xref: /openbmc/linux/arch/powerpc/perf/imc-pmu.c (revision 8d59a64cbec8cebf2e1ec9977de4f67fc7341dc6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * In-Memory Collection (IMC) Performance Monitor counter support.
4  *
5  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
7  *           (C) 2017 Hemant K Shaw, IBM Corporation.
8  */
9 #include <linux/of.h>
10 #include <linux/perf_event.h>
11 #include <linux/slab.h>
12 #include <asm/opal.h>
13 #include <asm/imc-pmu.h>
14 #include <asm/cputhreads.h>
15 #include <asm/smp.h>
16 #include <linux/string.h>
17 #include <linux/spinlock.h>
18 
19 /* Nest IMC data structures and variables */
20 
21 /*
22  * Used to avoid races in counting the nest-pmu units during hotplug
23  * register and unregister
24  */
25 static DEFINE_MUTEX(nest_init_lock);
26 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
27 static struct imc_pmu **per_nest_pmu_arr;
28 static cpumask_t nest_imc_cpumask;
29 static struct imc_pmu_ref *nest_imc_refc;
30 static int nest_pmus;
31 
32 /* Core IMC data structures and variables */
33 
34 static cpumask_t core_imc_cpumask;
35 static struct imc_pmu_ref *core_imc_refc;
36 static struct imc_pmu *core_imc_pmu;
37 
38 /* Thread IMC data structures and variables */
39 
40 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
41 static struct imc_pmu *thread_imc_pmu;
42 static int thread_imc_mem_size;
43 
44 /* Trace IMC data structures */
45 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
46 static struct imc_pmu_ref *trace_imc_refc;
47 static int trace_imc_mem_size;
48 
49 /*
50  * Global data structure used to avoid races between thread,
51  * core and trace-imc
52  */
53 static struct imc_pmu_ref imc_global_refc = {
54 	.lock = __SPIN_LOCK_UNLOCKED(imc_global_refc.lock),
55 	.id = 0,
56 	.refc = 0,
57 };
58 
59 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
60 {
61 	return container_of(event->pmu, struct imc_pmu, pmu);
62 }
63 
64 PMU_FORMAT_ATTR(event, "config:0-61");
65 PMU_FORMAT_ATTR(offset, "config:0-31");
66 PMU_FORMAT_ATTR(rvalue, "config:32");
67 PMU_FORMAT_ATTR(mode, "config:33-40");
68 static struct attribute *imc_format_attrs[] = {
69 	&format_attr_event.attr,
70 	&format_attr_offset.attr,
71 	&format_attr_rvalue.attr,
72 	&format_attr_mode.attr,
73 	NULL,
74 };
75 
76 static const struct attribute_group imc_format_group = {
77 	.name = "format",
78 	.attrs = imc_format_attrs,
79 };
80 
81 /* Format attribute for imc trace-mode */
82 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
83 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
84 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
85 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
86 static struct attribute *trace_imc_format_attrs[] = {
87 	&format_attr_event.attr,
88 	&format_attr_cpmc_reserved.attr,
89 	&format_attr_cpmc_event.attr,
90 	&format_attr_cpmc_samplesel.attr,
91 	&format_attr_cpmc_load.attr,
92 	NULL,
93 };
94 
95 static const struct attribute_group trace_imc_format_group = {
96 .name = "format",
97 .attrs = trace_imc_format_attrs,
98 };
99 
100 /* Get the cpumask printed to a buffer "buf" */
101 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
102 					struct device_attribute *attr,
103 					char *buf)
104 {
105 	struct pmu *pmu = dev_get_drvdata(dev);
106 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
107 	cpumask_t *active_mask;
108 
109 	switch(imc_pmu->domain){
110 	case IMC_DOMAIN_NEST:
111 		active_mask = &nest_imc_cpumask;
112 		break;
113 	case IMC_DOMAIN_CORE:
114 		active_mask = &core_imc_cpumask;
115 		break;
116 	default:
117 		return 0;
118 	}
119 
120 	return cpumap_print_to_pagebuf(true, buf, active_mask);
121 }
122 
123 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
124 
125 static struct attribute *imc_pmu_cpumask_attrs[] = {
126 	&dev_attr_cpumask.attr,
127 	NULL,
128 };
129 
130 static const struct attribute_group imc_pmu_cpumask_attr_group = {
131 	.attrs = imc_pmu_cpumask_attrs,
132 };
133 
134 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
135 static struct attribute *device_str_attr_create(const char *name, const char *str)
136 {
137 	struct perf_pmu_events_attr *attr;
138 
139 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
140 	if (!attr)
141 		return NULL;
142 	sysfs_attr_init(&attr->attr.attr);
143 
144 	attr->event_str = str;
145 	attr->attr.attr.name = name;
146 	attr->attr.attr.mode = 0444;
147 	attr->attr.show = perf_event_sysfs_show;
148 
149 	return &attr->attr.attr;
150 }
151 
152 static int imc_parse_event(struct device_node *np, const char *scale,
153 				  const char *unit, const char *prefix,
154 				  u32 base, struct imc_events *event)
155 {
156 	const char *s;
157 	u32 reg;
158 
159 	if (of_property_read_u32(np, "reg", &reg))
160 		goto error;
161 	/* Add the base_reg value to the "reg" */
162 	event->value = base + reg;
163 
164 	if (of_property_read_string(np, "event-name", &s))
165 		goto error;
166 
167 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
168 	if (!event->name)
169 		goto error;
170 
171 	if (of_property_read_string(np, "scale", &s))
172 		s = scale;
173 
174 	if (s) {
175 		event->scale = kstrdup(s, GFP_KERNEL);
176 		if (!event->scale)
177 			goto error;
178 	}
179 
180 	if (of_property_read_string(np, "unit", &s))
181 		s = unit;
182 
183 	if (s) {
184 		event->unit = kstrdup(s, GFP_KERNEL);
185 		if (!event->unit)
186 			goto error;
187 	}
188 
189 	return 0;
190 error:
191 	kfree(event->unit);
192 	kfree(event->scale);
193 	kfree(event->name);
194 	return -EINVAL;
195 }
196 
197 /*
198  * imc_free_events: Function to cleanup the events list, having
199  * 		    "nr_entries".
200  */
201 static void imc_free_events(struct imc_events *events, int nr_entries)
202 {
203 	int i;
204 
205 	/* Nothing to clean, return */
206 	if (!events)
207 		return;
208 	for (i = 0; i < nr_entries; i++) {
209 		kfree(events[i].unit);
210 		kfree(events[i].scale);
211 		kfree(events[i].name);
212 	}
213 
214 	kfree(events);
215 }
216 
217 /*
218  * update_events_in_group: Update the "events" information in an attr_group
219  *                         and assign the attr_group to the pmu "pmu".
