 static struct vm_operations_struct spufs_signal1_mmap_vmops = { 913 .nopfn = spufs_signal1_mmap_nopfn, 914 }; 915 916 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma) 917 { 918 if (!(vma->vm_flags & VM_SHARED)) 919 return -EINVAL; 920 921 vma->vm_flags |= VM_IO | VM_PFNMAP; 922 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 923 | _PAGE_NO_CACHE | _PAGE_GUARDED); 924 925 vma->vm_ops = &spufs_signal1_mmap_vmops; 926 return 0; 927 } 928 929 static const struct file_operations spufs_signal1_fops = { 930 .open = spufs_signal1_open, 931 .release = spufs_signal1_release, 932 .read = spufs_signal1_read, 933 .write = spufs_signal1_write, 934 .mmap = spufs_signal1_mmap, 935 }; 936 937 static const struct file_operations spufs_signal1_nosched_fops = { 938 .open = spufs_signal1_open, 939 .release = spufs_signal1_release, 940 .write = spufs_signal1_write, 941 .mmap = spufs_signal1_mmap, 942 }; 943 944 static int spufs_signal2_open(struct inode *inode, struct file *file) 945 { 946 struct spufs_inode_info *i = SPUFS_I(inode); 947 struct spu_context *ctx = i->i_ctx; 948 949 mutex_lock(&ctx->mapping_lock); 950 file->private_data = ctx; 951 if (!i->i_openers++) 952 ctx->signal2 = inode->i_mapping; 953 mutex_unlock(&ctx->mapping_lock); 954 return nonseekable_open(inode, file); 955 } 956 957 static int 958 spufs_signal2_release(struct inode *inode, struct file *file) 959 { 960 struct spufs_inode_info *i = SPUFS_I(inode); 961 struct spu_context *ctx = i->i_ctx; 962 963 mutex_lock(&ctx->mapping_lock); 964 if (!--i->i_openers) 965 ctx->signal2 = NULL; 966 mutex_unlock(&ctx->mapping_lock); 967 return 0; 968 } 969 970 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf, 971 size_t len, loff_t *pos) 972 { 973 int ret = 0; 974 u32 data; 975 976 if (len < 4) 977 return -EINVAL; 978 979 if (ctx->csa.spu_chnlcnt_RW[4]) { 980 data = ctx->csa.spu_chnldata_RW[4]; 981 ret = 4; 982 } 983 984 if (!ret) 985 goto out; 986 987 if (copy_to_user(buf, &data, 4)) 988 return -EFAULT; 989 990 out: 991 return ret; 992 } 993 994 static ssize_t spufs_signal2_read(struct file *file, char __user *buf, 995 size_t len, loff_t *pos) 996 { 997 struct spu_context *ctx = file->private_data; 998 int ret; 999 1000 spu_acquire_saved(ctx); 1001 ret = __spufs_signal2_read(ctx, buf, len, pos); 1002 spu_release_saved(ctx); 1003 1004 return ret; 1005 } 1006 1007 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf, 1008 size_t len, loff_t *pos) 1009 { 1010 struct spu_context *ctx; 1011 u32 data; 1012 1013 ctx = file->private_data; 1014 1015 if (len < 4) 1016 return -EINVAL; 1017 1018 if (copy_from_user(&data, buf, 4)) 1019 return -EFAULT; 1020 1021 spu_acquire(ctx); 1022 ctx->ops->signal2_write(ctx, data); 1023 spu_release(ctx); 1024 1025 return 4; 1026 } 1027 1028 #if SPUFS_MMAP_4K 1029 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma, 1030 unsigned long address) 1031 { 1032 #if PAGE_SIZE == 0x1000 1033 return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000); 1034 #elif PAGE_SIZE == 0x10000 1035 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole 1036 * signal 1 and 2 area 1037 */ 1038 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000); 1039 #else 1040 #error unsupported page size 1041 #endif 1042 } 1043 1044 static struct vm_operations_struct spufs_signal2_mmap_vmops = { 1045 .nopfn = spufs_signal2_mmap_nopfn, 1046 }; 1047 1048 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma) 1049 { 1050 if (!(vma->vm_flags & VM_SHARED)) 1051 return -EINVAL; 1052 1053 vma->vm_flags |= VM_IO | VM_PFNMAP; 1054 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 1055 | _PAGE_NO_CACHE | _PAGE_GUARDED); 1056 1057 vma->vm_ops = &spufs_signal2_mmap_vmops; 1058 return 0; 1059 } 1060 #else /* SPUFS_MMAP_4K */ 1061 #define spufs_signal2_mmap NULL 1062 #endif /* !SPUFS_MMAP_4K */ 1063 1064 static const struct file_operations spufs_signal2_fops = { 1065 .open = spufs_signal2_open, 1066 .release = spufs_signal2_release, 1067 .read = spufs_signal2_read, 1068 .write = spufs_signal2_write, 1069 .mmap = spufs_signal2_mmap, 1070 }; 1071 1072 static const struct file_operations spufs_signal2_nosched_fops = { 1073 .open = spufs_signal2_open, 1074 .release = spufs_signal2_release, 1075 .write = spufs_signal2_write, 1076 .mmap = spufs_signal2_mmap, 1077 }; 1078 1079 /* 1080 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the 1081 * work of acquiring (or not) the SPU context before calling through 1082 * to the actual get routine. The set routine is called directly. 