1 /* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 #include <linux/threads.h> 12 #include <linux/bootmem.h> 13 #include <linux/init.h> 14 #include <linux/mm.h> 15 #include <linux/mmzone.h> 16 #include <linux/module.h> 17 #include <linux/nodemask.h> 18 #include <linux/cpu.h> 19 #include <linux/notifier.h> 20 #include <asm/lmb.h> 21 #include <asm/machdep.h> 22 #include <asm/abs_addr.h> 23 #include <asm/system.h> 24 25 static int numa_enabled = 1; 26 27 static int numa_debug; 28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 29 30 #ifdef DEBUG_NUMA 31 #define ARRAY_INITIALISER -1 32 #else 33 #define ARRAY_INITIALISER 0 34 #endif 35 36 int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] = 37 ARRAY_INITIALISER}; 38 char *numa_memory_lookup_table; 39 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; 40 int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0}; 41 42 struct pglist_data *node_data[MAX_NUMNODES]; 43 bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES]; 44 static int min_common_depth; 45 46 /* 47 * We need somewhere to store start/span for each node until we have 48 * allocated the real node_data structures. 49 */ 50 static struct { 51 unsigned long node_start_pfn; 52 unsigned long node_end_pfn; 53 unsigned long node_present_pages; 54 } init_node_data[MAX_NUMNODES] __initdata; 55 56 EXPORT_SYMBOL(node_data); 57 EXPORT_SYMBOL(numa_cpu_lookup_table); 58 EXPORT_SYMBOL(numa_memory_lookup_table); 59 EXPORT_SYMBOL(numa_cpumask_lookup_table); 60 EXPORT_SYMBOL(nr_cpus_in_node); 61 62 static inline void map_cpu_to_node(int cpu, int node) 63 { 64 numa_cpu_lookup_table[cpu] = node; 65 if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) { 66 cpu_set(cpu, numa_cpumask_lookup_table[node]); 67 nr_cpus_in_node[node]++; 68 } 69 } 70 71 #ifdef CONFIG_HOTPLUG_CPU 72 static void unmap_cpu_from_node(unsigned long cpu) 73 { 74 int node = numa_cpu_lookup_table[cpu]; 75 76 dbg("removing cpu %lu from node %d\n", cpu, node); 77 78 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { 79 cpu_clear(cpu, numa_cpumask_lookup_table[node]); 80 nr_cpus_in_node[node]--; 81 } else { 82 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 83 cpu, node); 84 } 85 } 86 #endif /* CONFIG_HOTPLUG_CPU */ 87 88 static struct device_node * __devinit find_cpu_node(unsigned int cpu) 89 { 90 unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); 91 struct device_node *cpu_node = NULL; 92 unsigned int *interrupt_server, *reg; 93 int len; 94 95 while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { 96 /* Try interrupt server first */ 97 interrupt_server = (unsigned int *)get_property(cpu_node, 98 "ibm,ppc-interrupt-server#s", &len); 99 100 len = len / sizeof(u32); 101 102 if (interrupt_server && (len > 0)) { 103 while (len--) { 104 if (interrupt_server[len] == hw_cpuid) 105 return cpu_node; 106 } 107 } else { 108 reg = (unsigned int *)get_property(cpu_node, 109 "reg", &len); 110 if (reg && (len > 0) && (reg[0] == hw_cpuid)) 111 return cpu_node; 112 } 113 } 114 115 return NULL; 116 } 117 118 /* must hold reference to node during call */ 119 static int *of_get_associativity(struct device_node *dev) 120 { 121 return (unsigned int *)get_property(dev, "ibm,associativity", NULL); 122 } 123 124 static int of_node_numa_domain(struct device_node *device) 125 { 126 int numa_domain; 127 unsigned int *tmp; 128 129 if (min_common_depth == -1) 130 return 0; 131 132 tmp = of_get_associativity(device); 133 if (tmp && (tmp[0] >= min_common_depth)) { 134 numa_domain = tmp[min_common_depth]; 135 } else { 136 dbg("WARNING: no NUMA information for %s\n", 137 device->full_name); 138 numa_domain = 0; 139 } 140 return numa_domain; 141 } 142 143 /* 144 * In theory, the "ibm,associativity" property may contain multiple 145 * associativity lists because a resource may be multiply connected 146 * into the machine. This resource then has different associativity 147 * characteristics relative to its multiple connections. We ignore 148 * this for now. We also assume that all cpu and memory sets have 149 * their distances represented at a common level. This won't be 150 * true for heirarchical NUMA. 151 * 152 * In any case the ibm,associativity-reference-points should give 153 * the correct depth for a normal NUMA system. 154 * 155 * - Dave Hansen <haveblue@us.ibm.com> 156 */ 157 static int __init find_min_common_depth(void) 158 { 159 int depth; 160 unsigned int *ref_points; 161 struct device_node *rtas_root; 162 unsigned int len; 163 164 rtas_root = of_find_node_by_path("/rtas"); 165 166 if (!rtas_root) 167 return -1; 168 169 /* 170 * this property is 2 32-bit integers, each representing a level of 171 * depth in the associativity nodes. The first is for an SMP 172 * configuration (should be all 0's) and the second is for a normal 173 * NUMA configuration. 174 */ 175 ref_points = (unsigned int *)get_property(rtas_root, 176 "ibm,associativity-reference-points", &len); 177 178 if ((len >= 1) && ref_points) { 179 depth = ref_points[1]; 180 } else { 181 dbg("WARNING: could not find NUMA " 182 "associativity reference point\n"); 183 depth = -1; 184 } 185 of_node_put(rtas_root); 186 187 return depth; 188 } 189 190 static int __init get_mem_addr_cells(void) 191 { 192 struct device_node *memory = NULL; 193 int rc; 194 195 memory = of_find_node_by_type(memory, "memory"); 196 if (!memory) 197 return 0; /* it won't matter */ 198 199 rc = prom_n_addr_cells(memory); 200 return rc; 201 } 202 203 static int __init get_mem_size_cells(void) 204 { 205 struct device_node *memory = NULL; 206 int rc; 207 208 memory = of_find_node_by_type(memory, "memory"); 209 if (!memory) 210 return 0; /* it won't matter */ 211 rc = prom_n_size_cells(memory); 212 return rc; 213 } 214 215 static unsigned long read_n_cells(int n, unsigned int **buf) 216 { 217 unsigned long result = 0; 218 219 while (n--) { 220 result = (result << 32) | **buf; 221 (*buf)++; 222 } 223 return result; 224 } 225 226 /* 227 * Figure out to which domain a cpu belongs and stick it there. 228 * Return the id of the domain used. 229 */ 230 static int numa_setup_cpu(unsigned long lcpu) 231 { 232 int numa_domain = 0; 233 struct device_node *cpu = find_cpu_node(lcpu); 234 235 if (!cpu) { 236 WARN_ON(1); 237 goto out; 238 } 239 240 numa_domain = of_node_numa_domain(cpu); 241 242 if (numa_domain >= num_online_nodes()) { 243 /* 244 * POWER4 LPAR uses 0xffff as invalid node, 245 * dont warn in this case. 246 */ 247 if (numa_domain != 0xffff) 248 printk(KERN_ERR "WARNING: cpu %ld " 249 "maps to invalid NUMA node %d\n", 250 lcpu, numa_domain); 251 numa_domain = 0; 252 } 253 out: 254 node_set_online(numa_domain); 255 256 map_cpu_to_node(lcpu, numa_domain); 257 258 of_node_put(cpu); 259 260 return numa_domain; 261 } 262 263 static int cpu_numa_callback(struct notifier_block *nfb, 264 unsigned long action, 265 void *hcpu) 266 { 267 unsigned long lcpu = (unsigned long)hcpu; 268 int ret = NOTIFY_DONE; 269 270 switch (action) { 271 case CPU_UP_PREPARE: 272 if (min_common_depth == -1 || !numa_enabled) 273 map_cpu_to_node(lcpu, 0); 274 else 275 numa_setup_cpu(lcpu); 276 ret = NOTIFY_OK; 277 break; 278 #ifdef CONFIG_HOTPLUG_CPU 279 case CPU_DEAD: 280 case CPU_UP_CANCELED: 281 unmap_cpu_from_node(lcpu); 282 break; 283 ret = NOTIFY_OK; 284 #endif 285 } 286 return ret; 287 } 288 289 /* 290 * Check and possibly modify a memory region to enforce the memory limit. 