220  */
221 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
222 {
223 	struct attribute_group *attr_group;
224 	struct attribute **attrs, *dev_str;
225 	struct device_node *np, *pmu_events;
226 	u32 handle, base_reg;
227 	int i = 0, j = 0, ct, ret;
228 	const char *prefix, *g_scale, *g_unit;
229 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
230 
231 	if (!of_property_read_u32(node, "events", &handle))
232 		pmu_events = of_find_node_by_phandle(handle);
233 	else
234 		return 0;
235 
236 	/* Did not find any node with a given phandle */
237 	if (!pmu_events)
238 		return 0;
239 
240 	/* Get a count of number of child nodes */
241 	ct = of_get_child_count(pmu_events);
242 
243 	/* Get the event prefix */
244 	if (of_property_read_string(node, "events-prefix", &prefix)) {
245 		of_node_put(pmu_events);
246 		return 0;
247 	}
248 
249 	/* Get a global unit and scale data if available */
250 	if (of_property_read_string(node, "scale", &g_scale))
251 		g_scale = NULL;
252 
253 	if (of_property_read_string(node, "unit", &g_unit))
254 		g_unit = NULL;
255 
256 	/* "reg" property gives out the base offset of the counters data */
257 	of_property_read_u32(node, "reg", &base_reg);
258 
259 	/* Allocate memory for the events */
260 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
261 	if (!pmu->events) {
262 		of_node_put(pmu_events);
263 		return -ENOMEM;
264 	}
265 
266 	ct = 0;
267 	/* Parse the events and update the struct */
268 	for_each_child_of_node(pmu_events, np) {
269 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
270 		if (!ret)
271 			ct++;
272 	}
273 
274 	of_node_put(pmu_events);
275 
276 	/* Allocate memory for attribute group */
277 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
278 	if (!attr_group) {
279 		imc_free_events(pmu->events, ct);
280 		return -ENOMEM;
281 	}
282 
283 	/*
284 	 * Allocate memory for attributes.
285 	 * Since we have count of events for this pmu, we also allocate
286 	 * memory for the scale and unit attribute for now.
287 	 * "ct" has the total event structs added from the events-parent node.
288 	 * So allocate three times the "ct" (this includes event, event_scale and
289 	 * event_unit).
290 	 */
291 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
292 	if (!attrs) {
293 		kfree(attr_group);
294 		imc_free_events(pmu->events, ct);
295 		return -ENOMEM;
296 	}
297 
298 	attr_group->name = "events";
299 	attr_group->attrs = attrs;
300 	do {
301 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
302 		if (!ev_val_str)
303 			continue;
304 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
305 		if (!dev_str)
306 			continue;
307 
308 		attrs[j++] = dev_str;
309 		if (pmu->events[i].scale) {
310 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
311 			if (!ev_scale_str)
312 				continue;
313 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
314 			if (!dev_str)
315 				continue;
316 
317 			attrs[j++] = dev_str;
318 		}
319 
320 		if (pmu->events[i].unit) {
321 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
322 			if (!ev_unit_str)
323 				continue;
324 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
325 			if (!dev_str)
326 				continue;
327 
328 			attrs[j++] = dev_str;
329 		}
330 	} while (++i < ct);
331 
332 	/* Save the event attribute */
333 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
334 
335 	return 0;
336 }
337 
338 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
339 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
340 {
341 	return per_cpu(local_nest_imc_refc, cpu);
342 }
343 
344 static void nest_change_cpu_context(int old_cpu, int new_cpu)
345 {
346 	struct imc_pmu **pn = per_nest_pmu_arr;
347 
348 	if (old_cpu < 0 || new_cpu < 0)
349 		return;
350 
351 	while (*pn) {
352 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
353 		pn++;
354 	}
355 }
356 
357 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
358 {
359 	int nid, target = -1;
360 	const struct cpumask *l_cpumask;
361 	struct imc_pmu_ref *ref;
362 
363 	/*
364 	 * Check in the designated list for this cpu. Dont bother
365 	 * if not one of them.
366 	 */
367 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
368 		return 0;
369 
370 	/*
371 	 * Check whether nest_imc is registered. We could end up here if the
372 	 * cpuhotplug callback registration fails. i.e, callback invokes the
373 	 * offline path for all successfully registered nodes. At this stage,
374 	 * nest_imc pmu will not be registered and we should return here.
375 	 *
376 	 * We return with a zero since this is not an offline failure. And
377 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
378 	 * which in turn will call the cleanup routine.
379 	 */
380 	if (!nest_pmus)
381 		return 0;
382 
383 	/*
384 	 * Now that this cpu is one of the designated,
385 	 * find a next cpu a) which is online and b) in same chip.
386 	 */
387 	nid = cpu_to_node(cpu);
388 	l_cpumask = cpumask_of_node(nid);
389 	target = cpumask_last(l_cpumask);
390 
391 	/*
392 	 * If this(target) is the last cpu in the cpumask for this chip,
393 	 * check for any possible online cpu in the chip.
394 	 */
395 	if (unlikely(target == cpu))
396 		target = cpumask_any_but(l_cpumask, cpu);
397 
398 	/*
399 	 * Update the cpumask with the target cpu and
400 	 * migrate the context if needed
401 	 */
402 	if (target >= 0 && target < nr_cpu_ids) {
403 		cpumask_set_cpu(target, &nest_imc_cpumask);
404 		nest_change_cpu_context(cpu, target);
405 	} else {
406 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
407 				       get_hard_smp_processor_id(cpu));
408 		/*
409 		 * If this is the last cpu in this chip then, skip the reference
410 		 * count lock and make the reference count on this chip zero.
411 		 */
412 		ref = get_nest_pmu_ref(cpu);
413 		if (!ref)
414 			return -EINVAL;
415 
416 		ref->refc = 0;
417 	}
418 	return 0;
419 }
420 
421 static int ppc_nest_imc_cpu_online(unsigned int cpu)
422 {
423 	const struct cpumask *l_cpumask;
424 	static struct cpumask tmp_mask;
425 	int res;
426 
427 	/* Get the cpumask of this node */
428 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
429 
430 	/*
431 	 * If this is not the first online CPU on this node, then
432 	 * just return.
433 	 */
434 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
435 		return 0;
436 
437 	/*
438 	 * If this is the first online cpu on this node
439 	 * disable the nest counters by making an OPAL call.
440 	 */
441 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
442 				     get_hard_smp_processor_id(cpu));
443 	if (res)
444 		return res;
445 
446 	/* Make this CPU the designated target for counter collection */
447 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
448 	return 0;
449 }
450 
451 static int nest_pmu_cpumask_init(void)
452 {
453 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
454 				 "perf/powerpc/imc:online",
455 				 ppc_nest_imc_cpu_online,
456 				 ppc_nest_imc_cpu_offline);
457 }
458 
459 static void nest_imc_counters_release(struct perf_event *event)
460 {
461 	int rc, node_id;
462 	struct imc_pmu_ref *ref;
463 
464 	if (event->cpu < 0)
465 		return;
466 
467 	node_id = cpu_to_node(event->cpu);
468 
469 	/*
470 	 * See if we need to disable the nest PMU.
471 	 * If no events are currently in use, then we have to take a
472 	 * lock to ensure that we don't race with another task doing
473 	 * enable or disable the nest counters.
474 	 */
475 	ref = get_nest_pmu_ref(event->cpu);
476 	if (!ref)
477 		return;
478 
479 	/* Take the lock for this node and then decrement the reference count */
480 	spin_lock(&ref->lock);
481 	if (ref->refc == 0) {
482 		/*
483 		 * The scenario where this is true is, when perf session is
484 		 * started, followed by offlining of all cpus in a given node.