1083 */ 1084 #define SPU_ATTR_NOACQUIRE 0 1085 #define SPU_ATTR_ACQUIRE 1 1086 #define SPU_ATTR_ACQUIRE_SAVED 2 1087 1088 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \ 1089 static u64 __##__get(void *data) \ 1090 { \ 1091 struct spu_context *ctx = data; \ 1092 u64 ret; \ 1093 \ 1094 if (__acquire == SPU_ATTR_ACQUIRE) { \ 1095 spu_acquire(ctx); \ 1096 ret = __get(ctx); \ 1097 spu_release(ctx); \ 1098 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \ 1099 spu_acquire_saved(ctx); \ 1100 ret = __get(ctx); \ 1101 spu_release_saved(ctx); \ 1102 } else \ 1103 ret = __get(ctx); \ 1104 \ 1105 return ret; \ 1106 } \ 1107 DEFINE_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt); 1108 1109 static void spufs_signal1_type_set(void *data, u64 val) 1110 { 1111 struct spu_context *ctx = data; 1112 1113 spu_acquire(ctx); 1114 ctx->ops->signal1_type_set(ctx, val); 1115 spu_release(ctx); 1116 } 1117 1118 static u64 spufs_signal1_type_get(struct spu_context *ctx) 1119 { 1120 return ctx->ops->signal1_type_get(ctx); 1121 } 1122 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get, 1123 spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE); 1124 1125 1126 static void spufs_signal2_type_set(void *data, u64 val) 1127 { 1128 struct spu_context *ctx = data; 1129 1130 spu_acquire(ctx); 1131 ctx->ops->signal2_type_set(ctx, val); 1132 spu_release(ctx); 1133 } 1134 1135 static u64 spufs_signal2_type_get(struct spu_context *ctx) 1136 { 1137 return ctx->ops->signal2_type_get(ctx); 1138 } 1139 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get, 1140 spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE); 1141 1142 #if SPUFS_MMAP_4K 1143 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma, 1144 unsigned long address) 1145 { 1146 return spufs_ps_nopfn(vma, address, 0x0000, 0x1000); 1147 } 1148 1149 static struct vm_operations_struct spufs_mss_mmap_vmops = { 1150 .nopfn = spufs_mss_mmap_nopfn, 1151 }; 1152 1153 /* 1154 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1155 */ 1156 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma) 1157 { 1158 if (!(vma->vm_flags & VM_SHARED)) 1159 return -EINVAL; 1160 1161 vma->vm_flags |= VM_IO | VM_PFNMAP; 1162 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 1163 | _PAGE_NO_CACHE | _PAGE_GUARDED); 1164 1165 vma->vm_ops = &spufs_mss_mmap_vmops; 1166 return 0; 1167 } 1168 #else /* SPUFS_MMAP_4K */ 1169 #define spufs_mss_mmap NULL 1170 #endif /* !SPUFS_MMAP_4K */ 1171 1172 static int spufs_mss_open(struct inode *inode, struct file *file) 1173 { 1174 struct spufs_inode_info *i = SPUFS_I(inode); 1175 struct spu_context *ctx = i->i_ctx; 1176 1177 file->private_data = i->i_ctx; 1178 1179 mutex_lock(&ctx->mapping_lock); 1180 if (!i->i_openers++) 1181 ctx->mss = inode->i_mapping; 1182 mutex_unlock(&ctx->mapping_lock); 1183 return nonseekable_open(inode, file); 1184 } 1185 1186 static int 1187 spufs_mss_release(struct inode *inode, struct file *file) 1188 { 1189 struct spufs_inode_info *i = SPUFS_I(inode); 1190 struct spu_context *ctx = i->i_ctx; 1191 1192 mutex_lock(&ctx->mapping_lock); 1193 if (!--i->i_openers) 1194 ctx->mss = NULL; 1195 mutex_unlock(&ctx->mapping_lock); 1196 return 0; 1197 } 1198 1199 static const struct file_operations spufs_mss_fops = { 1200 .open = spufs_mss_open, 1201 .release = spufs_mss_release, 1202 .mmap = spufs_mss_mmap, 1203 }; 1204 1205 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma, 1206 unsigned long address) 1207 { 1208 return spufs_ps_nopfn(vma, address, 0x0000, 0x20000); 1209 } 1210 1211 static struct vm_operations_struct spufs_psmap_mmap_vmops = { 1212 .nopfn = spufs_psmap_mmap_nopfn, 1213 }; 1214 1215 /* 1216 * mmap support for full problem state area [0x00000 - 0x1ffff]. 1217 */ 1218 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma) 1219 { 1220 if (!(vma->vm_flags & VM_SHARED)) 1221 return -EINVAL; 1222 1223 vma->vm_flags |= VM_IO | VM_PFNMAP; 1224 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 1225 | _PAGE_NO_CACHE | _PAGE_GUARDED); 1226 1227 vma->vm_ops = &spufs_psmap_mmap_vmops; 1228 return 0; 1229 } 1230 1231 static int spufs_psmap_open(struct inode *inode, struct file *file) 1232 { 1233 struct spufs_inode_info *i = SPUFS_I(inode); 1234 struct spu_context *ctx = i->i_ctx; 1235 1236 mutex_lock(&ctx->mapping_lock); 1237 file->private_data = i->i_ctx; 1238 if (!i->i_openers++) 1239 ctx->psmap = inode->i_mapping; 1240 mutex_unlock(&ctx->mapping_lock); 1241 return nonseekable_open(inode, file); 1242 } 1243 1244 static int 1245 spufs_psmap_release(struct inode *inode, struct file *file) 1246 { 1247 struct spufs_inode_info *i = SPUFS_I(inode); 1248 struct spu_context *ctx = i->i_ctx; 1249 1250 mutex_lock(&ctx->mapping_lock); 1251 if (!