xref: /openbmc/linux/arch/powerpc/mm/numa.c (revision ca869912366f60cb5e0bdd09f65e80ee6816e73c)
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
21 #include <asm/lmb.h>
22 #include <asm/system.h>
23 #include <asm/smp.h>
24 
25 static int numa_enabled = 1;
26 
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
29 
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
33 
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
37 
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40 
41 /*
42  * We need somewhere to store start/end/node for each region until we have
43  * allocated the real node_data structures.
44  */
45 #define MAX_REGIONS	(MAX_LMB_REGIONS*2)
46 static struct {
47 	unsigned long start_pfn;
48 	unsigned long end_pfn;
49 	int nid;
50 } init_node_data[MAX_REGIONS] __initdata;
51 
52 int __init early_pfn_to_nid(unsigned long pfn)
53 {
54 	unsigned int i;
55 
56 	for (i = 0; init_node_data[i].end_pfn; i++) {
57 		unsigned long start_pfn = init_node_data[i].start_pfn;
58 		unsigned long end_pfn = init_node_data[i].end_pfn;
59 
60 		if ((start_pfn <= pfn) && (pfn < end_pfn))
61 			return init_node_data[i].nid;
62 	}
63 
64 	return -1;
65 }
66 
67 void __init add_region(unsigned int nid, unsigned long start_pfn,
68 		       unsigned long pages)
69 {
70 	unsigned int i;
71 
72 	dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
73 		nid, start_pfn, pages);
74 
75 	for (i = 0; init_node_data[i].end_pfn; i++) {
76 		if (init_node_data[i].nid != nid)
77 			continue;
78 		if (init_node_data[i].end_pfn == start_pfn) {
79 			init_node_data[i].end_pfn += pages;
80 			return;
81 		}
82 		if (init_node_data[i].start_pfn == (start_pfn + pages)) {
83 			init_node_data[i].start_pfn -= pages;
84 			return;
85 		}
86 	}
87 
88 	/*
89 	 * Leave last entry NULL so we dont iterate off the end (we use
90 	 * entry.end_pfn to terminate the walk).
91 	 */
92 	if (i >= (MAX_REGIONS - 1)) {
93 		printk(KERN_ERR "WARNING: too many memory regions in "
94 				"numa code, truncating\n");
95 		return;
96 	}
97 
98 	init_node_data[i].start_pfn = start_pfn;
99 	init_node_data[i].end_pfn = start_pfn + pages;
100 	init_node_data[i].nid = nid;
101 }
102 
103 /* We assume init_node_data has no overlapping regions */
104 void __init get_region(unsigned int nid, unsigned long *start_pfn,
105 		       unsigned long *end_pfn, unsigned long *pages_present)
106 {
107 	unsigned int i;
108 
109 	*start_pfn = -1UL;
110 	*end_pfn = *pages_present = 0;
111 
112 	for (i = 0; init_node_data[i].end_pfn; i++) {
113 		if (init_node_data[i].nid != nid)
114 			continue;
115 
116 		*pages_present += init_node_data[i].end_pfn -
117 			init_node_data[i].start_pfn;
118 
119 		if (init_node_data[i].start_pfn < *start_pfn)
120 			*start_pfn = init_node_data[i].start_pfn;
121 
122 		if (init_node_data[i].end_pfn > *end_pfn)
123 			*end_pfn = init_node_data[i].end_pfn;
124 	}
125 
126 	/* We didnt find a matching region, return start/end as 0 */
127 	if (*start_pfn == -1UL)
128 		start_pfn = 0;
129 }
130 
131 static inline void map_cpu_to_node(int cpu, int node)
132 {
133 	numa_cpu_lookup_table[cpu] = node;
134 
135 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
136 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
137 }
138 
139 #ifdef CONFIG_HOTPLUG_CPU
140 static void unmap_cpu_from_node(unsigned long cpu)
141 {
142 	int node = numa_cpu_lookup_table[cpu];
143 
144 	dbg("removing cpu %lu from node %d\n", cpu, node);
145 
146 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
147 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
148 	} else {
149 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
150 		       cpu, node);
151 	}
152 }
153 #endif /* CONFIG_HOTPLUG_CPU */
154 
155 static struct device_node *find_cpu_node(unsigned int cpu)
156 {
157 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
158 	struct device_node *cpu_node = NULL;
159 	unsigned int *interrupt_server, *reg;
160 	int len;
161 
162 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
163 		/* Try interrupt server first */
