xref: /openbmc/linux/arch/powerpc/perf/callchain.c (revision 0a7601b6ffddec11d7cc0bc3264daf0159f5e1a6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance counter callchain support - powerpc architecture code
4  *
5  * Copyright © 2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/perf_event.h>
10 #include <linux/percpu.h>
11 #include <linux/uaccess.h>
12 #include <linux/mm.h>
13 #include <asm/ptrace.h>
14 #include <asm/pgtable.h>
15 #include <asm/sigcontext.h>
16 #include <asm/ucontext.h>
17 #include <asm/vdso.h>
18 #ifdef CONFIG_COMPAT
19 #include "../kernel/ppc32.h"
20 #endif
21 #include <asm/pte-walk.h>
22 
23 
24 /*
25  * Is sp valid as the address of the next kernel stack frame after prev_sp?
26  * The next frame may be in a different stack area but should not go
27  * back down in the same stack area.
28  */
29 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
30 {
31 	if (sp & 0xf)
32 		return 0;		/* must be 16-byte aligned */
33 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
34 		return 0;
35 	if (sp >= prev_sp + STACK_FRAME_MIN_SIZE)
36 		return 1;
37 	/*
38 	 * sp could decrease when we jump off an interrupt stack
39 	 * back to the regular process stack.
40 	 */
41 	if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
42 		return 1;
43 	return 0;
44 }
45 
46 void
47 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
48 {
49 	unsigned long sp, next_sp;
50 	unsigned long next_ip;
51 	unsigned long lr;
52 	long level = 0;
53 	unsigned long *fp;
54 
55 	lr = regs->link;
56 	sp = regs->gpr[1];
57 	perf_callchain_store(entry, perf_instruction_pointer(regs));
58 
59 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
60 		return;
61 
62 	for (;;) {
63 		fp = (unsigned long *) sp;
64 		next_sp = fp[0];
65 
66 		if (next_sp == sp + STACK_INT_FRAME_SIZE &&
67 		    fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
68 			/*
69 			 * This looks like an interrupt frame for an
70 			 * interrupt that occurred in the kernel
71 			 */
72 			regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
73 			next_ip = regs->nip;
74 			lr = regs->link;
75 			level = 0;
76 			perf_callchain_store_context(entry, PERF_CONTEXT_KERNEL);
77 
78 		} else {
79 			if (level == 0)
80 				next_ip = lr;
81 			else
82 				next_ip = fp[STACK_FRAME_LR_SAVE];
83 
84 			/*
85 			 * We can't tell which of the first two addresses
86 			 * we get are valid, but we can filter out the
87 			 * obviously bogus ones here.  We replace them
88 			 * with 0 rather than removing them entirely so
89 			 * that userspace can tell which is which.
90 			 */
91 			if ((level == 1 && next_ip == lr) ||
92 			    (level <= 1 && !kernel_text_address(next_ip)))
93 				next_ip = 0;
94 
95 			++level;
96 		}
97 
98 		perf_callchain_store(entry, next_ip);
99 		if (!valid_next_sp(next_sp, sp))
100 			return;
101 		sp = next_sp;
102 	}
103 }
104 
105 static inline bool invalid_user_sp(unsigned long sp)
106 {
107 	unsigned long mask = is_32bit_task() ? 3 : 7;
108 	unsigned long top = STACK_TOP - (is_32bit_task() ? 16 : 32);
109 
110 	return (!sp || (sp & mask) || (sp > top));
111 }
112 
113 #ifdef CONFIG_PPC64
114 /*
115  * On 64-bit we don't want to invoke hash_page on user addresses from
116  * interrupt context, so if the access faults, we read the page tables
117  * to find which page (if any) is mapped and access it directly.
118  */
119 static int read_user_stack_slow(void __user *ptr, void *buf, int nb)
120 {
121 	int ret = -EFAULT;
122 	pgd_t *pgdir;
123 	pte_t *ptep, pte;
124 	unsigned shift;
125 	unsigned long addr = (unsigned long) ptr;
126 	unsigned long offset;
127 	unsigned long pfn, flags;
128 	void *kaddr;
129 
130 	pgdir = current->mm->pgd;
131 	if (!pgdir)
132 		return -EFAULT;
133 
134 	local_irq_save(flags);
135 	ptep = find_current_mm_pte(pgdir, addr, NULL, &shift);
136 	if (!ptep)
137 		goto err_out;
138 	if (!shift)
139 		shift = PAGE_SHIFT;
140 
141 	/* align address to page boundary */
142 	offset = addr & ((1UL << shift) - 1);
143 
144 	pte = READ_ONCE(*ptep);
145 	if (!pte_present(pte) || !pte_user(pte))
146 		goto err_out;
147 	pfn = pte_pfn(pte);
148 	if (!page_is_ram(pfn))
149 		goto err_out;
150 
151 	/* no highmem to worry about here */
152 	kaddr = pfn_to_kaddr(pfn);
153 	memcpy(buf, kaddr + offset, nb);
154 	ret = 0;
155 err_out:
156 	local_irq_restore(flags);
157 	return ret;
158 }
159 
160 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
161 {
162 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
163 	    ((unsigned long)ptr & 7))
164 		return -EFAULT;
165 
166 	if (!probe_user_read(ret, ptr, sizeof(*ret)))
167 		return 0;
168 
169 	return read_user_stack_slow(ptr, ret, 8);
170 }
171 
172 /*
173  * 64-bit user processes use the same stack frame for RT and non-RT signals.
