xref: /openbmc/linux/arch/powerpc/platforms/cell/spu_manage.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * spu management operations for of based platforms
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  * Copyright 2006 Sony Corp.
6  * (C) Copyright 2007 TOSHIBA CORPORATION
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; version 2 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 
22 #include <linux/interrupt.h>
23 #include <linux/list.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/wait.h>
27 #include <linux/mm.h>
28 #include <linux/io.h>
29 #include <linux/mutex.h>
30 #include <linux/device.h>
31 
32 #include <asm/spu.h>
33 #include <asm/spu_priv1.h>
34 #include <asm/firmware.h>
35 #include <asm/prom.h>
36 
37 #include "spufs/spufs.h"
38 #include "interrupt.h"
39 
40 struct device_node *spu_devnode(struct spu *spu)
41 {
42 	return spu->devnode;
43 }
44 
45 EXPORT_SYMBOL_GPL(spu_devnode);
46 
47 static u64 __init find_spu_unit_number(struct device_node *spe)
48 {
49 	const unsigned int *prop;
50 	int proplen;
51 
52 	/* new device trees should provide the physical-id attribute */
53 	prop = of_get_property(spe, "physical-id", &proplen);
54 	if (proplen == 4)
55 		return (u64)*prop;
56 
57 	/* celleb device tree provides the unit-id */
58 	prop = of_get_property(spe, "unit-id", &proplen);
59 	if (proplen == 4)
60 		return (u64)*prop;
61 
62 	/* legacy device trees provide the id in the reg attribute */
63 	prop = of_get_property(spe, "reg", &proplen);
64 	if (proplen == 4)
65 		return (u64)*prop;
66 
67 	return 0;
68 }
69 
70 static void spu_unmap(struct spu *spu)
71 {
72 	if (!firmware_has_feature(FW_FEATURE_LPAR))
73 		iounmap(spu->priv1);
74 	iounmap(spu->priv2);
75 	iounmap(spu->problem);
76 	iounmap((__force u8 __iomem *)spu->local_store);
77 }
78 
79 static int __init spu_map_interrupts_old(struct spu *spu,
80 	struct device_node *np)
81 {
82 	unsigned int isrc;
83 	const u32 *tmp;
84 	int nid;
85 
86 	/* Get the interrupt source unit from the device-tree */
87 	tmp = of_get_property(np, "isrc", NULL);
88 	if (!tmp)
89 		return -ENODEV;
90 	isrc = tmp[0];
91 
92 	tmp = of_get_property(np->parent->parent, "node-id", NULL);
93 	if (!tmp) {
94 		printk(KERN_WARNING "%s: can't find node-id\n", __func__);
95 		nid = spu->node;
96 	} else
97 		nid = tmp[0];
98 
99 	/* Add the node number */
100 	isrc |= nid << IIC_IRQ_NODE_SHIFT;
101 
102 	/* Now map interrupts of all 3 classes */
103 	spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
104 	spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
105 	spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
106 
107 	/* Right now, we only fail if class 2 failed */
108 	return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
109 }
110 
111 static void __iomem * __init spu_map_prop_old(struct spu *spu,
112 					      struct device_node *n,
113 					      const char *name)
114 {
115 	const struct address_prop {
116 		unsigned long address;
117 		unsigned int len;
118 	} __attribute__((packed)) *prop;
119 	int proplen;
120 
121 	prop = of_get_property(n, name, &proplen);
122 	if (prop == NULL || proplen != sizeof (struct address_prop))
123 		return NULL;
124 
125 	return ioremap(prop->address, prop->len);
126 }
127 
128 static int __init spu_map_device_old(struct spu *spu)
129 {
130 	struct device_node *node = spu->devnode;
131 	const char *prop;
132 	int ret;
133 
134 	ret = -ENODEV;
135 	spu->name = of_get_property(node, "name", NULL);
136 	if (!spu->name)
137 		goto out;
138 
139 	prop = of_get_property(node, "local-store", NULL);
140 	if (!prop)
141 		goto out;
142 	spu->local_store_phys = *(unsigned long *)prop;
143 