--i->i_openers) 1252 ctx->psmap = NULL; 1253 mutex_unlock(&ctx->mapping_lock); 1254 return 0; 1255 } 1256 1257 static const struct file_operations spufs_psmap_fops = { 1258 .open = spufs_psmap_open, 1259 .release = spufs_psmap_release, 1260 .mmap = spufs_psmap_mmap, 1261 }; 1262 1263 1264 #if SPUFS_MMAP_4K 1265 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma, 1266 unsigned long address) 1267 { 1268 return spufs_ps_nopfn(vma, address, 0x3000, 0x1000); 1269 } 1270 1271 static struct vm_operations_struct spufs_mfc_mmap_vmops = { 1272 .nopfn = spufs_mfc_mmap_nopfn, 1273 }; 1274 1275 /* 1276 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff]. 1277 */ 1278 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma) 1279 { 1280 if (!(vma->vm_flags & VM_SHARED)) 1281 return -EINVAL; 1282 1283 vma->vm_flags |= VM_IO | VM_PFNMAP; 1284 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot) 1285 | _PAGE_NO_CACHE | _PAGE_GUARDED); 1286 1287 vma->vm_ops = &spufs_mfc_mmap_vmops; 1288 return 0; 1289 } 1290 #else /* SPUFS_MMAP_4K */ 1291 #define spufs_mfc_mmap NULL 1292 #endif /* !SPUFS_MMAP_4K */ 1293 1294 static int spufs_mfc_open(struct inode *inode, struct file *file) 1295 { 1296 struct spufs_inode_info *i = SPUFS_I(inode); 1297 struct spu_context *ctx = i->i_ctx; 1298 1299 /* we don't want to deal with DMA into other processes */ 1300 if (ctx->owner != current->mm) 1301 return -EINVAL; 1302 1303 if (atomic_read(&inode->i_count) != 1) 1304 return -EBUSY; 1305 1306 mutex_lock(&ctx->mapping_lock); 1307 file->private_data = ctx; 1308 if (!i->i_openers++) 1309 ctx->mfc = inode->i_mapping; 1310 mutex_unlock(&ctx->mapping_lock); 1311 return nonseekable_open(inode, file); 1312 } 1313 1314 static int 1315 spufs_mfc_release(struct inode *inode, struct file *file) 1316 { 1317 struct spufs_inode_info *i = SPUFS_I(inode); 1318 struct spu_context *ctx = i->i_ctx; 1319 1320 mutex_lock(&ctx->mapping_lock); 1321 if (!--i->i_openers) 1322 ctx->mfc = NULL; 1323 mutex_unlock(&ctx->mapping_lock); 1324 return 0; 1325 } 1326 1327 /* interrupt-level mfc callback function. */ 1328 void spufs_mfc_callback(struct spu *spu) 1329 { 1330 struct spu_context *ctx = spu->ctx; 1331 1332 wake_up_all(&ctx->mfc_wq); 1333 1334 pr_debug("%s %s\n", __FUNCTION__, spu->name); 1335 if (ctx->mfc_fasync) { 1336 u32 free_elements, tagstatus; 1337 unsigned int mask; 1338 1339 /* no need for spu_acquire in interrupt context */ 1340 free_elements = ctx->ops->get_mfc_free_elements(ctx); 1341 tagstatus = ctx->ops->read_mfc_tagstatus(ctx); 1342 1343 mask = 0; 1344 if (free_elements & 0xffff) 1345 mask |= POLLOUT; 1346 if (tagstatus & ctx->tagwait) 1347 mask |= POLLIN; 1348 1349 kill_fasync(&ctx->mfc_fasync, SIGIO, mask); 1350 } 1351 } 1352 1353 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status) 1354 { 1355 /* See if there is one tag group is complete */ 1356 /* FIXME we need locking around tagwait */ 1357 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait; 1358 ctx->tagwait &= ~*status; 1359 if (*status) 1360 return 1; 1361 1362 /* enable interrupt waiting for any tag group, 1363 may silently fail if interrupts are already enabled */ 1364 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1365 return 0; 1366 } 1367 1368 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer, 1369 size_t size, loff_t *pos) 1370 { 1371 struct spu_context *ctx = file->private_data; 1372 int ret = -EINVAL; 1373 u32 status; 1374 1375 if (size != 4) 1376 goto out; 1377 1378 spu_acquire(ctx); 1379 if (file->f_flags & O_NONBLOCK) { 1380 status = ctx->ops->read_mfc_tagstatus(ctx); 1381 if (!(status & ctx->tagwait)) 1382 ret = -EAGAIN; 1383 else 1384 ctx->tagwait &= ~status; 1385 } else { 1386 ret = spufs_wait(ctx->mfc_wq, 1387 spufs_read_mfc_tagstatus(ctx, &status)); 1388 } 1389 spu_release(ctx); 1390 1391 if (ret) 1392 goto out; 1393 1394 ret = 4; 1395 if (copy_to_user(buffer, &status, 4)) 1396 ret = -EFAULT; 1397 1398 out: 1399 return ret; 1400 } 1401 1402 static int spufs_check_valid_dma(struct mfc_dma_command *cmd) 1403 { 1404 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa, 1405 cmd->ea, cmd->size, cmd->tag, cmd->cmd); 1406 1407 switch (cmd->cmd) { 1408 case MFC_PUT_CMD: 1409 case MFC_PUTF_CMD: 1410 case MFC_PUTB_CMD: 1411 case MFC_GET_CMD: 1412 case MFC_GETF_CMD: 1413 case MFC_GETB_CMD: 1414 break; 1415 default: 1416 pr_debug("invalid DMA opcode %x\n", cmd->cmd); 1417 return -EIO; 1418 } 1419 1420 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) { 