291 * 292 * Returns the size the region should have to enforce the memory limit. 293 * This will either be the original value of size, a truncated value, 294 * or zero. If the returned value of size is 0 the region should be 295 * discarded as it lies wholy above the memory limit. 296 */ 297 static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size) 298 { 299 /* 300 * We use lmb_end_of_DRAM() in here instead of memory_limit because 301 * we've already adjusted it for the limit and it takes care of 302 * having memory holes below the limit. 303 */ 304 305 if (! memory_limit) 306 return size; 307 308 if (start + size <= lmb_end_of_DRAM()) 309 return size; 310 311 if (start >= lmb_end_of_DRAM()) 312 return 0; 313 314 return lmb_end_of_DRAM() - start; 315 } 316 317 static int __init parse_numa_properties(void) 318 { 319 struct device_node *cpu = NULL; 320 struct device_node *memory = NULL; 321 int addr_cells, size_cells; 322 int max_domain = 0; 323 long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT; 324 unsigned long i; 325 326 if (numa_enabled == 0) { 327 printk(KERN_WARNING "NUMA disabled by user\n"); 328 return -1; 329 } 330 331 numa_memory_lookup_table = 332 (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); 333 memset(numa_memory_lookup_table, 0, entries * sizeof(char)); 334 335 for (i = 0; i < entries ; i++) 336 numa_memory_lookup_table[i] = ARRAY_INITIALISER; 337 338 min_common_depth = find_min_common_depth(); 339 340 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 341 if (min_common_depth < 0) 342 return min_common_depth; 343 344 max_domain = numa_setup_cpu(boot_cpuid); 345 346 /* 347 * Even though we connect cpus to numa domains later in SMP init, 348 * we need to know the maximum node id now. This is because each 349 * node id must have NODE_DATA etc backing it. 350 * As a result of hotplug we could still have cpus appear later on 351 * with larger node ids. In that case we force the cpu into node 0. 352 */ 353 for_each_cpu(i) { 354 int numa_domain; 355 356 cpu = find_cpu_node(i); 357 358 if (cpu) { 359 numa_domain = of_node_numa_domain(cpu); 360 of_node_put(cpu); 361 362 if (numa_domain < MAX_NUMNODES && 363 max_domain < numa_domain) 364 max_domain = numa_domain; 365 } 366 } 367 368 addr_cells = get_mem_addr_cells(); 369 size_cells = get_mem_size_cells(); 370 memory = NULL; 371 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { 372 unsigned long start; 373 unsigned long size; 374 int numa_domain; 375 int ranges; 376 unsigned int *memcell_buf; 377 unsigned int len; 378 379 memcell_buf = (unsigned int *)get_property(memory, "reg", &len); 380 if (!memcell_buf || len <= 0) 381 continue; 382 383 ranges = memory->n_addrs; 384 new_range: 385 /* these are order-sensitive, and modify the buffer pointer */ 386 start = read_n_cells(addr_cells, &memcell_buf); 387 size = read_n_cells(size_cells, &memcell_buf); 388 389 start = _ALIGN_DOWN(start, MEMORY_INCREMENT); 390 size = _ALIGN_UP(size, MEMORY_INCREMENT); 391 392 numa_domain = of_node_numa_domain(memory); 393 394 if (numa_domain >= MAX_NUMNODES) { 395 if (numa_domain != 0xffff) 396 printk(KERN_ERR "WARNING: memory at %lx maps " 