xref: /openbmc/linux/arch/powerpc/mm/pgtable.c (revision ea3cc330ac0cd521ff07c7cd432a1848c19a7e92)
1 /*
2  * This file contains common routines for dealing with free of page tables
3  * Along with common page table handling code
4  *
5  *  Derived from arch/powerpc/mm/tlb_64.c:
6  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7  *
8  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
9  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
10  *    Copyright (C) 1996 Paul Mackerras
11  *
12  *  Derived from "arch/i386/mm/init.c"
13  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
14  *
15  *  Dave Engebretsen <engebret@us.ibm.com>
16  *      Rework for PPC64 port.
17  *
18  *  This program is free software; you can redistribute it and/or
19  *  modify it under the terms of the GNU General Public License
20  *  as published by the Free Software Foundation; either version
21  *  2 of the License, or (at your option) any later version.
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/init.h>
27 #include <linux/percpu.h>
28 #include <linux/hardirq.h>
29 #include <asm/pgalloc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/tlb.h>
32 
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34 
35 #ifdef CONFIG_SMP
36 
37 /*
38  * Handle batching of page table freeing on SMP. Page tables are
39  * queued up and send to be freed later by RCU in order to avoid
40  * freeing a page table page that is being walked without locks
41  */
42 
43 static DEFINE_PER_CPU(struct pte_freelist_batch *, pte_freelist_cur);
44 static unsigned long pte_freelist_forced_free;
45 
46 struct pte_freelist_batch
47 {
48 	struct rcu_head	rcu;
49 	unsigned int	index;
50 	pgtable_free_t	tables[0];
51 };
52 
53 #define PTE_FREELIST_SIZE \
54 	((PAGE_SIZE - sizeof(struct pte_freelist_batch)) \
55 	  / sizeof(pgtable_free_t))
56 
57 static void pte_free_smp_sync(void *arg)
58 {
59 	/* Do nothing, just ensure we sync with all CPUs */
60 }
61 
62 /* This is only called when we are critically out of memory
63  * (and fail to get a page in pte_free_tlb).
64  */
65 static void pgtable_free_now(pgtable_free_t pgf)
66 {
67 	pte_freelist_forced_free++;
68 
69 	smp_call_function(pte_free_smp_sync, NULL, 1);
70 
71 	pgtable_free(pgf);
72 }
73 
74 static void pte_free_rcu_callback(struct rcu_head *head)
75 {
76 	struct pte_freelist_batch *batch =
77 		container_of(head, struct pte_freelist_batch, rcu);
78 	unsigned int i;
79 
80 	for (i = 0; i < batch->index; i++)
81 		pgtable_free(batch->tables[i]);
82 
83 	free_page((unsigned long)batch);
84 }
85 
86 static void pte_free_submit(struct pte_freelist_batch *batch)
87 {
88 	INIT_RCU_HEAD(&batch->rcu);
89 	call_rcu(&batch->rcu, pte_free_rcu_callback);
90 }
91 
92 void pgtable_free_tlb(struct mmu_gather *tlb, pgtable_free_t pgf)
93 {
94 	/* This is safe since tlb_gather_mmu has disabled preemption */
95 	struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
96 
97 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
98 	    cpumask_equal(mm_cpumask(tlb->mm), cpumask_of(smp_processor_id()))){
99 		pgtable_free(pgf);
100 		return;
101 	}
102 
103 	if (*batchp == NULL) {
104 		*batchp = (struct pte_freelist_batch *)__get_free_page(GFP_ATOMIC);
105 		if (*batchp == NULL) {
106 			pgtable_free_now(pgf);
107 			return;
108 		}
109 		(*batchp)->index = 0;
110 	}
111 	(*batchp)->tables[(*batchp)->index++] = pgf;
112 	if ((*batchp)->index == PTE_FREELIST_SIZE) {
113 		pte_free_submit(*batchp);
114 		*batchp = NULL;
115 	}
116 }
117 
118 void pte_free_finish(void)
119 {
120 	/* This is safe since tlb_gather_mmu has disabled preemption */
121 	struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
122 
123 	if (*batchp == NULL)
124 		return;
125 	pte_free_submit(*batchp);
126 	*batchp = NULL;
127 }
128 
129 #endif /* CONFIG_SMP */
130 
131 static inline int is_exec_fault(void)
132 {
133 	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
134 }
135 
136 /* We only try to do i/d cache coherency on stuff that looks like
137  * reasonably "normal" PTEs. We currently require a PTE to be present
138  * and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that
139  * on userspace PTEs
140  */
141 static inline int pte_looks_normal(pte_t pte)
142 {
143 	return (pte_val(pte) &
144 	    (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER)) ==
145 	    (_PAGE_PRESENT | _PAGE_USER);
146 }
147 
148 struct page * maybe_pte_to_page(pte_t pte)
149 {
150 	unsigned long pfn = pte_pfn(pte);
151 	struct page *page;
152 
153 	if (unlikely(!pfn_valid(pfn)))
154 		return NULL;
155 	page = pfn_to_page(pfn);
156 	if (PageReserved(page))
157 		return NULL;
158 	return page;
159 }
160 
161 #if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
162 
163 /* Server-style MMU handles coherency when hashing if HW exec permission
164  * is supposed per page (currently 64-bit only). If not, then, we always
165  * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
166  * support falls into the same category.