1421 pr_debug("invalid DMA alignment, ea %lx lsa %x\n", 1422 cmd->ea, cmd->lsa); 1423 return -EIO; 1424 } 1425 1426 switch (cmd->size & 0xf) { 1427 case 1: 1428 break; 1429 case 2: 1430 if (cmd->lsa & 1) 1431 goto error; 1432 break; 1433 case 4: 1434 if (cmd->lsa & 3) 1435 goto error; 1436 break; 1437 case 8: 1438 if (cmd->lsa & 7) 1439 goto error; 1440 break; 1441 case 0: 1442 if (cmd->lsa & 15) 1443 goto error; 1444 break; 1445 error: 1446 default: 1447 pr_debug("invalid DMA alignment %x for size %x\n", 1448 cmd->lsa & 0xf, cmd->size); 1449 return -EIO; 1450 } 1451 1452 if (cmd->size > 16 * 1024) { 1453 pr_debug("invalid DMA size %x\n", cmd->size); 1454 return -EIO; 1455 } 1456 1457 if (cmd->tag & 0xfff0) { 1458 /* we reserve the higher tag numbers for kernel use */ 1459 pr_debug("invalid DMA tag\n"); 1460 return -EIO; 1461 } 1462 1463 if (cmd->class) { 1464 /* not supported in this version */ 1465 pr_debug("invalid DMA class\n"); 1466 return -EIO; 1467 } 1468 1469 return 0; 1470 } 1471 1472 static int spu_send_mfc_command(struct spu_context *ctx, 1473 struct mfc_dma_command cmd, 1474 int *error) 1475 { 1476 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1477 if (*error == -EAGAIN) { 1478 /* wait for any tag group to complete 1479 so we have space for the new command */ 1480 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1); 1481 /* try again, because the queue might be 1482 empty again */ 1483 *error = ctx->ops->send_mfc_command(ctx, &cmd); 1484 if (*error == -EAGAIN) 1485 return 0; 1486 } 1487 return 1; 1488 } 1489 1490 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer, 1491 size_t size, loff_t *pos) 1492 { 1493 struct spu_context *ctx = file->private_data; 1494 struct mfc_dma_command cmd; 1495 int ret = -EINVAL; 1496 1497 if (size != sizeof cmd) 1498 goto out; 1499 1500 ret = -EFAULT; 1501 if (copy_from_user(&cmd, buffer, sizeof cmd)) 1502 goto out; 1503 1504 ret = spufs_check_valid_dma(&cmd); 1505 if (ret) 1506 goto out; 1507 1508 ret = spu_acquire_runnable(ctx, 0); 1509 if (ret) 1510 goto out; 1511 1512 if (file->f_flags & O_NONBLOCK) { 1513 ret = ctx->ops->send_mfc_command(ctx, &cmd); 1514 } else { 1515 int status; 1516 ret = spufs_wait(ctx->mfc_wq, 1517 spu_send_mfc_command(ctx, cmd, &status)); 1518 if (status) 1519 ret = status; 1520 } 1521 1522 if (ret) 1523 goto out_unlock; 1524 1525 ctx->tagwait |= 1 << cmd.tag; 1526 ret = size; 1527 1528 out_unlock: 1529 spu_release(ctx); 1530 out: 1531 return ret; 1532 } 1533 1534 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait) 1535 { 1536 struct spu_context *ctx = file->private_data; 1537 u32 free_elements, tagstatus; 1538 unsigned int mask; 1539 1540 poll_wait(file, &ctx->mfc_wq, wait); 1541 1542 spu_acquire(ctx); 1543 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2); 1544 free_elements = ctx->ops->get_mfc_free_elements(ctx); 1545 tagstatus = ctx->ops->read_mfc_tagstatus(ctx); 1546 spu_release(ctx); 1547 1548 mask = 0; 1549 if (free_elements & 0xffff) 1550 mask |= POLLOUT | POLLWRNORM; 1551 if (tagstatus & ctx->tagwait) 1552 mask |= POLLIN | POLLRDNORM; 1553 1554 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__, 1555 free_elements, tagstatus, ctx->tagwait); 1556 1557 return mask; 1558 } 1559 1560 static int spufs_mfc_flush(struct file *file, fl_owner_t id) 1561 { 1562 struct spu_context *ctx = file->private_data; 1563 int ret; 1564 1565 spu_acquire(ctx); 1566 #if 0 1567 /* this currently hangs */ 1568 ret = spufs_wait(ctx->mfc_wq, 1569 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2)); 1570 if (ret) 1571 goto out; 1572 ret = spufs_wait(ctx->mfc_wq, 1573 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait); 1574 out: 1575 #else 1576 ret = 0; 1577 #endif 1578 spu_release(ctx); 1579 1580 return ret; 1581 } 1582 1583 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry, 1584 int datasync) 1585 { 1586 return spufs_mfc_flush(file, NULL); 1587 } 1588 1589 static int spufs_mfc_fasync(int fd, struct file *file, int on) 1590 { 1591 struct spu_context *ctx = file->private_data; 1592 1593 return fasync_helper(fd, file, on, &ctx->mfc_fasync); 1594 } 1595 1596 static const struct file_operations spufs_mfc_fops = { 1597 .open = spufs_mfc_open, 1598 .release = spufs_mfc_release, 1599 .read = spufs_mfc_read, 1600 .write = spufs_mfc_write, 1601 .poll = spufs_mfc_poll, 1602 .flush = spufs_mfc_flush, 1603 .fsync = spufs_mfc_fsync, 1604 .fasync = spufs_mfc_fasync, 1605 .mmap = spufs_mfc_mmap, 1606 }; 1607 1608 static void spufs_npc_set(void *data, u64 val) 1609 { 1610 