485 		 *
486 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
487 		 * function set the ref->count to zero, if the cpu which is
488 		 * about to offline is the last cpu in a given node and make
489 		 * an OPAL call to disable the engine in that node.
490 		 *
491 		 */
492 		spin_unlock(&ref->lock);
493 		return;
494 	}
495 	ref->refc--;
496 	if (ref->refc == 0) {
497 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
498 					    get_hard_smp_processor_id(event->cpu));
499 		if (rc) {
500 			spin_unlock(&ref->lock);
501 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
502 			return;
503 		}
504 	} else if (ref->refc < 0) {
505 		WARN(1, "nest-imc: Invalid event reference count\n");
506 		ref->refc = 0;
507 	}
508 	spin_unlock(&ref->lock);
509 }
510 
511 static int nest_imc_event_init(struct perf_event *event)
512 {
513 	int chip_id, rc, node_id;
514 	u32 l_config, config = event->attr.config;
515 	struct imc_mem_info *pcni;
516 	struct imc_pmu *pmu;
517 	struct imc_pmu_ref *ref;
518 	bool flag = false;
519 
520 	if (event->attr.type != event->pmu->type)
521 		return -ENOENT;
522 
523 	/* Sampling not supported */
524 	if (event->hw.sample_period)
525 		return -EINVAL;
526 
527 	if (event->cpu < 0)
528 		return -EINVAL;
529 
530 	pmu = imc_event_to_pmu(event);
531 
532 	/* Sanity check for config (event offset) */
533 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
534 		return -EINVAL;
535 
536 	/*
537 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
538 	 * Get the base memory address for this cpu.
539 	 */
540 	chip_id = cpu_to_chip_id(event->cpu);
541 
542 	/* Return, if chip_id is not valid */
543 	if (chip_id < 0)
544 		return -ENODEV;
545 
546 	pcni = pmu->mem_info;
547 	do {
548 		if (pcni->id == chip_id) {
549 			flag = true;
550 			break;
551 		}
552 		pcni++;
553 	} while (pcni->vbase != 0);
554 
555 	if (!flag)
556 		return -ENODEV;
557 
558 	/*
559 	 * Add the event offset to the base address.
560 	 */
561 	l_config = config & IMC_EVENT_OFFSET_MASK;
562 	event->hw.event_base = (u64)pcni->vbase + l_config;
563 	node_id = cpu_to_node(event->cpu);
564 
565 	/*
566 	 * Get the imc_pmu_ref struct for this node.
567 	 * Take the lock and then increment the count of nest pmu events inited.
568 	 */
569 	ref = get_nest_pmu_ref(event->cpu);
570 	if (!ref)
571 		return -EINVAL;
572 
573 	spin_lock(&ref->lock);
574 	if (ref->refc == 0) {
575 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
576 					     get_hard_smp_processor_id(event->cpu));
577 		if (rc) {
578 			spin_unlock(&ref->lock);
579 			pr_err("nest-imc: Unable to start the counters for node %d\n",
580 									node_id);
581 			return rc;
582 		}
583 	}
584 	++ref->refc;
585 	spin_unlock(&ref->lock);
586 
587 	event->destroy = nest_imc_counters_release;
588 	return 0;
589 }
590 
591 /*
592  * core_imc_mem_init : Initializes memory for the current core.
593  *
594  * Uses alloc_pages_node() and uses the returned address as an argument to
595  * an opal call to configure the pdbar. The address sent as an argument is
596  * converted to physical address before the opal call is made. This is the
597  * base address at which the core imc counters are populated.
598  */
599 static int core_imc_mem_init(int cpu, int size)
600 {
601 	int nid, rc = 0, core_id = (cpu / threads_per_core);
602 	struct imc_mem_info *mem_info;
603 	struct page *page;
604 
605 	/*
606 	 * alloc_pages_node() will allocate memory for core in the
607 	 * local node only.
608 	 */
609 	nid = cpu_to_node(cpu);
610 	mem_info = &core_imc_pmu->mem_info[core_id];
611 	mem_info->id = core_id;
612 
613 	/* We need only vbase for core counters */
614 	page = alloc_pages_node(nid,
615 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
616 				__GFP_NOWARN, get_order(size));
617 	if (!page)
618 		return -ENOMEM;
619 	mem_info->vbase = page_address(page);
620 
621 	core_imc_refc[core_id].id = core_id;
622 	spin_lock_init(&core_imc_refc[core_id].lock);
623 
624 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
625 				__pa((void *)mem_info->vbase),
626 				get_hard_smp_processor_id(cpu));
627 	if (rc) {
628 		free_pages((u64)mem_info->vbase, get_order(size));
629 		mem_info->vbase = NULL;
630 	}
631 
632 	return rc;
633 }
634 
635 static bool is_core_imc_mem_inited(int cpu)
636 {
637 	struct imc_mem_info *mem_info;
638 	int core_id = (cpu / threads_per_core);
639 
640 	mem_info = &core_imc_pmu->mem_info[core_id];
641 	if (!mem_info->vbase)
642 		return false;
643 
644 	return true;
645 }
646 
647 static int ppc_core_imc_cpu_online(unsigned int cpu)
648 {
649 	const struct cpumask *l_cpumask;
650 	static struct cpumask tmp_mask;
651 	int ret = 0;
652 
653 	/* Get the cpumask for this core */
654 	l_cpumask = cpu_sibling_mask(cpu);
655 
656 	/* If a cpu for this core is already set, then, don't do anything */
657 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
658 		return 0;
659 
660 	if (!is_core_imc_mem_inited(cpu)) {
661 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
662 		if (ret) {
663 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
664 			return ret;
665 		}
666 	}
667 
668 	/* set the cpu in the mask */
669 	cpumask_set_cpu(cpu, &core_imc_cpumask);
670 	return 0;
671 }
672 
673 static int ppc_core_imc_cpu_offline(unsigned int cpu)
674 {
675 	unsigned int core_id;
676 	int ncpu;
677 	struct imc_pmu_ref *ref;
678 
679 	/*
680 	 * clear this cpu out of the mask, if not present in the mask,
681 	 * don't bother doing anything.
682 	 */
683 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
684 		return 0;
685 
686 	/*
687 	 * Check whether core_imc is registered. We could end up here
688 	 * if the cpuhotplug callback registration fails. i.e, callback
689 	 * invokes the offline path for all successfully registered cpus.
690 	 * At this stage, core_imc pmu will not be registered and we
691 	 * should return here.
692 	 *
693 	 * We return with a zero since this is not an offline failure.
694 	 * And cpuhp_setup_state() returns the actual failure reason
695 	 * to the caller, which inturn will call the cleanup routine.
696 	 */
697 	if (!core_imc_pmu->pmu.event_init)
698 		return 0;
699 
700 	/* Find any online cpu in that core except the current "cpu" */
701 	ncpu = cpumask_last(cpu_sibling_mask(cpu));
702 
703 	if (unlikely(ncpu == cpu))
704 		ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
705 
706 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
707 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
708 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
709 	} else {
710 		/*
711 		 * If this is the last cpu in this core then skip taking reference
712 		 * count lock for this core and directly zero "refc" for this core.