144 	/* we use local store as ram, not io memory */
145 	spu->local_store = (void __force *)
146 		spu_map_prop_old(spu, node, "local-store");
147 	if (!spu->local_store)
148 		goto out;
149 
150 	prop = of_get_property(node, "problem", NULL);
151 	if (!prop)
152 		goto out_unmap;
153 	spu->problem_phys = *(unsigned long *)prop;
154 
155 	spu->problem = spu_map_prop_old(spu, node, "problem");
156 	if (!spu->problem)
157 		goto out_unmap;
158 
159 	spu->priv2 = spu_map_prop_old(spu, node, "priv2");
160 	if (!spu->priv2)
161 		goto out_unmap;
162 
163 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
164 		spu->priv1 = spu_map_prop_old(spu, node, "priv1");
165 		if (!spu->priv1)
166 			goto out_unmap;
167 	}
168 
169 	ret = 0;
170 	goto out;
171 
172 out_unmap:
173 	spu_unmap(spu);
174 out:
175 	return ret;
176 }
177 
178 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
179 {
180 	struct of_phandle_args oirq;
181 	int ret;
182 	int i;
183 
184 	for (i=0; i < 3; i++) {
185 		ret = of_irq_parse_one(np, i, &oirq);
186 		if (ret) {
187 			pr_debug("spu_new: failed to get irq %d\n", i);
188 			goto err;
189 		}
190 		ret = -EINVAL;
191 		pr_debug("  irq %d no 0x%x on %s\n", i, oirq.args[0],
192 			 oirq.np->full_name);
193 		spu->irqs[i] = irq_create_of_mapping(&oirq);
194 		if (spu->irqs[i] == NO_IRQ) {
195 			pr_debug("spu_new: failed to map it !\n");
196 			goto err;
197 		}
198 	}
199 	return 0;
200 
201 err:
202 	pr_debug("failed to map irq %x for spu %s\n", *oirq.args,
203 		spu->name);
204 	for (; i >= 0; i--) {
205 		if (spu->irqs[i] != NO_IRQ)
206 			irq_dispose_mapping(spu->irqs[i]);
207 	}
208 	return ret;
209 }
210 
211 static int spu_map_resource(struct spu *spu, int nr,
212 			    void __iomem** virt, unsigned long *phys)
213 {
214 	struct device_node *np = spu->devnode;
215 	struct resource resource = { };
216 	unsigned long len;
217 	int ret;
218 
219 	ret = of_address_to_resource(np, nr, &resource);
220 	if (ret)
221 		return ret;
222 	if (phys)
223 		*phys = resource.start;
224 	len = resource_size(&resource);
225 	*virt = ioremap(resource.start, len);
226 	if (!*virt)
227 		return -EINVAL;
228 	return 0;
229 }
230 
231 static int __init spu_map_device(struct spu *spu)
232 {
233 	struct device_node *np = spu->devnode;
234 	int ret = -ENODEV;
235 
236 	spu->name = of_get_property(np, "name", NULL);
237 	if (!spu->name)
238 		goto out;
239 
240 	ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
241 			       &spu->local_store_phys);
242 	if (ret) {
243 		pr_debug("spu_new: failed to map %s resource 0\n",
244 			 np->full_name);
245 		goto out;
246 	}
247 	ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
248 			       &spu->problem_phys);
249 	if (ret) {
250 		pr_debug("spu_new: failed to map %s resource 1\n",
251 			 np->full_name);
252 		goto out_unmap;
253 	}
254 	ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
255 	if (ret) {
256 		pr_debug("spu_new: failed to map %s resource 2\n",
257 			 np->full_name);
258 		goto out_unmap;
259 	}
260 	if (!firmware_has_feature(FW_FEATURE_LPAR))
261 		ret = spu_map_resource(spu, 3,
262 			       (void __iomem**)&spu->priv1, NULL);
263 	if (ret) {
264 		pr_debug("spu_new: failed to map %s resource 3\n",
265 			 np->full_name);
266 		goto out_unmap;
267 	}
268 	pr_debug("spu_new: %s maps:\n", np->full_name);
269 	pr_debug("  local store   : 0x%016lx -> 0x%p\n",
270 		 spu->local_store_phys, spu->local_store);
271 	pr_debug("  problem state : 0x%016lx -> 0x%p\n",
272 		 spu->problem_phys, spu->problem);
273 	pr_debug("  priv2         :                       0x%p\n", spu->priv2);
274 	pr_debug("  priv1         :                       0x%p\n", spu->priv1);
275 