struct spu_context *ctx = data; 1611 spu_acquire(ctx); 1612 ctx->ops->npc_write(ctx, val); 1613 spu_release(ctx); 1614 } 1615 1616 static u64 spufs_npc_get(struct spu_context *ctx) 1617 { 1618 return ctx->ops->npc_read(ctx); 1619 } 1620 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set, 1621 "0x%llx\n", SPU_ATTR_ACQUIRE); 1622 1623 static void spufs_decr_set(void *data, u64 val) 1624 { 1625 struct spu_context *ctx = data; 1626 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1627 spu_acquire_saved(ctx); 1628 lscsa->decr.slot[0] = (u32) val; 1629 spu_release_saved(ctx); 1630 } 1631 1632 static u64 spufs_decr_get(struct spu_context *ctx) 1633 { 1634 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1635 return lscsa->decr.slot[0]; 1636 } 1637 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set, 1638 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED); 1639 1640 static void spufs_decr_status_set(void *data, u64 val) 1641 { 1642 struct spu_context *ctx = data; 1643 spu_acquire_saved(ctx); 1644 if (val) 1645 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING; 1646 else 1647 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING; 1648 spu_release_saved(ctx); 1649 } 1650 1651 static u64 spufs_decr_status_get(struct spu_context *ctx) 1652 { 1653 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) 1654 return SPU_DECR_STATUS_RUNNING; 1655 else 1656 return 0; 1657 } 1658 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get, 1659 spufs_decr_status_set, "0x%llx\n", 1660 SPU_ATTR_ACQUIRE_SAVED); 1661 1662 static void spufs_event_mask_set(void *data, u64 val) 1663 { 1664 struct spu_context *ctx = data; 1665 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1666 spu_acquire_saved(ctx); 1667 lscsa->event_mask.slot[0] = (u32) val; 1668 spu_release_saved(ctx); 1669 } 1670 1671 static u64 spufs_event_mask_get(struct spu_context *ctx) 1672 { 1673 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1674 return lscsa->event_mask.slot[0]; 1675 } 1676 1677 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get, 1678 spufs_event_mask_set, "0x%llx\n", 1679 SPU_ATTR_ACQUIRE_SAVED); 1680 1681 static u64 spufs_event_status_get(struct spu_context *ctx) 1682 { 1683 struct spu_state *state = &ctx->csa; 1684 u64 stat; 1685 stat = state->spu_chnlcnt_RW[0]; 1686 if (stat) 1687 return state->spu_chnldata_RW[0]; 1688 return 0; 1689 } 1690 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get, 1691 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 1692 1693 static void spufs_srr0_set(void *data, u64 val) 1694 { 1695 struct spu_context *ctx = data; 1696 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1697 spu_acquire_saved(ctx); 1698 lscsa->srr0.slot[0] = (u32) val; 1699 spu_release_saved(ctx); 1700 } 1701 1702 static u64 spufs_srr0_get(struct spu_context *ctx) 1703 { 1704 struct spu_lscsa *lscsa = ctx->csa.lscsa; 1705 return lscsa->srr0.slot[0]; 1706 } 1707 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set, 1708 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED) 1709 1710 static u64 spufs_id_get(struct spu_context *ctx) 1711 { 1712 u64 num; 1713 1714 if (ctx->state == SPU_STATE_RUNNABLE) 1715 num = ctx->spu->number; 1716 else 1717 num = (unsigned int)-1; 1718 1719 return num; 1720 } 1721 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n", 1722 SPU_ATTR_ACQUIRE) 1723 1724 static u64 spufs_object_id_get(struct spu_context *ctx) 1725 { 1726 /* FIXME: Should there really be no locking here? */ 1727 return ctx->object_id; 1728 } 1729 1730 static void spufs_object_id_set(void *data, u64 id) 1731 { 1732 struct spu_context *ctx = data; 1733 ctx->object_id = id; 1734 } 1735 1736 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get, 1737 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE); 1738 1739 static u64 spufs_lslr_get(struct spu_context *ctx) 1740 { 1741 return ctx->csa.priv2.spu_lslr_RW; 1742 } 1743 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n", 1744 SPU_ATTR_ACQUIRE_SAVED); 1745 1746 static int spufs_info_open(struct inode *inode, struct file *file) 1747 { 1748 struct spufs_inode_info *i = SPUFS_I(inode); 1749 struct spu_context *ctx = i->i_ctx; 1750 file->private_data = ctx; 1751 return 0; 1752 } 1753 1754 static int spufs_caps_show(struct seq_file *s, void *private) 1755 { 1756 struct spu_context *ctx = s->private; 1757 1758 if (!(ctx->flags & SPU_CREATE_NOSCHED)) 1759 seq_puts(s, "sched\n"); 1760 if (!