713 		 */
714 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
715 				       get_hard_smp_processor_id(cpu));
716 		core_id = cpu / threads_per_core;
717 		ref = &core_imc_refc[core_id];
718 		if (!ref)
719 			return -EINVAL;
720 
721 		ref->refc = 0;
722 		/*
723 		 * Reduce the global reference count, if this is the
724 		 * last cpu in this core and core-imc event running
725 		 * in this cpu.
726 		 */
727 		spin_lock(&imc_global_refc.lock);
728 		if (imc_global_refc.id == IMC_DOMAIN_CORE)
729 			imc_global_refc.refc--;
730 
731 		spin_unlock(&imc_global_refc.lock);
732 	}
733 	return 0;
734 }
735 
736 static int core_imc_pmu_cpumask_init(void)
737 {
738 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
739 				 "perf/powerpc/imc_core:online",
740 				 ppc_core_imc_cpu_online,
741 				 ppc_core_imc_cpu_offline);
742 }
743 
744 static void reset_global_refc(struct perf_event *event)
745 {
746 		spin_lock(&imc_global_refc.lock);
747 		imc_global_refc.refc--;
748 
749 		/*
750 		 * If no other thread is running any
751 		 * event for this domain(thread/core/trace),
752 		 * set the global id to zero.
753 		 */
754 		if (imc_global_refc.refc <= 0) {
755 			imc_global_refc.refc = 0;
756 			imc_global_refc.id = 0;
757 		}
758 		spin_unlock(&imc_global_refc.lock);
759 }
760 
761 static void core_imc_counters_release(struct perf_event *event)
762 {
763 	int rc, core_id;
764 	struct imc_pmu_ref *ref;
765 
766 	if (event->cpu < 0)
767 		return;
768 	/*
769 	 * See if we need to disable the IMC PMU.
770 	 * If no events are currently in use, then we have to take a
771 	 * lock to ensure that we don't race with another task doing
772 	 * enable or disable the core counters.
773 	 */
774 	core_id = event->cpu / threads_per_core;
775 
776 	/* Take the lock and decrement the refernce count for this core */
777 	ref = &core_imc_refc[core_id];
778 	if (!ref)
779 		return;
780 
781 	spin_lock(&ref->lock);
782 	if (ref->refc == 0) {
783 		/*
784 		 * The scenario where this is true is, when perf session is
785 		 * started, followed by offlining of all cpus in a given core.
786 		 *
787 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
788 		 * function set the ref->count to zero, if the cpu which is
789 		 * about to offline is the last cpu in a given core and make
790 		 * an OPAL call to disable the engine in that core.
791 		 *
792 		 */
793 		spin_unlock(&ref->lock);
794 		return;
795 	}
796 	ref->refc--;
797 	if (ref->refc == 0) {
798 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
799 					    get_hard_smp_processor_id(event->cpu));
800 		if (rc) {
801 			spin_unlock(&ref->lock);
802 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
803 			return;
804 		}
805 	} else if (ref->refc < 0) {
806 		WARN(1, "core-imc: Invalid event reference count\n");
807 		ref->refc = 0;
808 	}
809 	spin_unlock(&ref->lock);
810 
811 	reset_global_refc(event);
812 }
813 
814 static int core_imc_event_init(struct perf_event *event)
815 {
816 	int core_id, rc;
817 	u64 config = event->attr.config;
818 	struct imc_mem_info *pcmi;
819 	struct imc_pmu *pmu;
820 	struct imc_pmu_ref *ref;
821 
822 	if (event->attr.type != event->pmu->type)
823 		return -ENOENT;
824 
825 	/* Sampling not supported */
826 	if (event->hw.sample_period)
827 		return -EINVAL;
828 
829 	if (event->cpu < 0)
830 		return -EINVAL;
831 
832 	event->hw.idx = -1;
833 	pmu = imc_event_to_pmu(event);
834 
835 	/* Sanity check for config (event offset) */
836 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
837 		return -EINVAL;
838 
839 	if (!is_core_imc_mem_inited(event->cpu))
840 		return -ENODEV;
841 
842 	core_id = event->cpu / threads_per_core;
843 	pcmi = &core_imc_pmu->mem_info[core_id];
844 	if ((!pcmi->vbase))
845 		return -ENODEV;
846 
847 	ref = &core_imc_refc[core_id];
848 	if (!ref)
849 		return -EINVAL;
850 
851 	/*
852 	 * Core pmu units are enabled only when it is used.
853 	 * See if this is triggered for the first time.
854 	 * If yes, take the lock and enable the core counters.
855 	 * If not, just increment the count in core_imc_refc struct.
856 	 */
857 	spin_lock(&ref->lock);
858 	if (ref->refc == 0) {
859 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
860 					     get_hard_smp_processor_id(event->cpu));
861 		if (rc) {
862 			spin_unlock(&ref->lock);
863 			pr_err("core-imc: Unable to start the counters for core %d\n",
864 									core_id);
865 			return rc;
866 		}
867 	}
868 	++ref->refc;
869 	spin_unlock(&ref->lock);
870 
871 	/*
872 	 * Since the system can run either in accumulation or trace-mode
873 	 * of IMC at a time, core-imc events are allowed only if no other
874 	 * trace/thread imc events are enabled/monitored.
875 	 *
876 	 * Take the global lock, and check the refc.id
877 	 * to know whether any other trace/thread imc
878 	 * events are running.
879 	 */
880 	spin_lock(&imc_global_refc.lock);
881 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
882 		/*
883 		 * No other trace/thread imc events are running in
884 		 * the system, so set the refc.id to core-imc.
885 		 */
886 		imc_global_refc.id = IMC_DOMAIN_CORE;
887 		imc_global_refc.refc++;
888 	} else {
889 		spin_unlock(&imc_global_refc.lock);
890 		return -EBUSY;
891 	}
892 	spin_unlock(&imc_global_refc.lock);
893 
894 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
895 	event->destroy = core_imc_counters_release;
896 	return 0;
897 }
898 
899 /*
900  * Allocates a page of memory for each of the online cpus, and load
901  * LDBAR with 0.
902  * The physical base address of the page allocated for a cpu will be
903  * written to the LDBAR for that cpu, when the thread-imc event
904  * is added.
905  *
906  * LDBAR Register Layout:
907  *
908  *  0          4         8         12        16        20        24        28
909  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
910  *   | |       [   ]    [                   Counter Address [8:50]
911  *   | * Mode    |
912  *   |           * PB Scope
913  *   * Enable/Disable
914  *
915  *  32        36        40        44        48        52        56        60
916  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
917  *           Counter Address [8:50]              ]
918  *
919  */
920 static int thread_imc_mem_alloc(int cpu_id, int size)
921 {
922 	u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
923 	int nid = cpu_to_node(cpu_id);
924 
925 	if (!local_mem) {
926 		struct page *page;
927 		/*
928 		 * This case could happen only once at start, since we dont
929 		 * free the memory in cpu offline path.
930 		 */
931 		page = alloc_pages_node(nid,
932 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
933 				  __GFP_NOWARN, get_order(size));
934 		if (!page)
935 			return -ENOMEM;
936 		local_mem = page_address(page);
937 
938 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
939 	}
940 
941 	mtspr(SPRN_LDBAR, 0);
942 	return 0;
943 }
944 
945 static int ppc_thread_imc_cpu_online(unsigned int cpu)
946 {
947 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
948 }
949 
950 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
951 {
952 	/*
953 	 * Set the bit 0 of LDBAR to zero.