167  */
168 
169 static pte_t set_pte_filter(pte_t pte)
170 {
171 	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
172 	if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
173 				       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
174 		struct page *pg = maybe_pte_to_page(pte);
175 		if (!pg)
176 			return pte;
177 		if (!test_bit(PG_arch_1, &pg->flags)) {
178 			flush_dcache_icache_page(pg);
179 			set_bit(PG_arch_1, &pg->flags);
180 		}
181 	}
182 	return pte;
183 }
184 
185 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
186 				     int dirty)
187 {
188 	return pte;
189 }
190 
191 #else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
192 
193 /* Embedded type MMU with HW exec support. This is a bit more complicated
194  * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
195  * instead we "filter out" the exec permission for non clean pages.
196  */
197 static pte_t set_pte_filter(pte_t pte)
198 {
199 	struct page *pg;
200 
201 	/* No exec permission in the first place, move on */
202 	if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
203 		return pte;
204 
205 	/* If you set _PAGE_EXEC on weird pages you're on your own */
206 	pg = maybe_pte_to_page(pte);
207 	if (unlikely(!pg))
208 		return pte;
209 
210 	/* If the page clean, we move on */
211 	if (test_bit(PG_arch_1, &pg->flags))
212 		return pte;
213 
214 	/* If it's an exec fault, we flush the cache and make it clean */
215 	if (is_exec_fault()) {
216 		flush_dcache_icache_page(pg);
217 		set_bit(PG_arch_1, &pg->flags);
218 		return pte;
219 	}
220 
221 	/* Else, we filter out _PAGE_EXEC */
222 	return __pte(pte_val(pte) & ~_PAGE_EXEC);
223 }
224 
225 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
226 				     int dirty)
227 {
228 	struct page *pg;
229 
230 	/* So here, we only care about exec faults, as we use them
231 	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
232 	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
233 	 * we just bail out
234 	 */
235 	if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
236 		return pte;
237 
238 #ifdef CONFIG_DEBUG_VM
239 	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
240 	 * an error we would have bailed out earlier in do_page_fault()
241 	 * but let's make sure of it
242 	 */
243 	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
244 		return pte;
245 #endif /* CONFIG_DEBUG_VM */
246 
247 	/* If you set _PAGE_EXEC on weird pages you're on your own */
248 	pg = maybe_pte_to_page(pte);
249 	if (unlikely(!pg))
250 		goto bail;
251 
252 	/* If the page is already clean, we move on */
253 	if (test_bit(PG_arch_1, &pg->flags))
254 		goto bail;
255 
256 	/* Clean the page and set PG_arch_1 */
257 	flush_dcache_icache_page(pg);
258 	set_bit(PG_arch_1, &pg->flags);
259 
260  bail:
261 	return __pte(pte_val(pte) | _PAGE_EXEC);
262 }
263 
264 #endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
265 
266 /*
267  * set_pte stores a linux PTE into the linux page table.
268  */
269 void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
270 		pte_t pte)
271 {
272 #ifdef CONFIG_DEBUG_VM
273 	WARN_ON(pte_present(*ptep));
274 #endif
275 	/* Note: mm->context.id might not yet have been assigned as
276 	 * this context might not have been activated yet when this
277 	 * is called.
278 	 */
279 	pte = set_pte_filter(pte);
280 
281 	/* Perform the setting of the PTE */
282 	__set_pte_at(mm, addr, ptep, pte, 0);
283 }
284 
285 /*
286  * This is called when relaxing access to a PTE. It's also called in the page
287  * fault path when we don't hit any of the major fault cases, ie, a minor
288  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
289  * handled those two for us, we additionally deal with missing execute
290  * permission here on some processors
291  */
292 int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
293 			  pte_t *ptep, pte_t entry, int dirty)
294 {
295 	int changed;
296 	entry = set_access_flags_filter(entry, vma, dirty);
297 	changed = !pte_same(*(ptep), entry);
298 	if (changed) {
299 		if (!(vma->vm_flags & VM_HUGETLB))
300 			assert_pte_locked(vma->vm_mm, address);
301 		__ptep_set_access_flags(ptep, entry);
302 		flush_tlb_page_nohash(vma, address);
303 	}
304 	return changed;
305 }
306 
307 #ifdef CONFIG_DEBUG_VM
308 void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
309 {
310 	pgd_t *pgd;
311 	pud_t *pud;
312 	pmd_t *pmd;
313 
314 	if (mm == &init_mm)
315 		return;
316 	pgd = mm->pgd + pgd_index(addr);
317 	BUG_ON(pgd_none(*pgd));
318 	pud = pud_offset(pgd, addr);
319 	BUG_ON(pud_none(*pud));
320 	pmd = pmd_offset(pud, addr);
321 	BUG_ON(!pmd_present(*pmd));
322 	assert_spin_locked(pte_lockptr(mm, pmd));
323 }
324 #endif /* CONFIG_DEBUG_VM */
325 
326