164 		interrupt_server = (unsigned int *)get_property(cpu_node,
165 					"ibm,ppc-interrupt-server#s", &len);
166 
167 		len = len / sizeof(u32);
168 
169 		if (interrupt_server && (len > 0)) {
170 			while (len--) {
171 				if (interrupt_server[len] == hw_cpuid)
172 					return cpu_node;
173 			}
174 		} else {
175 			reg = (unsigned int *)get_property(cpu_node,
176 							   "reg", &len);
177 			if (reg && (len > 0) && (reg[0] == hw_cpuid))
178 				return cpu_node;
179 		}
180 	}
181 
182 	return NULL;
183 }
184 
185 /* must hold reference to node during call */
186 static int *of_get_associativity(struct device_node *dev)
187 {
188 	return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
189 }
190 
191 static int of_node_numa_domain(struct device_node *device)
192 {
193 	int numa_domain;
194 	unsigned int *tmp;
195 
196 	if (min_common_depth == -1)
197 		return 0;
198 
199 	tmp = of_get_associativity(device);
200 	if (tmp && (tmp[0] >= min_common_depth)) {
201 		numa_domain = tmp[min_common_depth];
202 	} else {
203 		dbg("WARNING: no NUMA information for %s\n",
204 		    device->full_name);
205 		numa_domain = 0;
206 	}
207 	return numa_domain;
208 }
209 
210 /*
211  * In theory, the "ibm,associativity" property may contain multiple
212  * associativity lists because a resource may be multiply connected
213  * into the machine.  This resource then has different associativity
214  * characteristics relative to its multiple connections.  We ignore
215  * this for now.  We also assume that all cpu and memory sets have
216  * their distances represented at a common level.  This won't be
217  * true for heirarchical NUMA.
218  *
219  * In any case the ibm,associativity-reference-points should give
220  * the correct depth for a normal NUMA system.
221  *
222  * - Dave Hansen <haveblue@us.ibm.com>
223  */
224 static int __init find_min_common_depth(void)
225 {
226 	int depth;
227 	unsigned int *ref_points;
228 	struct device_node *rtas_root;
229 	unsigned int len;
230 
231 	rtas_root = of_find_node_by_path("/rtas");
232 
233 	if (!rtas_root)
234 		return -1;
235 
236 	/*
237 	 * this property is 2 32-bit integers, each representing a level of
238 	 * depth in the associativity nodes.  The first is for an SMP
239 	 * configuration (should be all 0's) and the second is for a normal
240 	 * NUMA configuration.
241 	 */
242 	ref_points = (unsigned int *)get_property(rtas_root,
243 			"ibm,associativity-reference-points", &len);
244 
245 	if ((len >= 1) && ref_points) {
246 		depth = ref_points[1];
247 	} else {
248 		dbg("WARNING: could not find NUMA "
249 		    "associativity reference point\n");
250 		depth = -1;
251 	}
252 	of_node_put(rtas_root);
253 
254 	return depth;
255 }
256 
257 static int __init get_mem_addr_cells(void)
258 {
259 	struct device_node *memory = NULL;
260 	int rc;
261 
262 	memory = of_find_node_by_type(memory, "memory");
263 	if (!memory)
264 		return 0; /* it won't matter */
265 
266 	rc = prom_n_addr_cells(memory);
267 	return rc;
268 }
269 
270 static int __init get_mem_size_cells(void)
271 {
272 	struct device_node *memory = NULL;
273 	int rc;
274 
275 	memory = of_find_node_by_type(memory, "memory");
276 	if (!memory)
277 		return 0; /* it won't matter */
278 	rc = prom_n_size_cells(memory);
279 	return rc;
280 }
281 
282 static unsigned long __init read_n_cells(int n, unsigned int **buf)
283 {
284 	unsigned long result = 0;
285 
286 	while (n--) {
287 		result = (result << 32) | **buf;
288 		(*buf)++;
289 	}
290 	return result;
291 }
292 
293 /*
294  * Figure out to which domain a cpu belongs and stick it there.
295  * Return the id of the domain used.
296  */
297 static int numa_setup_cpu(unsigned long lcpu)
298 {
299 	int numa_domain = 0;
300 	struct device_node *cpu = find_cpu_node(lcpu);
301 
302 	if (!cpu) {
303 		WARN_ON(1);
304 		goto out;
305 	}
306 
307 	numa_domain = of_node_numa_domain(cpu);
308 
309 	if (numa_domain >= num_online_nodes()) {
310 		/*
311 		 * POWER4 LPAR uses 0xffff as invalid node,
312 		 * dont warn in this case.