954 	 *
955 	 * If bit 0 of LDBAR is unset, it will stop posting
956 	 * the counter data to memory.
957 	 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
958 	 * event_add function. So reset this bit here, to stop the updates
959 	 * to memory in the cpu_offline path.
960 	 */
961 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
962 
963 	/* Reduce the refc if thread-imc event running on this cpu */
964 	spin_lock(&imc_global_refc.lock);
965 	if (imc_global_refc.id == IMC_DOMAIN_THREAD)
966 		imc_global_refc.refc--;
967 	spin_unlock(&imc_global_refc.lock);
968 
969 	return 0;
970 }
971 
972 static int thread_imc_cpu_init(void)
973 {
974 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
975 			  "perf/powerpc/imc_thread:online",
976 			  ppc_thread_imc_cpu_online,
977 			  ppc_thread_imc_cpu_offline);
978 }
979 
980 static int thread_imc_event_init(struct perf_event *event)
981 {
982 	u32 config = event->attr.config;
983 	struct task_struct *target;
984 	struct imc_pmu *pmu;
985 
986 	if (event->attr.type != event->pmu->type)
987 		return -ENOENT;
988 
989 	if (!perfmon_capable())
990 		return -EACCES;
991 
992 	/* Sampling not supported */
993 	if (event->hw.sample_period)
994 		return -EINVAL;
995 
996 	event->hw.idx = -1;
997 	pmu = imc_event_to_pmu(event);
998 
999 	/* Sanity check for config offset */
1000 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
1001 		return -EINVAL;
1002 
1003 	target = event->hw.target;
1004 	if (!target)
1005 		return -EINVAL;
1006 
1007 	spin_lock(&imc_global_refc.lock);
1008 	/*
1009 	 * Check if any other trace/core imc events are running in the
1010 	 * system, if not set the global id to thread-imc.
1011 	 */
1012 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1013 		imc_global_refc.id = IMC_DOMAIN_THREAD;
1014 		imc_global_refc.refc++;
1015 	} else {
1016 		spin_unlock(&imc_global_refc.lock);
1017 		return -EBUSY;
1018 	}
1019 	spin_unlock(&imc_global_refc.lock);
1020 
1021 	event->pmu->task_ctx_nr = perf_sw_context;
1022 	event->destroy = reset_global_refc;
1023 	return 0;
1024 }
1025 
1026 static bool is_thread_imc_pmu(struct perf_event *event)
1027 {
1028 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1029 		return true;
1030 
1031 	return false;
1032 }
1033 
1034 static u64 * get_event_base_addr(struct perf_event *event)
1035 {
1036 	u64 addr;
1037 
1038 	if (is_thread_imc_pmu(event)) {
1039 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1040 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1041 	}
1042 
1043 	return (u64 *)event->hw.event_base;
1044 }
1045 
1046 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1047 				     unsigned int txn_flags)
1048 {
1049 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1050 		return;
1051 	perf_pmu_disable(pmu);
1052 }
1053 
1054 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1055 {
1056 	perf_pmu_enable(pmu);
1057 }
1058 
1059 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1060 {
1061 	perf_pmu_enable(pmu);
1062 	return 0;
1063 }
1064 
1065 static u64 imc_read_counter(struct perf_event *event)
1066 {
1067 	u64 *addr, data;
1068 
1069 	/*
1070 	 * In-Memory Collection (IMC) counters are free flowing counters.
1071 	 * So we take a snapshot of the counter value on enable and save it
1072 	 * to calculate the delta at later stage to present the event counter
1073 	 * value.
1074 	 */
1075 	addr = get_event_base_addr(event);
1076 	data = be64_to_cpu(READ_ONCE(*addr));
1077 	local64_set(&event->hw.prev_count, data);
1078 
1079 	return data;
1080 }
1081 
1082 static void imc_event_update(struct perf_event *event)
1083 {
1084 	u64 counter_prev, counter_new, final_count;
1085 
1086 	counter_prev = local64_read(&event->hw.prev_count);
1087 	counter_new = imc_read_counter(event);
1088 	final_count = counter_new - counter_prev;
1089 
1090 	/* Update the delta to the event count */
1091 	local64_add(final_count, &event->count);
1092 }
1093 
1094 static void imc_event_start(struct perf_event *event, int flags)
1095 {
1096 	/*
1097 	 * In Memory Counters are free flowing counters. HW or the microcode
1098 	 * keeps adding to the counter offset in memory. To get event
1099 	 * counter value, we snapshot the value here and we calculate
1100 	 * delta at later point.
1101 	 */
1102 	imc_read_counter(event);
1103 }
1104 
1105 static void imc_event_stop(struct perf_event *event, int flags)
1106 {
1107 	/*
1108 	 * Take a snapshot and calculate the delta and update
1109 	 * the event counter values.
1110 	 */
1111 	imc_event_update(event);
1112 }
1113 
1114 static int imc_event_add(struct perf_event *event, int flags)
1115 {
1116 	if (flags & PERF_EF_START)
1117 		imc_event_start(event, flags);
1118 
1119 	return 0;
1120 }
1121 
1122 static int thread_imc_event_add(struct perf_event *event, int flags)
1123 {
1124 	int core_id;
1125 	struct imc_pmu_ref *ref;
1126 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1127 
1128 	if (flags & PERF_EF_START)
1129 		imc_event_start(event, flags);
1130 
1131 	if (!is_core_imc_mem_inited(smp_processor_id()))
1132 		return -EINVAL;
1133 
1134 	core_id = smp_processor_id() / threads_per_core;
1135 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1136 	mtspr(SPRN_LDBAR, ldbar_value);
1137 
1138 	/*
1139 	 * imc pmus are enabled only when it is used.
1140 	 * See if this is triggered for the first time.
1141 	 * If yes, take the lock and enable the counters.
1142 	 * If not, just increment the count in ref count struct.
1143 	 */
1144 	ref = &core_imc_refc[core_id];
1145 	if (!ref)
1146 		return -EINVAL;
1147 
1148 	spin_lock(&ref->lock);
1149 	if (ref->refc == 0) {
1150 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1151 		    get_hard_smp_processor_id(smp_processor_id()))) {
1152 			spin_unlock(&ref->lock);
1153 			pr_err("thread-imc: Unable to start the counter\
1154 				for core %d\n", core_id);
1155 			return -EINVAL;
1156 		}
1157 	}
1158 	++ref->refc;
1159 	spin_unlock(&ref->lock);
1160 	return 0;
1161 }
1162 
1163 static void thread_imc_event_del(struct perf_event *event, int flags)
1164 {
1165 
1166 	int core_id;
1167 	struct imc_pmu_ref *ref;
1168 
1169 	core_id = smp_processor_id() / threads_per_core;
1170 	ref = &core_imc_refc[core_id];
1171 	if (!ref) {
1172 		pr_debug("imc: Failed to get event reference count\n");
1173 		return;
1174 	}
1175 
1176 	spin_lock(&ref->lock);
1177 	ref->refc--;
1178 	if (ref->refc == 0) {
1179 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1180 		    get_hard_smp_processor_id(smp_processor_id()))) {
1181 			spin_unlock(&ref->lock);
1182 			pr_err("thread-imc: Unable to stop the counters\
1183 				for core %d\n", core_id);
1184 			return;
1185 		}
1186 	} else if (ref->refc < 0) {
1187 		ref->refc = 0;
1188 	}
1189 	spin_unlock(&ref->lock);
1190 
1191 	/* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1192 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1193 
1194 	/*
1195 	 * Take a snapshot and calculate the delta and update
1196 	 * the event counter values.