397 "to invalid NUMA node %d\n", start, 398 numa_domain); 399 numa_domain = 0; 400 } 401 402 if (max_domain < numa_domain) 403 max_domain = numa_domain; 404 405 if (! (size = numa_enforce_memory_limit(start, size))) { 406 if (--ranges) 407 goto new_range; 408 else 409 continue; 410 } 411 412 /* 413 * Initialize new node struct, or add to an existing one. 414 */ 415 if (init_node_data[numa_domain].node_end_pfn) { 416 if ((start / PAGE_SIZE) < 417 init_node_data[numa_domain].node_start_pfn) 418 init_node_data[numa_domain].node_start_pfn = 419 start / PAGE_SIZE; 420 if (((start / PAGE_SIZE) + (size / PAGE_SIZE)) > 421 init_node_data[numa_domain].node_end_pfn) 422 init_node_data[numa_domain].node_end_pfn = 423 (start / PAGE_SIZE) + 424 (size / PAGE_SIZE); 425 426 init_node_data[numa_domain].node_present_pages += 427 size / PAGE_SIZE; 428 } else { 429 node_set_online(numa_domain); 430 431 init_node_data[numa_domain].node_start_pfn = 432 start / PAGE_SIZE; 433 init_node_data[numa_domain].node_end_pfn = 434 init_node_data[numa_domain].node_start_pfn + 435 size / PAGE_SIZE; 436 init_node_data[numa_domain].node_present_pages = 437 size / PAGE_SIZE; 438 } 439 440 for (i = start ; i < (start+size); i += MEMORY_INCREMENT) 441 numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 442 numa_domain; 443 444 if (--ranges) 445 goto new_range; 446 } 447 448 for (i = 0; i <= max_domain; i++) 449 node_set_online(i); 450 451 return 0; 452 } 453 454 static void __init setup_nonnuma(void) 455 { 456 unsigned long top_of_ram = lmb_end_of_DRAM(); 457 unsigned long total_ram = lmb_phys_mem_size(); 458 unsigned long i; 459 460 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 461 top_of_ram, total_ram); 462 printk(KERN_INFO "Memory hole size: %ldMB\n", 463 (top_of_ram - total_ram) >> 20); 464 465 if (!numa_memory_lookup_table) { 466 long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT; 467 numa_memory_lookup_table = 468 (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); 469 memset(numa_memory_lookup_table, 0, entries * sizeof(char)); 470 for (i = 0; i < entries ; i++) 471 numa_memory_lookup_table[i] = ARRAY_INITIALISER; 472 } 473 474 map_cpu_to_node(boot_cpuid, 0); 475 476 node_set_online(0); 477 478 init_node_data[0].node_start_pfn = 0; 479 init_node_data[0].node_end_pfn = lmb_end_of_DRAM() / PAGE_SIZE; 480 init_node_data[0].node_present_pages = total_ram / PAGE_SIZE; 481 482 for (i = 0 ; i < top_of_ram; i += MEMORY_INCREMENT) 483 numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0; 484 } 485 486 static void __init dump_numa_topology(void) 487 { 488 unsigned int node; 489 unsigned int count; 490 491 if (min_common_depth == -1 || !numa_enabled) 492 return; 493 494 for_each_online_node(node) { 495 unsigned long i; 496 497 printk(KERN_INFO "Node %d Memory:", node); 498 499 count = 0; 500 501 for (i = 0; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) { 502 if (numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] == node) { 503 if (count == 0) 504 printk(" 0x%lx", i); 505 ++count; 506 } else { 507 if (count > 0) 508 printk("-0x%lx", i); 509 count = 0; 510 } 511 } 512 513 if (count > 0) 514 printk("-0x%lx", i); 515 printk("\n"); 516 } 517 return; 518 } 519 520 /* 521 * Allocate some memory, satisfying the lmb or bootmem allocator where 522 * required. nid is the preferred node and end is the physical address of 523 * the highest address in the node. 524 * 525 * Returns the physical address of the memory. 