(ctx->flags & SPU_CREATE_ISOLATE)) 1761 seq_puts(s, "step\n"); 1762 return 0; 1763 } 1764 1765 static int spufs_caps_open(struct inode *inode, struct file *file) 1766 { 1767 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx); 1768 } 1769 1770 static const struct file_operations spufs_caps_fops = { 1771 .open = spufs_caps_open, 1772 .read = seq_read, 1773 .llseek = seq_lseek, 1774 .release = single_release, 1775 }; 1776 1777 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx, 1778 char __user *buf, size_t len, loff_t *pos) 1779 { 1780 u32 mbox_stat; 1781 u32 data; 1782 1783 mbox_stat = ctx->csa.prob.mb_stat_R; 1784 if (mbox_stat & 0x0000ff) { 1785 data = ctx->csa.prob.pu_mb_R; 1786 } 1787 1788 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 1789 } 1790 1791 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf, 1792 size_t len, loff_t *pos) 1793 { 1794 int ret; 1795 struct spu_context *ctx = file->private_data; 1796 1797 if (!access_ok(VERIFY_WRITE, buf, len)) 1798 return -EFAULT; 1799 1800 spu_acquire_saved(ctx); 1801 spin_lock(&ctx->csa.register_lock); 1802 ret = __spufs_mbox_info_read(ctx, buf, len, pos); 1803 spin_unlock(&ctx->csa.register_lock); 1804 spu_release_saved(ctx); 1805 1806 return ret; 1807 } 1808 1809 static const struct file_operations spufs_mbox_info_fops = { 1810 .open = spufs_info_open, 1811 .read = spufs_mbox_info_read, 1812 .llseek = generic_file_llseek, 1813 }; 1814 1815 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx, 1816 char __user *buf, size_t len, loff_t *pos) 1817 { 1818 u32 ibox_stat; 1819 u32 data; 1820 1821 ibox_stat = ctx->csa.prob.mb_stat_R; 1822 if (ibox_stat & 0xff0000) { 1823 data = ctx->csa.priv2.puint_mb_R; 1824 } 1825 1826 return simple_read_from_buffer(buf, len, pos, &data, sizeof data); 1827 } 1828 1829 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf, 1830 size_t len, loff_t *pos) 1831 { 1832 struct spu_context *ctx = file->private_data; 1833 int ret; 1834 1835 if (!access_ok(VERIFY_WRITE, buf, len)) 1836 return -EFAULT; 1837 1838 spu_acquire_saved(ctx); 1839 spin_lock(&ctx->csa.register_lock); 1840 ret = __spufs_ibox_info_read(ctx, buf, len, pos); 1841 spin_unlock(&ctx->csa.register_lock); 1842 spu_release_saved(ctx); 1843 1844 return ret; 1845 } 1846 1847 static const struct file_operations spufs_ibox_info_fops = { 1848 .open = spufs_info_open, 1849 .read = spufs_ibox_info_read, 1850 .llseek = generic_file_llseek, 1851 }; 1852 1853 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx, 1854 char __user *buf, size_t len, loff_t *pos) 1855 { 1856 int i, cnt; 1857 u32 data[4]; 1858 u32 wbox_stat; 1859 1860 wbox_stat = ctx->csa.prob.mb_stat_R; 1861 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8); 1862 for (i = 0; i < cnt; i++) { 1863 data[i] = ctx->csa.spu_mailbox_data[i]; 1864 } 1865 1866 return simple_read_from_buffer(buf, len, pos, &data, 1867 cnt * sizeof(u32)); 1868 } 1869 1870 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf, 1871 size_t len, loff_t *pos) 1872 { 1873 struct spu_context *ctx = file->private_data; 1874 int ret; 1875 1876 if (!access_ok(VERIFY_WRITE, buf, len)) 1877 return -EFAULT; 1878 1879 spu_acquire_saved(ctx); 1880 spin_lock(&ctx->csa.register_lock); 1881 ret = __spufs_wbox_info_read(ctx, buf, len, pos); 1882 spin_unlock(&ctx->csa.register_lock); 1883 spu_release_saved(ctx); 1884 1885 return ret; 1886 } 1887 1888 static const struct file_operations spufs_wbox_info_fops = { 1889 .open = spufs_info_open, 1890 .read = spufs_wbox_info_read, 1891 .llseek = generic_file_llseek, 1892 }; 1893 1894 static ssize_t __spufs_dma_info_read(struct spu_context *ctx, 1895 char __user *buf, size_t len, loff_t *pos) 1896 { 1897 struct spu_dma_info info; 1898 struct mfc_cq_sr *qp, *spuqp; 1899 int i; 1900 1901 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW; 1902 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0]; 1903 info.dma_info_status = ctx->csa.spu_chnldata_RW[24]; 1904 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25]; 1905 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27]; 1906 for (i = 0; i < 16; i++) { 1907 qp = &info.dma_info_command_data[i]; 1908 spuqp = &ctx->csa.priv2.spuq[i]; 1909 1910 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW; 1911 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW; 1912 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW; 1913 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW; 1914 } 1915 1916 return simple_read_from_buffer(buf, len, pos, &info, 1917 sizeof info); 1918 } 1919 1920 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf, 1921 size_t len, loff_t *pos) 1922 { 1923 struct spu_context *ctx = file->private_data; 1924 int ret; 