276 	return 0;
277 
278 out_unmap:
279 	spu_unmap(spu);
280 out:
281 	pr_debug("failed to map spe %s: %d\n", spu->name, ret);
282 	return ret;
283 }
284 
285 static int __init of_enumerate_spus(int (*fn)(void *data))
286 {
287 	int ret;
288 	struct device_node *node;
289 	unsigned int n = 0;
290 
291 	ret = -ENODEV;
292 	for (node = of_find_node_by_type(NULL, "spe");
293 			node; node = of_find_node_by_type(node, "spe")) {
294 		ret = fn(node);
295 		if (ret) {
296 			printk(KERN_WARNING "%s: Error initializing %s\n",
297 				__func__, node->name);
298 			break;
299 		}
300 		n++;
301 	}
302 	return ret ? ret : n;
303 }
304 
305 static int __init of_create_spu(struct spu *spu, void *data)
306 {
307 	int ret;
308 	struct device_node *spe = (struct device_node *)data;
309 	static int legacy_map = 0, legacy_irq = 0;
310 
311 	spu->devnode = of_node_get(spe);
312 	spu->spe_id = find_spu_unit_number(spe);
313 
314 	spu->node = of_node_to_nid(spe);
315 	if (spu->node >= MAX_NUMNODES) {
316 		printk(KERN_WARNING "SPE %s on node %d ignored,"
317 		       " node number too big\n", spe->full_name, spu->node);
318 		printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
319 		ret = -ENODEV;
320 		goto out;
321 	}
322 
323 	ret = spu_map_device(spu);
324 	if (ret) {
325 		if (!legacy_map) {
326 			legacy_map = 1;
327 			printk(KERN_WARNING "%s: Legacy device tree found, "
328 				"trying to map old style\n", __func__);
329 		}
330 		ret = spu_map_device_old(spu);
331 		if (ret) {
332 			printk(KERN_ERR "Unable to map %s\n",
333 				spu->name);
334 			goto out;
335 		}
336 	}
337 
338 	ret = spu_map_interrupts(spu, spe);
339 	if (ret) {
340 		if (!legacy_irq) {
341 			legacy_irq = 1;
342 			printk(KERN_WARNING "%s: Legacy device tree found, "
343 				"trying old style irq\n", __func__);
344 		}
345 		ret = spu_map_interrupts_old(spu, spe);
346 		if (ret) {
347 			printk(KERN_ERR "%s: could not map interrupts\n",
348 				spu->name);
349 			goto out_unmap;
350 		}
351 	}
352 
353 	pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
354 		spu->local_store, spu->problem, spu->priv1,
355 		spu->priv2, spu->number);
356 	goto out;
357 
358 out_unmap:
359 	spu_unmap(spu);
360 out:
361 	return ret;
362 }
363 
364 static int of_destroy_spu(struct spu *spu)
365 {
366 	spu_unmap(spu);
367 	of_node_put(spu->devnode);
368 	return 0;
369 }
370 
371 static void enable_spu_by_master_run(struct spu_context *ctx)
372 {
373 	ctx->ops->master_start(ctx);
374 }
375 
376 static void disable_spu_by_master_run(struct spu_context *ctx)
377 {
378 	ctx->ops->master_stop(ctx);
379 }
380 
381 /* Hardcoded affinity idxs for qs20 */
382 #define QS20_SPES_PER_BE 8
383 static int qs20_reg_idxs[QS20_SPES_PER_BE] =   { 0, 2, 4, 6, 7, 5, 3, 1 };
384 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
385 
386 static struct spu *spu_lookup_reg(int node, u32 reg)
387 {
388 	struct spu *spu;
389 	const u32 *spu_reg;
390 
391 	list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
392 		spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
393 		if (*spu_reg == reg)
394 			return spu;
395 	}
396 	return NULL;
397 }
398 
399 static void init_affinity_qs20_harcoded(void)
400 {
401 	int node, i;
402 	struct spu *last_spu, *spu;
403 	u32 reg;
404 
405 	for (node = 0; node < MAX_NUMNODES; node++) {
406 		last_spu = NULL;
407 		for (i = 0; i < QS20_SPES_PER_BE; i++) {
408 			reg = qs20_reg_idxs[i];
409 			spu = spu_lookup_reg(node, reg);
410 			if (!spu)
411 				continue;
412 			spu->has_mem_affinity = qs20_reg_memory[reg];
413 			if (last_spu)
414 				list_add_tail(&spu->aff_list,
415 						&last_spu->aff_list);
416 			last_spu = spu;
417 		}
418 	}
419 }
420 