526 */ 527 static unsigned long careful_allocation(int nid, unsigned long size, 528 unsigned long align, unsigned long end) 529 { 530 unsigned long ret = lmb_alloc_base(size, align, end); 531 532 /* retry over all memory */ 533 if (!ret) 534 ret = lmb_alloc_base(size, align, lmb_end_of_DRAM()); 535 536 if (!ret) 537 panic("numa.c: cannot allocate %lu bytes on node %d", 538 size, nid); 539 540 /* 541 * If the memory came from a previously allocated node, we must 542 * retry with the bootmem allocator. 543 */ 544 if (pa_to_nid(ret) < nid) { 545 nid = pa_to_nid(ret); 546 ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(nid), 547 size, align, 0); 548 549 if (!ret) 550 panic("numa.c: cannot allocate %lu bytes on node %d", 551 size, nid); 552 553 ret = virt_to_abs(ret); 554 555 dbg("alloc_bootmem %lx %lx\n", ret, size); 556 } 557 558 return ret; 559 } 560 561 void __init do_init_bootmem(void) 562 { 563 int nid; 564 int addr_cells, size_cells; 565 struct device_node *memory = NULL; 566 static struct notifier_block ppc64_numa_nb = { 567 .notifier_call = cpu_numa_callback, 568 .priority = 1 /* Must run before sched domains notifier. */ 569 }; 570 571 min_low_pfn = 0; 572 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; 573 max_pfn = max_low_pfn; 574 575 if (parse_numa_properties()) 576 setup_nonnuma(); 577 else 578 dump_numa_topology(); 579 580 register_cpu_notifier(&ppc64_numa_nb); 581 582 for_each_online_node(nid) { 583 unsigned long start_paddr, end_paddr; 584 int i; 585 unsigned long bootmem_paddr; 586 unsigned long bootmap_pages; 587 588 start_paddr = init_node_data[nid].node_start_pfn * PAGE_SIZE; 589 end_paddr = init_node_data[nid].node_end_pfn * PAGE_SIZE; 590 591 /* Allocate the node structure node local if possible */ 592 NODE_DATA(nid) = (struct pglist_data *)careful_allocation(nid, 593 sizeof(struct pglist_data), 594 SMP_CACHE_BYTES, end_paddr); 595 NODE_DATA(nid) = abs_to_virt(NODE_DATA(nid)); 596 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); 597 598 dbg("node %d\n", nid); 599 dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); 600 601 NODE_DATA(nid)->bdata = &plat_node_bdata[nid]; 602 NODE_DATA(nid)->node_start_pfn = 603 init_node_data[nid].node_start_pfn; 604 NODE_DATA(nid)->node_spanned_pages = 605 end_paddr - start_paddr; 606 607 if (NODE_DATA(nid)->node_spanned_pages == 0) 608 continue; 609 610 dbg("start_paddr = %lx\n", start_paddr); 611 dbg("end_paddr = %lx\n", end_paddr); 612 613 bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT); 614 615 bootmem_paddr = careful_allocation(nid, 616 bootmap_pages << PAGE_SHIFT, 617 PAGE_SIZE, end_paddr); 618 memset(abs_to_virt(bootmem_paddr), 0, 619 bootmap_pages << PAGE_SHIFT); 620 dbg("bootmap_paddr = %lx\n", bootmem_paddr); 621 622 init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, 623 start_paddr >> PAGE_SHIFT, 624 end_paddr >> PAGE_SHIFT); 625 626 /* 627 * We need to do another scan of all memory sections to 628 * associate memory with the correct node. 629 */ 630 addr_cells = get_mem_addr_cells(); 631 size_cells = get_mem_size_cells(); 632 memory = NULL; 633 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { 634 unsigned long mem_start, mem_size; 635 int numa_domain, ranges; 636 unsigned int *memcell_buf; 637 unsigned int len; 638 639 memcell_buf = (unsigned int *)get_property(memory, "reg", &len); 640 if (!memcell_buf || len <= 0) 641 continue; 642 643 ranges = memory->n_addrs; /* ranges in cell */ 644 new_range: 645 mem_start = read_n_cells(addr_cells, &memcell_buf); 646 mem_size = read_n_cells(size_cells, &memcell_buf); 