313 		 */
314 		if (numa_domain != 0xffff)
315 			printk(KERN_ERR "WARNING: cpu %ld "
316 			       "maps to invalid NUMA node %d\n",
317 			       lcpu, numa_domain);
318 		numa_domain = 0;
319 	}
320 out:
321 	node_set_online(numa_domain);
322 
323 	map_cpu_to_node(lcpu, numa_domain);
324 
325 	of_node_put(cpu);
326 
327 	return numa_domain;
328 }
329 
330 static int cpu_numa_callback(struct notifier_block *nfb,
331 			     unsigned long action,
332 			     void *hcpu)
333 {
334 	unsigned long lcpu = (unsigned long)hcpu;
335 	int ret = NOTIFY_DONE;
336 
337 	switch (action) {
338 	case CPU_UP_PREPARE:
339 		if (min_common_depth == -1 || !numa_enabled)
340 			map_cpu_to_node(lcpu, 0);
341 		else
342 			numa_setup_cpu(lcpu);
343 		ret = NOTIFY_OK;
344 		break;
345 #ifdef CONFIG_HOTPLUG_CPU
346 	case CPU_DEAD:
347 	case CPU_UP_CANCELED:
348 		unmap_cpu_from_node(lcpu);
349 		break;
350 		ret = NOTIFY_OK;
351 #endif
352 	}
353 	return ret;
354 }
355 
356 /*
357  * Check and possibly modify a memory region to enforce the memory limit.
358  *
359  * Returns the size the region should have to enforce the memory limit.
360  * This will either be the original value of size, a truncated value,
361  * or zero. If the returned value of size is 0 the region should be
362  * discarded as it lies wholy above the memory limit.
363  */
364 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
365 						      unsigned long size)
366 {
367 	/*
368 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
369 	 * we've already adjusted it for the limit and it takes care of
370 	 * having memory holes below the limit.
371 	 */
372 
373 	if (! memory_limit)
374 		return size;
375 
376 	if (start + size <= lmb_end_of_DRAM())
377 		return size;
378 
379 	if (start >= lmb_end_of_DRAM())
380 		return 0;
381 
382 	return lmb_end_of_DRAM() - start;
383 }
384 
385 static int __init parse_numa_properties(void)
386 {
387 	struct device_node *cpu = NULL;
388 	struct device_node *memory = NULL;
389 	int addr_cells, size_cells;
390 	int max_domain;
391 	unsigned long i;
392 
393 	if (numa_enabled == 0) {
394 		printk(KERN_WARNING "NUMA disabled by user\n");
395 		return -1;
396 	}
397 
398 	min_common_depth = find_min_common_depth();
399 
400 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
401 	if (min_common_depth < 0)
402 		return min_common_depth;
403 
404 	max_domain = numa_setup_cpu(boot_cpuid);
405 
406 	/*
407 	 * Even though we connect cpus to numa domains later in SMP init,
408 	 * we need to know the maximum node id now. This is because each
409 	 * node id must have NODE_DATA etc backing it.
410 	 * As a result of hotplug we could still have cpus appear later on
411 	 * with larger node ids. In that case we force the cpu into node 0.