174  */
175 struct signal_frame_64 {
176 	char		dummy[__SIGNAL_FRAMESIZE];
177 	struct ucontext	uc;
178 	unsigned long	unused[2];
179 	unsigned int	tramp[6];
180 	struct siginfo	*pinfo;
181 	void		*puc;
182 	struct siginfo	info;
183 	char		abigap[288];
184 };
185 
186 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
187 {
188 	if (nip == fp + offsetof(struct signal_frame_64, tramp))
189 		return 1;
190 	if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
191 	    nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
192 		return 1;
193 	return 0;
194 }
195 
196 /*
197  * Do some sanity checking on the signal frame pointed to by sp.
198  * We check the pinfo and puc pointers in the frame.
199  */
200 static int sane_signal_64_frame(unsigned long sp)
201 {
202 	struct signal_frame_64 __user *sf;
203 	unsigned long pinfo, puc;
204 
205 	sf = (struct signal_frame_64 __user *) sp;
206 	if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
207 	    read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
208 		return 0;
209 	return pinfo == (unsigned long) &sf->info &&
210 		puc == (unsigned long) &sf->uc;
211 }
212 
213 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
214 				   struct pt_regs *regs)
215 {
216 	unsigned long sp, next_sp;
217 	unsigned long next_ip;
218 	unsigned long lr;
219 	long level = 0;
220 	struct signal_frame_64 __user *sigframe;
221 	unsigned long __user *fp, *uregs;
222 
223 	next_ip = perf_instruction_pointer(regs);
224 	lr = regs->link;
225 	sp = regs->gpr[1];
226 	perf_callchain_store(entry, next_ip);
227 
228 	while (entry->nr < entry->max_stack) {
229 		fp = (unsigned long __user *) sp;
230 		if (invalid_user_sp(sp) || read_user_stack_64(fp, &next_sp))
231 			return;
232 		if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
233 			return;
234 
235 		/*
236 		 * Note: the next_sp - sp >= signal frame size check
237 		 * is true when next_sp < sp, which can happen when
238 		 * transitioning from an alternate signal stack to the
239 		 * normal stack.
240 		 */
241 		if (next_sp - sp >= sizeof(struct signal_frame_64) &&
242 		    (is_sigreturn_64_address(next_ip, sp) ||
243 		     (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
244 		    sane_signal_64_frame(sp)) {
245 			/*
246 			 * This looks like an signal frame
247 			 */
248 			sigframe = (struct signal_frame_64 __user *) sp;
249 			uregs = sigframe->uc.uc_mcontext.gp_regs;
250 			if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
251 			    read_user_stack_64(&uregs[PT_LNK], &lr) ||
252 			    read_user_stack_64(&uregs[PT_R1], &sp))
253 				return;
254 			level = 0;
255 			perf_callchain_store_context(entry, PERF_CONTEXT_USER);
256 			perf_callchain_store(entry, next_ip);
257 			continue;
258 		}
259 
260 		if (level == 0)
261 			next_ip = lr;
262 		perf_callchain_store(entry, next_ip);
263 		++level;
264 		sp = next_sp;
265 	}
266 }
267 
268 #else  /* CONFIG_PPC64 */
269 static int read_user_stack_slow(void __user *ptr, void *buf, int nb)
270 {
271 	return 0;
272 }
273 
274 static inline void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
275 					  struct pt_regs *regs)
276 {
277 }
278 
279 #define __SIGNAL_FRAMESIZE32	__SIGNAL_FRAMESIZE
280 #define sigcontext32		sigcontext
281 #define mcontext32		mcontext
282 #define ucontext32		ucontext
283 #define compat_siginfo_t	struct siginfo
284 
285 #endif /* CONFIG_PPC64 */
286 
287 #if defined(CONFIG_PPC32) || defined(CONFIG_COMPAT)
288 /*
289  * On 32-bit we just access the address and let hash_page create a
290  * HPTE if necessary, so there is no need to fall back to reading
291  * the page tables.  Since this is called at interrupt level,
292  * do_page_fault() won't treat a DSI as a page fault.