1925 1926 if (!access_ok(VERIFY_WRITE, buf, len)) 1927 return -EFAULT; 1928 1929 spu_acquire_saved(ctx); 1930 spin_lock(&ctx->csa.register_lock); 1931 ret = __spufs_dma_info_read(ctx, buf, len, pos); 1932 spin_unlock(&ctx->csa.register_lock); 1933 spu_release_saved(ctx); 1934 1935 return ret; 1936 } 1937 1938 static const struct file_operations spufs_dma_info_fops = { 1939 .open = spufs_info_open, 1940 .read = spufs_dma_info_read, 1941 }; 1942 1943 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx, 1944 char __user *buf, size_t len, loff_t *pos) 1945 { 1946 struct spu_proxydma_info info; 1947 struct mfc_cq_sr *qp, *puqp; 1948 int ret = sizeof info; 1949 int i; 1950 1951 if (len < ret) 1952 return -EINVAL; 1953 1954 if (!access_ok(VERIFY_WRITE, buf, len)) 1955 return -EFAULT; 1956 1957 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW; 1958 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW; 1959 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R; 1960 for (i = 0; i < 8; i++) { 1961 qp = &info.proxydma_info_command_data[i]; 1962 puqp = &ctx->csa.priv2.puq[i]; 1963 1964 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW; 1965 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW; 1966 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW; 1967 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW; 1968 } 1969 1970 return simple_read_from_buffer(buf, len, pos, &info, 1971 sizeof info); 1972 } 1973 1974 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf, 1975 size_t len, loff_t *pos) 1976 { 1977 struct spu_context *ctx = file->private_data; 1978 int ret; 1979 1980 spu_acquire_saved(ctx); 1981 spin_lock(&ctx->csa.register_lock); 1982 ret = __spufs_proxydma_info_read(ctx, buf, len, pos); 1983 spin_unlock(&ctx->csa.register_lock); 1984 spu_release_saved(ctx); 1985 1986 return ret; 1987 } 1988 1989 static const struct file_operations spufs_proxydma_info_fops = { 1990 .open = spufs_info_open, 1991 .read = spufs_proxydma_info_read, 1992 }; 1993 1994 static int spufs_show_tid(struct seq_file *s, void *private) 1995 { 1996 struct spu_context *ctx = s->private; 1997 1998 seq_printf(s, "%d\n", ctx->tid); 1999 return 0; 2000 } 2001 2002 static int spufs_tid_open(struct inode *inode, struct file *file) 2003 { 2004 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx); 2005 } 2006 2007 static const struct file_operations spufs_tid_fops = { 2008 .open = spufs_tid_open, 2009 .read = seq_read, 2010 .llseek = seq_lseek, 2011 .release = single_release, 2012 }; 2013 2014 static const char *ctx_state_names[] = { 2015 "user", "system", "iowait", "loaded" 2016 }; 2017 2018 static unsigned long long spufs_acct_time(struct spu_context *ctx, 2019 enum spu_utilization_state state) 2020 { 2021 struct timespec ts; 2022 unsigned long long time = ctx->stats.times[state]; 2023 2024 /* 2025 * In general, utilization statistics are updated by the controlling 2026 * thread as the spu context moves through various well defined 2027 * state transitions, but if the context is lazily loaded its 2028 * utilization statistics are not updated as the controlling thread 2029 * is not tightly coupled with the execution of the spu context. We 2030 * calculate and apply the time delta from the last recorded state 2031 * of the spu context. 2032 */ 2033 if (ctx->spu && ctx->stats.util_state == state) { 2034 ktime_get_ts(&ts); 2035 time += timespec_to_ns(&ts) - ctx->stats.tstamp; 2036 } 2037 2038 return time / NSEC_PER_MSEC; 2039 } 2040 2041 static unsigned long long spufs_slb_flts(struct spu_context *ctx) 2042 { 2043 unsigned long long slb_flts = ctx->stats.slb_flt; 2044 2045 if (ctx->state == SPU_STATE_RUNNABLE) { 2046 slb_flts += (ctx->spu->stats.slb_flt - 2047 ctx->stats.slb_flt_base); 2048 } 2049 2050 return slb_flts; 2051 } 2052 2053 static unsigned long long spufs_class2_intrs(struct spu_context *ctx) 2054 { 2055 unsigned long long class2_intrs = ctx->stats.class2_intr; 2056 2057 if (ctx->state == SPU_STATE_RUNNABLE) { 2058 class2_intrs += (ctx->spu->stats.class2_intr - 2059 ctx->stats.class2_intr_base); 2060 } 2061 2062 return class2_intrs; 2063 } 2064 2065 2066 static int spufs_show_stat(struct seq_file *s, void *private) 2067 { 2068 struct spu_context *ctx = s->private; 2069 2070 spu_acquire(ctx); 2071 seq_printf(s, "%s %llu %llu %llu %llu " 2072 "%llu %llu %llu %llu %llu %llu %llu %llu\n", 2073 ctx_state_names[ctx->stats.util_state], 2074 spufs_acct_time(ctx, SPU_UTIL_USER), 2075 spufs_acct_time(ctx, SPU_UTIL_SYSTEM), 2076 spufs_acct_time(ctx, SPU_UTIL_IOWAIT), 2077 