412 	 */
413 	for_each_cpu(i) {
414 		int numa_domain;
415 
416 		cpu = find_cpu_node(i);
417 
418 		if (cpu) {
419 			numa_domain = of_node_numa_domain(cpu);
420 			of_node_put(cpu);
421 
422 			if (numa_domain < MAX_NUMNODES &&
423 			    max_domain < numa_domain)
424 				max_domain = numa_domain;
425 		}
426 	}
427 
428 	addr_cells = get_mem_addr_cells();
429 	size_cells = get_mem_size_cells();
430 	memory = NULL;
431 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
432 		unsigned long start;
433 		unsigned long size;
434 		int numa_domain;
435 		int ranges;
436 		unsigned int *memcell_buf;
437 		unsigned int len;
438 
439 		memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
440 		if (!memcell_buf || len <= 0)
441 			continue;
442 
443 		ranges = memory->n_addrs;
444 new_range:
445 		/* these are order-sensitive, and modify the buffer pointer */
446 		start = read_n_cells(addr_cells, &memcell_buf);
447 		size = read_n_cells(size_cells, &memcell_buf);
448 
449 		numa_domain = of_node_numa_domain(memory);
450 
451 		if (numa_domain >= MAX_NUMNODES) {
452 			if (numa_domain != 0xffff)
453 				printk(KERN_ERR "WARNING: memory at %lx maps "
454 				       "to invalid NUMA node %d\n", start,
455 				       numa_domain);
456 			numa_domain = 0;
457 		}
458 
459 		if (max_domain < numa_domain)
460 			max_domain = numa_domain;
461 
462 		if (!(size = numa_enforce_memory_limit(start, size))) {
463 			if (--ranges)
464 				goto new_range;
465 			else
466 				continue;
467 		}
468 
469 		add_region(numa_domain, start >> PAGE_SHIFT,
470 			   size >> PAGE_SHIFT);
471 
472 		if (--ranges)
473 			goto new_range;
474 	}
475 
476 	for (i = 0; i <= max_domain; i++)
477 		node_set_online(i);
478 
479 	return 0;
480 }
481 
482 static void __init setup_nonnuma(void)
483 {
484 	unsigned long top_of_ram = lmb_end_of_DRAM();
485 	unsigned long total_ram = lmb_phys_mem_size();
486 
487 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
488 	       top_of_ram, total_ram);
489 	printk(KERN_INFO "Memory hole size: %ldMB\n",
490 	       (top_of_ram - total_ram) >> 20);
491 
492 	map_cpu_to_node(boot_cpuid, 0);
493 	add_region(0, 0, lmb_end_of_DRAM() >> PAGE_SHIFT);
494 	node_set_online(0);
495 }
496 
497 static void __init dump_numa_topology(void)
498 {
499 	unsigned int node;
500 	unsigned int count;
501 
502 	if (min_common_depth == -1 || !numa_enabled)
503 		return;
504 
505 	for_each_online_node(node) {
506 		unsigned long i;
507 
508 		printk(KERN_INFO "Node %d Memory:", node);
509 
510 		count = 0;
511 
512 		for (i = 0; i < lmb_end_of_DRAM();
513 		     i += (1 << SECTION_SIZE_BITS)) {
514 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
515 				if (count == 0)
516 					printk(" 0x%lx", i);
517 				++count;
518 			} else {
519 				if (count > 0)
520 					printk("-0x%lx", i);
521 				count = 0;
522 			}
523 		}
524 
525 		if (count > 0)
526 			printk("-0x%lx", i);
527 		printk("\n");
528 	}
529 	return;
530 }
531 
532 /*
533  * Allocate some memory, satisfying the lmb or bootmem allocator where
534  * required. nid is the preferred node and end is the physical address of
535  * the highest address in the node.
536  *
537  * Returns the physical address of the memory.
538  */
539 static void __init *careful_allocation(int nid, unsigned long size,
540 				       unsigned long align,
541 				       unsigned long end_pfn)
542 {
543 	int new_nid;
544 	unsigned long ret = lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
545 
546 	/* retry over all memory */
547 	if (!ret)
548 		ret = lmb_alloc_base(size, align, lmb_end_of_DRAM());
549 
550 	if (!ret)
551 		panic("numa.c: cannot allocate %lu bytes on node %d",
552 		      size, nid);
553 
554 	/*
555 	 * If the memory came from a previously allocated node, we must
556 	 * retry with the bootmem allocator.