647 if (numa_enabled) { 648 numa_domain = of_node_numa_domain(memory); 649 if (numa_domain >= MAX_NUMNODES) 650 numa_domain = 0; 651 } else 652 numa_domain = 0; 653 654 if (numa_domain != nid) 655 continue; 656 657 mem_size = numa_enforce_memory_limit(mem_start, mem_size); 658 if (mem_size) { 659 dbg("free_bootmem %lx %lx\n", mem_start, mem_size); 660 free_bootmem_node(NODE_DATA(nid), mem_start, mem_size); 661 } 662 663 if (--ranges) /* process all ranges in cell */ 664 goto new_range; 665 } 666 667 /* 668 * Mark reserved regions on this node 669 */ 670 for (i = 0; i < lmb.reserved.cnt; i++) { 671 unsigned long physbase = lmb.reserved.region[i].base; 672 unsigned long size = lmb.reserved.region[i].size; 673 674 if (pa_to_nid(physbase) != nid && 675 pa_to_nid(physbase+size-1) != nid) 676 continue; 677 678 if (physbase < end_paddr && 679 (physbase+size) > start_paddr) { 680 /* overlaps */ 681 if (physbase < start_paddr) { 682 size -= start_paddr - physbase; 683 physbase = start_paddr; 684 } 685 686 if (size > end_paddr - physbase) 687 size = end_paddr - physbase; 688 689 dbg("reserve_bootmem %lx %lx\n", physbase, 690 size); 691 reserve_bootmem_node(NODE_DATA(nid), physbase, 692 size); 693 } 694 } 695 /* 696 * This loop may look famaliar, but we have to do it again 697 * after marking our reserved memory to mark memory present 698 * for sparsemem. 699 */ 700 addr_cells = get_mem_addr_cells(); 701 size_cells = get_mem_size_cells(); 702 memory = NULL; 703 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { 704 unsigned long mem_start, mem_size; 705 int numa_domain, ranges; 706 unsigned int *memcell_buf; 707 unsigned int len; 708 709 memcell_buf = (unsigned int *)get_property(memory, "reg", &len); 710 if (!memcell_buf || len <= 0) 711 continue; 712 713 ranges = memory->n_addrs; /* ranges in cell */ 714 new_range2: 715 mem_start = read_n_cells(addr_cells, &memcell_buf); 716 mem_size = read_n_cells(size_cells, &memcell_buf); 717 if (numa_enabled) { 718 numa_domain = of_node_numa_domain(memory); 719 if (numa_domain >= MAX_NUMNODES) 720 numa_domain = 0; 721 } else 722 numa_domain = 0; 723 724 if (numa_domain != nid) 725 continue; 726 727 mem_size = numa_enforce_memory_limit(mem_start, mem_size); 728 memory_present(numa_domain, mem_start >> PAGE_SHIFT, 729 (mem_start + mem_size) >> PAGE_SHIFT); 730 731 if (--ranges) /* process all ranges in cell */ 732 goto new_range2; 733 } 734 735 } 736 } 737 738 void __init paging_init(void) 739 { 740 unsigned long zones_size[MAX_NR_ZONES]; 741 unsigned long zholes_size[MAX_NR_ZONES]; 742 int nid; 743 744 memset(zones_size, 0, sizeof(zones_size)); 745 memset(zholes_size, 0, sizeof(zholes_size)); 746 747 for_each_online_node(nid) { 748 unsigned long start_pfn; 749 unsigned long end_pfn; 750 751 start_pfn = init_node_data[nid].node_start_pfn; 752 end_pfn = init_node_data[nid].node_end_pfn; 753 754 zones_size[ZONE_DMA] = end_pfn - start_pfn; 755 zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - 756 init_node_data[nid].node_present_pages; 757 758 dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid, 759 zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]); 760 761 free_area_init_node(nid, NODE_DATA(nid), zones_size, 762 start_pfn, zholes_size); 763 } 764 } 765 766 static int __init early_numa(char *p) 767 { 768 if (!p) 769 return 0; 770 771 if (strstr(p, "off")) 772 numa_enabled = 0; 773 774 if (strstr(p, "debug")) 775 numa_debug = 1; 776 777 return 0; 778 } 779 early_param("numa", early_numa); 780