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED), 2078 ctx->stats.vol_ctx_switch, 2079 ctx->stats.invol_ctx_switch, 2080 spufs_slb_flts(ctx), 2081 ctx->stats.hash_flt, 2082 ctx->stats.min_flt, 2083 ctx->stats.maj_flt, 2084 spufs_class2_intrs(ctx), 2085 ctx->stats.libassist); 2086 spu_release(ctx); 2087 return 0; 2088 } 2089 2090 static int spufs_stat_open(struct inode *inode, struct file *file) 2091 { 2092 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx); 2093 } 2094 2095 static const struct file_operations spufs_stat_fops = { 2096 .open = spufs_stat_open, 2097 .read = seq_read, 2098 .llseek = seq_lseek, 2099 .release = single_release, 2100 }; 2101 2102 2103 struct tree_descr spufs_dir_contents[] = { 2104 { "capabilities", &spufs_caps_fops, 0444, }, 2105 { "mem", &spufs_mem_fops, 0666, }, 2106 { "regs", &spufs_regs_fops, 0666, }, 2107 { "mbox", &spufs_mbox_fops, 0444, }, 2108 { "ibox", &spufs_ibox_fops, 0444, }, 2109 { "wbox", &spufs_wbox_fops, 0222, }, 2110 { "mbox_stat", &spufs_mbox_stat_fops, 0444, }, 2111 { "ibox_stat", &spufs_ibox_stat_fops, 0444, }, 2112 { "wbox_stat", &spufs_wbox_stat_fops, 0444, }, 2113 { "signal1", &spufs_signal1_fops, 0666, }, 2114 { "signal2", &spufs_signal2_fops, 0666, }, 2115 { "signal1_type", &spufs_signal1_type, 0666, }, 2116 { "signal2_type", &spufs_signal2_type, 0666, }, 2117 { "cntl", &spufs_cntl_fops, 0666, }, 2118 { "fpcr", &spufs_fpcr_fops, 0666, }, 2119 { "lslr", &spufs_lslr_ops, 0444, }, 2120 { "mfc", &spufs_mfc_fops, 0666, }, 2121 { "mss", &spufs_mss_fops, 0666, }, 2122 { "npc", &spufs_npc_ops, 0666, }, 2123 { "srr0", &spufs_srr0_ops, 0666, }, 2124 { "decr", &spufs_decr_ops, 0666, }, 2125 { "decr_status", &spufs_decr_status_ops, 0666, }, 2126 { "event_mask", &spufs_event_mask_ops, 0666, }, 2127 { "event_status", &spufs_event_status_ops, 0444, }, 2128 { "psmap", &spufs_psmap_fops, 0666, }, 2129 { "phys-id", &spufs_id_ops, 0666, }, 2130 { "object-id", &spufs_object_id_ops, 0666, }, 2131 { "mbox_info", &spufs_mbox_info_fops, 0444, }, 2132 { "ibox_info", &spufs_ibox_info_fops, 0444, }, 2133 { "wbox_info", &spufs_wbox_info_fops, 0444, }, 2134 { "dma_info", &spufs_dma_info_fops, 0444, }, 2135 { "proxydma_info", &spufs_proxydma_info_fops, 0444, }, 2136 { "tid", &spufs_tid_fops, 0444, }, 2137 { "stat", &spufs_stat_fops, 0444, }, 2138 {}, 2139 }; 2140 2141 struct tree_descr spufs_dir_nosched_contents[] = { 2142 { "capabilities", &spufs_caps_fops, 0444, }, 2143 { "mem", &spufs_mem_fops, 0666, }, 2144 { "mbox", &spufs_mbox_fops, 0444, }, 2145 { "ibox", &spufs_ibox_fops, 0444, }, 2146 { "wbox", &spufs_wbox_fops, 0222, }, 2147 { "mbox_stat", &spufs_mbox_stat_fops, 0444, }, 2148 { "ibox_stat", &spufs_ibox_stat_fops, 0444, }, 2149 { "wbox_stat", &spufs_wbox_stat_fops, 0444, }, 2150 { "signal1", &spufs_signal1_nosched_fops, 0222, }, 2151 { "signal2", &spufs_signal2_nosched_fops, 0222, }, 2152 { "signal1_type", &spufs_signal1_type, 0666, }, 2153 { "signal2_type", &spufs_signal2_type, 0666, }, 2154 { "mss", &spufs_mss_fops, 0666, }, 2155 { "mfc", &spufs_mfc_fops, 0666, }, 2156 { "cntl", &spufs_cntl_fops, 0666, }, 2157 { "npc", &spufs_npc_ops, 0666, }, 2158 { "psmap", &spufs_psmap_fops, 0666, }, 2159 { "phys-id", &spufs_id_ops, 0666, }, 2160 { "object-id", &spufs_object_id_ops, 0666, }, 2161 { "tid", &spufs_tid_fops, 0444, }, 2162 { "stat", &spufs_stat_fops, 0444, }, 2163 {}, 2164 }; 2165 2166 struct spufs_coredump_reader spufs_coredump_read[] = { 2167 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])}, 2168 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) }, 2169 { "lslr", NULL, spufs_lslr_get, 19 }, 2170 { "decr", NULL, spufs_decr_get, 19 }, 2171 { "decr_status", NULL, spufs_decr_status_get, 19 }, 2172 { "mem", __spufs_mem_read, NULL, LS_SIZE, }, 2173 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) }, 2174 { "signal1_type", NULL, spufs_signal1_type_get, 19 }, 2175 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) }, 2176 { "signal2_type", NULL, spufs_signal2_type_get, 19 }, 2177 { "event_mask", NULL, spufs_event_mask_get, 19 }, 2178 { "event_status", NULL, spufs_event_status_get, 19 }, 2179 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) }, 2180 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) }, 2181 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)}, 2182 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)}, 2183 { "proxydma_info", __spufs_proxydma_info_read, 2184 NULL, sizeof(struct spu_proxydma_info)}, 2185 { "object-id", NULL, spufs_object_id_get, 19 }, 2186 { "npc", NULL, spufs_npc_get, 19 }, 2187 { NULL }, 2188 }; 2189