421 static int of_has_vicinity(void)
422 {
423 	struct device_node *dn;
424 
425 	for_each_node_by_type(dn, "spe") {
426 		if (of_find_property(dn, "vicinity", NULL))  {
427 			of_node_put(dn);
428 			return 1;
429 		}
430 	}
431 	return 0;
432 }
433 
434 static struct spu *devnode_spu(int cbe, struct device_node *dn)
435 {
436 	struct spu *spu;
437 
438 	list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
439 		if (spu_devnode(spu) == dn)
440 			return spu;
441 	return NULL;
442 }
443 
444 static struct spu *
445 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
446 {
447 	struct spu *spu;
448 	struct device_node *spu_dn;
449 	const phandle *vic_handles;
450 	int lenp, i;
451 
452 	list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
453 		spu_dn = spu_devnode(spu);
454 		if (spu_dn == avoid)
455 			continue;
456 		vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
457 		for (i=0; i < (lenp / sizeof(phandle)); i++) {
458 			if (vic_handles[i] == target->phandle)
459 				return spu;
460 		}
461 	}
462 	return NULL;
463 }
464 
465 static void init_affinity_node(int cbe)
466 {
467 	struct spu *spu, *last_spu;
468 	struct device_node *vic_dn, *last_spu_dn;
469 	phandle avoid_ph;
470 	const phandle *vic_handles;
471 	const char *name;
472 	int lenp, i, added;
473 
474 	last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
475 								cbe_list);
476 	avoid_ph = 0;
477 	for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
478 		last_spu_dn = spu_devnode(last_spu);
479 		vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
480 
481 		/*
482 		 * Walk through each phandle in vicinity property of the spu
483 		 * (tipically two vicinity phandles per spe node)
484 		 */
485 		for (i = 0; i < (lenp / sizeof(phandle)); i++) {
486 			if (vic_handles[i] == avoid_ph)
487 				continue;
488 
489 			vic_dn = of_find_node_by_phandle(vic_handles[i]);
490 			if (!vic_dn)
491 				continue;
492 
493 			/* a neighbour might be spe, mic-tm, or bif0 */
494 			name = of_get_property(vic_dn, "name", NULL);
495 			if (!name)
496 				continue;
497 
498 			if (strcmp(name, "spe") == 0) {
499 				spu = devnode_spu(cbe, vic_dn);
500 				avoid_ph = last_spu_dn->phandle;
501 			} else {
502 				/*
503 				 * "mic-tm" and "bif0" nodes do not have
504 				 * vicinity property. So we need to find the
505 				 * spe which has vic_dn as neighbour, but
506 				 * skipping the one we came from (last_spu_dn)
507 				 */
508 				spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
509 				if (!spu)
510 					continue;
511 				if (!strcmp(name, "mic-tm")) {
512 					last_spu->has_mem_affinity = 1;
513 					spu->has_mem_affinity = 1;
514 				}
515 				avoid_ph = vic_dn->phandle;
516 			}
517 
518 			list_add_tail(&spu->aff_list, &last_spu->aff_list);
519 			last_spu = spu;
520 			break;
521 		}
522 	}
523 }
524 
525 static void init_affinity_fw(void)
526 {
527 	int cbe;
528 
529 	for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
530 		init_affinity_node(cbe);
531 }
532 
533 static int __init init_affinity(void)
534 {
535 	if (of_has_vicinity()) {
536 		init_affinity_fw();
537 	} else {
538 		long root = of_get_flat_dt_root();
539 		if (of_flat_dt_is_compatible(root, "IBM,CPBW-1.0"))
540 			init_affinity_qs20_harcoded();
541 		else
542 			printk("No affinity configuration found\n");
543 	}
544 
545 	return 0;
546 }
547 
548 const struct spu_management_ops spu_management_of_ops = {
549 	.enumerate_spus = of_enumerate_spus,
550 	.create_spu = of_create_spu,
551 	.destroy_spu = of_destroy_spu,
552 	.enable_spu = enable_spu_by_master_run,
553 	.disable_spu = disable_spu_by_master_run,
554 	.init_affinity = init_affinity,
555 };
556