557 	 */
558 	new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
559 	if (new_nid < nid) {
560 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
561 				size, align, 0);
562 
563 		if (!ret)
564 			panic("numa.c: cannot allocate %lu bytes on node %d",
565 			      size, new_nid);
566 
567 		ret = __pa(ret);
568 
569 		dbg("alloc_bootmem %lx %lx\n", ret, size);
570 	}
571 
572 	return (void *)ret;
573 }
574 
575 void __init do_init_bootmem(void)
576 {
577 	int nid;
578 	unsigned int i;
579 	static struct notifier_block ppc64_numa_nb = {
580 		.notifier_call = cpu_numa_callback,
581 		.priority = 1 /* Must run before sched domains notifier. */
582 	};
583 
584 	min_low_pfn = 0;
585 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
586 	max_pfn = max_low_pfn;
587 
588 	if (parse_numa_properties())
589 		setup_nonnuma();
590 	else
591 		dump_numa_topology();
592 
593 	register_cpu_notifier(&ppc64_numa_nb);
594 
595 	for_each_online_node(nid) {
596 		unsigned long start_pfn, end_pfn, pages_present;
597 		unsigned long bootmem_paddr;
598 		unsigned long bootmap_pages;
599 
600 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
601 
602 		/* Allocate the node structure node local if possible */
603 		NODE_DATA(nid) = careful_allocation(nid,
604 					sizeof(struct pglist_data),
605 					SMP_CACHE_BYTES, end_pfn);
606 		NODE_DATA(nid) = __va(NODE_DATA(nid));
607 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
608 
609   		dbg("node %d\n", nid);
610 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
611 
612 		NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
613 		NODE_DATA(nid)->node_start_pfn = start_pfn;
614 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
615 
616 		if (NODE_DATA(nid)->node_spanned_pages == 0)
617   			continue;
618 
619   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
620   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
621 
622 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
623 		bootmem_paddr = (unsigned long)careful_allocation(nid,
624 					bootmap_pages << PAGE_SHIFT,
625 					PAGE_SIZE, end_pfn);
626 		memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
627 
628 		dbg("bootmap_paddr = %lx\n", bootmem_paddr);
629 
630 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
631 				  start_pfn, end_pfn);
632 
633 		/* Add free regions on this node */
634 		for (i = 0; init_node_data[i].end_pfn; i++) {
635 			unsigned long start, end;
636 
637 			if (init_node_data[i].nid != nid)
638 				continue;
639 
640 			start = init_node_data[i].start_pfn << PAGE_SHIFT;
641 			end = init_node_data[i].end_pfn << PAGE_SHIFT;
642 
643 			dbg("free_bootmem %lx %lx\n", start, end - start);
644   			free_bootmem_node(NODE_DATA(nid), start, end - start);
645 		}
646 
647 		/* Mark reserved regions on this node */
648 		for (i = 0; i < lmb.reserved.cnt; i++) {
649 			unsigned long physbase = lmb.reserved.region[i].base;
650 			unsigned long size = lmb.reserved.region[i].size;
651 			unsigned long start_paddr = start_pfn << PAGE_SHIFT;
652 			unsigned long end_paddr = end_pfn << PAGE_SHIFT;
653 
654 			if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
655 			    early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
656 				continue;
657 
658 			if (physbase < end_paddr &&
659 			    (physbase+size) > start_paddr) {
660 				/* overlaps */
661 				if (physbase < start_paddr) {
662 					size -= start_paddr - physbase;
663 					physbase = start_paddr;
664 				}
665 
666 				if (size > end_paddr - physbase)
667 					size = end_paddr - physbase;
668 
669 				dbg("reserve_bootmem %lx %lx\n", physbase,
670 				    size);
671 				reserve_bootmem_node(NODE_DATA(nid), physbase,
672 						     size);
673 			}
674 		}
675 
676 		/* Add regions into sparsemem */
677 		for (i = 0; init_node_data[i].end_pfn; i++) {
678 			unsigned long start, end;
679 
680 			if (init_node_data[i].nid != nid)
681 				continue;
682 
683 			start = init_node_data[i].start_pfn;
684 			end = init_node_data[i].end_pfn;
685 
686 			memory_present(nid, start, end);
687 		}
688 	}
689 }
690 
691 void __init paging_init(void)
692 {
693 	unsigned long zones_size[MAX_NR_ZONES];
694 	unsigned long zholes_size[MAX_NR_ZONES];
695 	int nid;
696 
697 	memset(zones_size, 0, sizeof(zones_size));
698 	memset(zholes_size, 0, sizeof(zholes_size));
699 
700 	for_each_online_node(nid) {
701 		unsigned long start_pfn, end_pfn, pages_present;
702 
703 		get_region(nid, &start_pfn, &end_pfn, &pages_present);
704 
705 		zones_size[ZONE_DMA] = end_pfn - start_pfn;
706 		zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
707 
708 		dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
709 		    zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
710 
711 		free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
712 				    zholes_size);
713 	}
714 }
715 
716 static int __init early_numa(char *p)
717 {
718 	if (!p)
719 		return 0;
720 
721 	if (strstr(p, "off"))
722 		numa_enabled = 0;
723 
724 	if (strstr(p, "debug"))
725 		numa_debug = 1;
726 
727 	return 0;
728 }
729 early_param("numa", early_numa);
730