1197 	 */
1198 	imc_event_update(event);
1199 }
1200 
1201 /*
1202  * Allocate a page of memory for each cpu, and load LDBAR with 0.
1203  */
1204 static int trace_imc_mem_alloc(int cpu_id, int size)
1205 {
1206 	u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1207 	int phys_id = cpu_to_node(cpu_id), rc = 0;
1208 	int core_id = (cpu_id / threads_per_core);
1209 
1210 	if (!local_mem) {
1211 		struct page *page;
1212 
1213 		page = alloc_pages_node(phys_id,
1214 				GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1215 				__GFP_NOWARN, get_order(size));
1216 		if (!page)
1217 			return -ENOMEM;
1218 		local_mem = page_address(page);
1219 		per_cpu(trace_imc_mem, cpu_id) = local_mem;
1220 
1221 		/* Initialise the counters for trace mode */
1222 		rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1223 					    get_hard_smp_processor_id(cpu_id));
1224 		if (rc) {
1225 			pr_info("IMC:opal init failed for trace imc\n");
1226 			return rc;
1227 		}
1228 	}
1229 
1230 	trace_imc_refc[core_id].id = core_id;
1231 	spin_lock_init(&trace_imc_refc[core_id].lock);
1232 
1233 	mtspr(SPRN_LDBAR, 0);
1234 	return 0;
1235 }
1236 
1237 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1238 {
1239 	return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1240 }
1241 
1242 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1243 {
1244 	/*
1245 	 * No need to set bit 0 of LDBAR to zero, as
1246 	 * it is set to zero for imc trace-mode
1247 	 *
1248 	 * Reduce the refc if any trace-imc event running
1249 	 * on this cpu.
1250 	 */
1251 	spin_lock(&imc_global_refc.lock);
1252 	if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1253 		imc_global_refc.refc--;
1254 	spin_unlock(&imc_global_refc.lock);
1255 
1256 	return 0;
1257 }
1258 
1259 static int trace_imc_cpu_init(void)
1260 {
1261 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1262 			  "perf/powerpc/imc_trace:online",
1263 			  ppc_trace_imc_cpu_online,
1264 			  ppc_trace_imc_cpu_offline);
1265 }
1266 
1267 static u64 get_trace_imc_event_base_addr(void)
1268 {
1269 	return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1270 }
1271 
1272 /*
1273  * Function to parse trace-imc data obtained
1274  * and to prepare the perf sample.
1275  */
1276 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1277 				    struct perf_sample_data *data,
1278 				    u64 *prev_tb,
1279 				    struct perf_event_header *header,
1280 				    struct perf_event *event)
1281 {
1282 	/* Sanity checks for a valid record */
1283 	if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1284 		*prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1285 	else
1286 		return -EINVAL;
1287 
1288 	if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1289 			 be64_to_cpu(READ_ONCE(mem->tb2)))
1290 		return -EINVAL;
1291 
1292 	/* Prepare perf sample */
1293 	data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1294 	data->period = event->hw.last_period;
1295 
1296 	header->type = PERF_RECORD_SAMPLE;
1297 	header->size = sizeof(*header) + event->header_size;
1298 	header->misc = 0;
1299 
1300 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1301 		switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1302 		case 0:/* when MSR HV and PR not set in the trace-record */
1303 			header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1304 			break;
1305 		case 1: /* MSR HV is 0 and PR is 1 */
1306 			header->misc |= PERF_RECORD_MISC_GUEST_USER;
1307 			break;
1308 		case 2: /* MSR HV is 1 and PR is 0 */
1309 			header->misc |= PERF_RECORD_MISC_KERNEL;
1310 			break;
1311 		case 3: /* MSR HV is 1 and PR is 1 */
1312 			header->misc |= PERF_RECORD_MISC_USER;
1313 			break;
1314 		default:
1315 			pr_info("IMC: Unable to set the flag based on MSR bits\n");
1316 			break;
1317 		}
1318 	} else {
1319 		if (is_kernel_addr(data->ip))
1320 			header->misc |= PERF_RECORD_MISC_KERNEL;
1321 		else
1322 			header->misc |= PERF_RECORD_MISC_USER;
1323 	}
1324 	perf_event_header__init_id(header, data, event);
1325 
1326 	return 0;
1327 }
1328 
1329 static void dump_trace_imc_data(struct perf_event *event)
1330 {
1331 	struct trace_imc_data *mem;
1332 	int i, ret;
1333 	u64 prev_tb = 0;
1334 
1335 	mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1336 	for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1337 		i++, mem++) {
1338 		struct perf_sample_data data;
1339 		struct perf_event_header header;
1340 
1341 		ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1342 		if (ret) /* Exit, if not a valid record */
1343 			break;
1344 		else {
1345 			/* If this is a valid record, create the sample */
1346 			struct perf_output_handle handle;
1347 
1348 			if (perf_output_begin(&handle, &data, event, header.size))
1349 				return;
1350 
1351 			perf_output_sample(&handle, &header, &data, event);
1352 			perf_output_end(&handle);
1353 		}
1354 	}
1355 }
1356 
1357 static int trace_imc_event_add(struct perf_event *event, int flags)
1358 {
1359 	int core_id = smp_processor_id() / threads_per_core;
1360 	struct imc_pmu_ref *ref = NULL;
1361 	u64 local_mem, ldbar_value;
1362 
1363 	/* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1364 	local_mem = get_trace_imc_event_base_addr();
1365 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1366 
1367 	/* trace-imc reference count */
1368 	if (trace_imc_refc)
1369 		ref = &trace_imc_refc[core_id];
1370 	if (!ref) {
1371 		pr_debug("imc: Failed to get the event reference count\n");
1372 		return -EINVAL;
1373 	}
1374 
1375 	mtspr(SPRN_LDBAR, ldbar_value);
1376 	spin_lock(&ref->lock);
1377 	if (ref->refc == 0) {
1378 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1379 				get_hard_smp_processor_id(smp_processor_id()))) {
1380 			spin_unlock(&ref->lock);
1381 			pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1382 			return -EINVAL;
1383 		}
1384 	}
1385 	++ref->refc;
1386 	spin_unlock(&ref->lock);
1387 	return 0;
1388 }
1389 
1390 static void trace_imc_event_read(struct perf_event *event)
1391 {
1392 	return;
1393 }
1394 
1395 static void trace_imc_event_stop(struct perf_event *event, int flags)
1396 {
1397 	u64 local_mem = get_trace_imc_event_base_addr();
1398 	dump_trace_imc_data(event);
1399 	memset((void *)local_mem, 0, sizeof(u64));
1400 }
1401 
1402 static void trace_imc_event_start(struct perf_event *event, int flags)
1403 {
1404 	return;
1405 }
1406 
1407 static void trace_imc_event_del(struct perf_event *event, int flags)
1408 {
1409 	int core_id = smp_processor_id() / threads_per_core;
1410 	struct imc_pmu_ref *ref = NULL;
1411 
1412 	if (trace_imc_refc)
1413 		ref = &trace_imc_refc[core_id];
1414 	if (!ref) {
1415 		pr_debug("imc: Failed to get event reference count\n");
1416 		return;
1417 	}
1418 
1419 	spin_lock(&ref->lock);
1420 	ref->refc--;
1421 	if (ref->refc == 0) {
1422 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1423 				get_hard_smp_processor_id(smp_processor_id()))) {
1424 			spin_unlock(&ref->lock);
1425 			pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1426 			return;
1427 		}
1428 	} else if (ref->refc < 0) {
1429 		ref->refc = 0;
1430 	}
1431 	spin_unlock(&ref->lock);
1432 
1433 	trace_imc_event_stop(event, flags);
1434 }
1435 
1436 static int trace_imc_event_init(struct perf_event *event)
1437 {
1438 	if (event->attr.type != event->pmu->type)
1439 		return -ENOENT;
1440 
1441 	if (!perfmon_capable())
1442 		return -EACCES;
1443 
1444 	/* Return if this is a couting event */
1445 	if (event->attr.sample_period == 0)
1446 		return -ENOENT;
1447 
1448 	/*
1449 	 * Take the global lock, and make sure
1450 	 * no other thread is running any core/thread imc
1451 	 * events
1452 	 */
1453 	spin_lock(&imc_global_refc.lock);
1454 	if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1455 		/*
1456 		 * No core/thread imc events are running in the
1457 		 * system, so set the refc.id to trace-imc.