293  */
294 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
295 {
296 	int rc;
297 
298 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
299 	    ((unsigned long)ptr & 3))
300 		return -EFAULT;
301 
302 	rc = probe_user_read(ret, ptr, sizeof(*ret));
303 
304 	if (IS_ENABLED(CONFIG_PPC64) && rc)
305 		return read_user_stack_slow(ptr, ret, 4);
306 
307 	return rc;
308 }
309 
310 /*
311  * Layout for non-RT signal frames
312  */
313 struct signal_frame_32 {
314 	char			dummy[__SIGNAL_FRAMESIZE32];
315 	struct sigcontext32	sctx;
316 	struct mcontext32	mctx;
317 	int			abigap[56];
318 };
319 
320 /*
321  * Layout for RT signal frames
322  */
323 struct rt_signal_frame_32 {
324 	char			dummy[__SIGNAL_FRAMESIZE32 + 16];
325 	compat_siginfo_t	info;
326 	struct ucontext32	uc;
327 	int			abigap[56];
328 };
329 
330 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
331 {
332 	if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
333 		return 1;
334 	if (vdso32_sigtramp && current->mm->context.vdso_base &&
335 	    nip == current->mm->context.vdso_base + vdso32_sigtramp)
336 		return 1;
337 	return 0;
338 }
339 
340 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
341 {
342 	if (nip == fp + offsetof(struct rt_signal_frame_32,
343 				 uc.uc_mcontext.mc_pad))
344 		return 1;
345 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
346 	    nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
347 		return 1;
348 	return 0;
349 }
350 
351 static int sane_signal_32_frame(unsigned int sp)
352 {
353 	struct signal_frame_32 __user *sf;
354 	unsigned int regs;
355 
356 	sf = (struct signal_frame_32 __user *) (unsigned long) sp;
357 	if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
358 		return 0;
359 	return regs == (unsigned long) &sf->mctx;
360 }
361 
362 static int sane_rt_signal_32_frame(unsigned int sp)
363 {
364 	struct rt_signal_frame_32 __user *sf;
365 	unsigned int regs;
366 
367 	sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
368 	if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
369 		return 0;
370 	return regs == (unsigned long) &sf->uc.uc_mcontext;
371 }
372 
373 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
374 				unsigned int next_sp, unsigned int next_ip)
375 {
376 	struct mcontext32 __user *mctx = NULL;
377 	struct signal_frame_32 __user *sf;
378 	struct rt_signal_frame_32 __user *rt_sf;
379 
380 	/*
381 	 * Note: the next_sp - sp >= signal frame size check
382 	 * is true when next_sp < sp, for example, when
383 	 * transitioning from an alternate signal stack to the
384 	 * normal stack.
385 	 */
386 	if (next_sp - sp >= sizeof(struct signal_frame_32) &&
387 	    is_sigreturn_32_address(next_ip, sp) &&
388 	    sane_signal_32_frame(sp)) {
389 		sf = (struct signal_frame_32 __user *) (unsigned long) sp;
390 		mctx = &sf->mctx;
391 	}
392 
393 	if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
394 	    is_rt_sigreturn_32_address(next_ip, sp) &&
395 	    sane_rt_signal_32_frame(sp)) {
396 		rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
397 		mctx = &rt_sf->uc.uc_mcontext;
398 	}
399 
400 	if (!mctx)
401 		return NULL;
402 	return mctx->mc_gregs;
403 }
404 
405 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
406 				   struct pt_regs *regs)
407 {
408 	unsigned int sp, next_sp;
409 	unsigned int next_ip;
410 	unsigned int lr;
411 	long level = 0;
412 	unsigned int __user *fp, *uregs;
413 
414 	next_ip = perf_instruction_pointer(regs);
415 	lr = regs->link;
416 	sp = regs->gpr[1];
417 	perf_callchain_store(entry, next_ip);
418 
419 	while (entry->nr < entry->max_stack) {
420 		fp = (unsigned int __user *) (unsigned long) sp;
421 		if (invalid_user_sp(sp) || read_user_stack_32(fp, &next_sp))
422 			return;
423 		if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
424 			return;
425 
426 		uregs = signal_frame_32_regs(sp, next_sp, next_ip);
427 		if (!uregs && level <= 1)
428 			uregs = signal_frame_32_regs(sp, next_sp, lr);
429 		if (uregs) {
430 			/*
431 			 * This looks like an signal frame, so restart
432 			 * the stack trace with the values in it.
433 			 */
434 			if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
435 			    read_user_stack_32(&uregs[PT_LNK], &lr) ||
436 			    read_user_stack_32(&uregs[PT_R1], &sp))
437 				return;
438 			level = 0;
439 			perf_callchain_store_context(entry, PERF_CONTEXT_USER);
440 			perf_callchain_store(entry, next_ip);
441 			continue;
442 		}
443 
444 		if (level == 0)
445 			next_ip = lr;
446 		perf_callchain_store(entry, next_ip);
447 		++level;
448 		sp = next_sp;
449 	}
450 }
451 #else /* 32bit */
452 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
453 				   struct pt_regs *regs)
454 {}
455 #endif /* 32bit */
456 
457 void
458 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
459 {
460 	if (!is_32bit_task())
461 		perf_callchain_user_64(entry, regs);
462 	else
463 		perf_callchain_user_32(entry, regs);
464 }
465