1458 		 */
1459 		imc_global_refc.id = IMC_DOMAIN_TRACE;
1460 		imc_global_refc.refc++;
1461 	} else {
1462 		spin_unlock(&imc_global_refc.lock);
1463 		return -EBUSY;
1464 	}
1465 	spin_unlock(&imc_global_refc.lock);
1466 
1467 	event->hw.idx = -1;
1468 
1469 	/*
1470 	 * There can only be a single PMU for perf_hw_context events which is assigned to
1471 	 * core PMU. Hence use "perf_sw_context" for trace_imc.
1472 	 */
1473 	event->pmu->task_ctx_nr = perf_sw_context;
1474 	event->destroy = reset_global_refc;
1475 	return 0;
1476 }
1477 
1478 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1479 static int update_pmu_ops(struct imc_pmu *pmu)
1480 {
1481 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1482 	pmu->pmu.add = imc_event_add;
1483 	pmu->pmu.del = imc_event_stop;
1484 	pmu->pmu.start = imc_event_start;
1485 	pmu->pmu.stop = imc_event_stop;
1486 	pmu->pmu.read = imc_event_update;
1487 	pmu->pmu.attr_groups = pmu->attr_groups;
1488 	pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1489 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1490 
1491 	switch (pmu->domain) {
1492 	case IMC_DOMAIN_NEST:
1493 		pmu->pmu.event_init = nest_imc_event_init;
1494 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1495 		break;
1496 	case IMC_DOMAIN_CORE:
1497 		pmu->pmu.event_init = core_imc_event_init;
1498 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1499 		break;
1500 	case IMC_DOMAIN_THREAD:
1501 		pmu->pmu.event_init = thread_imc_event_init;
1502 		pmu->pmu.add = thread_imc_event_add;
1503 		pmu->pmu.del = thread_imc_event_del;
1504 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1505 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1506 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1507 		break;
1508 	case IMC_DOMAIN_TRACE:
1509 		pmu->pmu.event_init = trace_imc_event_init;
1510 		pmu->pmu.add = trace_imc_event_add;
1511 		pmu->pmu.del = trace_imc_event_del;
1512 		pmu->pmu.start = trace_imc_event_start;
1513 		pmu->pmu.stop = trace_imc_event_stop;
1514 		pmu->pmu.read = trace_imc_event_read;
1515 		pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1516 		break;
1517 	default:
1518 		break;
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1525 static int init_nest_pmu_ref(void)
1526 {
1527 	int nid, i, cpu;
1528 
1529 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1530 								GFP_KERNEL);
1531 
1532 	if (!nest_imc_refc)
1533 		return -ENOMEM;
1534 
1535 	i = 0;
1536 	for_each_node(nid) {
1537 		/*
1538 		 * Take the lock to avoid races while tracking the number of
1539 		 * sessions using the chip's nest pmu units.
1540 		 */
1541 		spin_lock_init(&nest_imc_refc[i].lock);
1542 
1543 		/*
1544 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1545 		 * 0 and will be used as index to the array. "i" will not go off the
1546 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1547 		 * nodes only.
1548 		 */
1549 		nest_imc_refc[i++].id = nid;
1550 	}
1551 
1552 	/*
1553 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1554 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1555 	 */
1556 	for_each_possible_cpu(cpu) {
1557 		nid = cpu_to_node(cpu);
1558 		for (i = 0; i < num_possible_nodes(); i++) {
1559 			if (nest_imc_refc[i].id == nid) {
1560 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1561 				break;
1562 			}
1563 		}
1564 	}
1565 	return 0;
1566 }
1567 
1568 static void cleanup_all_core_imc_memory(void)
1569 {
1570 	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1571 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1572 	int size = core_imc_pmu->counter_mem_size;
1573 
1574 	/* mem_info will never be NULL */
1575 	for (i = 0; i < nr_cores; i++) {
1576 		if (ptr[i].vbase)
1577 			free_pages((u64)ptr[i].vbase, get_order(size));
1578 	}
1579 
1580 	kfree(ptr);
1581 	kfree(core_imc_refc);
1582 }
1583 
1584 static void thread_imc_ldbar_disable(void *dummy)
1585 {
1586 	/*
1587 	 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1588 	 * updates to memory.
1589 	 */
1590 	mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1591 }
1592 
1593 void thread_imc_disable(void)
1594 {
1595 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1596 }
1597 
1598 static void cleanup_all_thread_imc_memory(void)
1599 {
1600 	int i, order = get_order(thread_imc_mem_size);
1601 
1602 	for_each_online_cpu(i) {
1603 		if (per_cpu(thread_imc_mem, i))
1604 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1605 
1606 	}
1607 }
1608 
1609 static void cleanup_all_trace_imc_memory(void)
1610 {
1611 	int i, order = get_order(trace_imc_mem_size);
1612 
1613 	for_each_online_cpu(i) {
1614 		if (per_cpu(trace_imc_mem, i))
1615 			free_pages((u64)per_cpu(trace_imc_mem, i), order);
1616 
1617 	}
1618 	kfree(trace_imc_refc);
1619 }
1620 
1621 /* Function to free the attr_groups which are dynamically allocated */
1622 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1623 {
1624 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1625 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1626 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1627 }
1628 
1629 /*
1630  * Common function to unregister cpu hotplug callback and
1631  * free the memory.
1632  * TODO: Need to handle pmu unregistering, which will be
1633  * done in followup series.
1634  */
1635 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1636 {
1637 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1638 		mutex_lock(&nest_init_lock);
1639 		if (nest_pmus == 1) {
1640 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1641 			kfree(nest_imc_refc);
1642 			kfree(per_nest_pmu_arr);
1643 			per_nest_pmu_arr = NULL;
1644 		}
1645 
1646 		if (nest_pmus > 0)
1647 			nest_pmus--;
1648 		mutex_unlock(&nest_init_lock);
1649 	}
1650 
1651 	/* Free core_imc memory */
1652 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1653 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1654 		cleanup_all_core_imc_memory();
1655 	}
1656 
1657 	/* Free thread_imc memory */
1658 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1659 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1660 		cleanup_all_thread_imc_memory();
1661 	}
1662 
1663 	if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1664 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1665 		cleanup_all_trace_imc_memory();
1666 	}
1667 }
1668 
1669 /*
1670  * Function to unregister thread-imc if core-imc
1671  * is not registered.
1672  */
1673 void unregister_thread_imc(void)
1674 {
1675 	imc_common_cpuhp_mem_free(thread_imc_pmu);
1676 	imc_common_mem_free(thread_imc_pmu);
1677 	perf_pmu_unregister(&thread_imc_pmu->pmu);
1678 }
1679 
1680 /*
1681  * imc_mem_init : Function to support memory allocation for core imc.
1682  */
1683 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1684 								int pmu_index)
1685 {
1686 	const char *s;
1687 	int nr_cores, cpu, res = -ENOMEM;
1688 
1689 	if (of_property_read_string(parent, "name", &s))
1690 		return -ENODEV;
1691 
1692 	switch (pmu_ptr->domain) {
1693 	case IMC_DOMAIN_NEST:
1694 		/* Update the pmu name */
1695 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1696 		if (!pmu_ptr->pmu.name)
1697 			goto err;
1698 
1699 		/* Needed for hotplug/migration */
1700 		if (!per_nest_pmu_arr) {
1701 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1702 						sizeof(struct imc_pmu *),
1703 						GFP_KERNEL);
1704 			if (!per_nest_pmu_arr)
1705 				goto err;
1706 		}
1707 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1708 		break;
1709 	case IMC_DOMAIN_CORE:
1710 		/* Update the pmu name */
1711 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1712 		if (!pmu_ptr->pmu.name)
1713 			goto err;
1714 
1715 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1716 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1717 								GFP_KERNEL);
1718 
1719 		if (!pmu_ptr->mem_info)
1720 			goto err;
1721 
1722 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1723 								GFP_KERNEL);
1724 
1725 		if (!core_imc_refc) {
1726 			kfree(pmu_ptr->mem_info);
1727 			goto err;
1728 		}
1729 
1730 		core_imc_pmu = pmu_ptr;
1731 		break;
1732 	case IMC_DOMAIN_THREAD:
1733 		/* Update the pmu name */
1734 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1735 		if (!pmu_ptr->pmu.name)
1736 			goto err;
1737 
1738 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1739 		for_each_online_cpu(cpu) {
1740 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1741 			if (res) {
1742 				cleanup_all_thread_imc_memory();
1743 				goto err;
1744 			}
1745 		}
1746 
1747 		thread_imc_pmu = pmu_ptr;
1748 		break;
1749 	case IMC_DOMAIN_TRACE:
1750 		/* Update the pmu name */
1751 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1752 		if (!pmu_ptr->pmu.name)
1753 			return -ENOMEM;
1754 
1755 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1756 		trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1757 								GFP_KERNEL);
1758 		if (!trace_imc_refc)
1759 			return -ENOMEM;
1760 
1761 		trace_imc_mem_size = pmu_ptr->counter_mem_size;
1762 		for_each_online_cpu(cpu) {
1763 			res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1764 			if (res) {
1765 				cleanup_all_trace_imc_memory();
1766 				goto err;
1767 			}
1768 		}
1769 		break;
1770 	default:
1771 		return -EINVAL;
1772 	}
1773 
1774 	return 0;
1775 err:
1776 	return res;
1777 }
1778 
1779 /*
1780  * init_imc_pmu : Setup and register the IMC pmu device.
1781  *
1782  * @parent:	Device tree unit node
1783  * @pmu_ptr:	memory allocated for this pmu
1784  * @pmu_idx:	Count of nest pmc registered
1785  *
1786  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1787  * Handles failure cases and accordingly frees memory.
1788  */
1789 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1790 {
1791 	int ret;
1792 
1793 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1794 	if (ret)
1795 		goto err_free_mem;
1796 
1797 	switch (pmu_ptr->domain) {
1798 	case IMC_DOMAIN_NEST:
1799 		/*
1800 		* Nest imc pmu need only one cpu per chip, we initialize the
1801 		* cpumask for the first nest imc pmu and use the same for the
1802 		* rest. To handle the cpuhotplug callback unregister, we track
1803 		* the number of nest pmus in "nest_pmus".
1804 		*/
1805 		mutex_lock(&nest_init_lock);
1806 		if (nest_pmus == 0) {
1807 			ret = init_nest_pmu_ref();
1808 			if (ret) {
1809 				mutex_unlock(&nest_init_lock);
1810 				kfree(per_nest_pmu_arr);
1811 				per_nest_pmu_arr = NULL;
1812 				goto err_free_mem;
1813 			}
1814 			/* Register for cpu hotplug notification. */
1815 			ret = nest_pmu_cpumask_init();
1816 			if (ret) {
1817 				mutex_unlock(&nest_init_lock);
1818 				kfree(nest_imc_refc);
1819 				kfree(per_nest_pmu_arr);
1820 				per_nest_pmu_arr = NULL;
1821 				goto err_free_mem;
1822 			}
1823 		}
1824 		nest_pmus++;
1825 		mutex_unlock(&nest_init_lock);
1826 		break;
1827 	case IMC_DOMAIN_CORE:
1828 		ret = core_imc_pmu_cpumask_init();
1829 		if (ret) {
1830 			cleanup_all_core_imc_memory();
1831 			goto err_free_mem;
1832 		}
1833 
1834 		break;
1835 	case IMC_DOMAIN_THREAD:
1836 		ret = thread_imc_cpu_init();
1837 		if (ret) {
1838 			cleanup_all_thread_imc_memory();
1839 			goto err_free_mem;
1840 		}
1841 
1842 		break;
1843 	case IMC_DOMAIN_TRACE:
1844 		ret = trace_imc_cpu_init();
1845 		if (ret) {
1846 			cleanup_all_trace_imc_memory();
1847 			goto err_free_mem;
1848 		}
1849 
1850 		break;
1851 	default:
1852 		return  -EINVAL;	/* Unknown domain */
1853 	}
1854 
1855 	ret = update_events_in_group(parent, pmu_ptr);
1856 	if (ret)
1857 		goto err_free_cpuhp_mem;
1858 
1859 	ret = update_pmu_ops(pmu_ptr);
1860 	if (ret)
1861 		goto err_free_cpuhp_mem;
1862 
1863 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1864 	if (ret)
1865 		goto err_free_cpuhp_mem;
1866 
1867 	pr_debug("%s performance monitor hardware support registered\n",
1868 							pmu_ptr->pmu.name);
1869 
1870 	return 0;
1871 
1872 err_free_cpuhp_mem:
1873 	imc_common_cpuhp_mem_free(pmu_ptr);
1874 err_free_mem:
1875 	imc_common_mem_free(pmu_ptr);
1876 	return ret;
1877 }
1878