xref: /openbmc/linux/arch/powerpc/mm/init_64.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21 
22 #undef DEBUG
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
42 #include <linux/poison.h>
43 #include <linux/memblock.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 
47 #include <asm/pgalloc.h>
48 #include <asm/page.h>
49 #include <asm/prom.h>
50 #include <asm/rtas.h>
51 #include <asm/io.h>
52 #include <asm/mmu_context.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu.h>
55 #include <asm/uaccess.h>
56 #include <asm/smp.h>
57 #include <asm/machdep.h>
58 #include <asm/tlb.h>
59 #include <asm/eeh.h>
60 #include <asm/processor.h>
61 #include <asm/mmzone.h>
62 #include <asm/cputable.h>
63 #include <asm/sections.h>
64 #include <asm/iommu.h>
65 #include <asm/vdso.h>
66 
67 #include "mmu_decl.h"
68 
69 #ifdef CONFIG_PPC_STD_MMU_64
70 #if PGTABLE_RANGE > USER_VSID_RANGE
71 #warning Limited user VSID range means pagetable space is wasted
72 #endif
73 
74 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
75 #warning TASK_SIZE is smaller than it needs to be.
76 #endif
77 #endif /* CONFIG_PPC_STD_MMU_64 */
78 
79 phys_addr_t memstart_addr = ~0;
80 EXPORT_SYMBOL_GPL(memstart_addr);
81 phys_addr_t kernstart_addr;
82 EXPORT_SYMBOL_GPL(kernstart_addr);
83 
84 static void pgd_ctor(void *addr)
85 {
86 	memset(addr, 0, PGD_TABLE_SIZE);
87 }
88 
89 static void pmd_ctor(void *addr)
90 {
91 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
92 	memset(addr, 0, PMD_TABLE_SIZE * 2);
93 #else
94 	memset(addr, 0, PMD_TABLE_SIZE);
95 #endif
96 }
97 
98 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
99 
100 /*
101  * Create a kmem_cache() for pagetables.  This is not used for PTE
102  * pages - they're linked to struct page, come from the normal free
103  * pages pool and have a different entry size (see real_pte_t) to
104  * everything else.  Caches created by this function are used for all
105  * the higher level pagetables, and for hugepage pagetables.
106  */
107 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
108 {
109 	char *name;
110 	unsigned long table_size = sizeof(void *) << shift;
111 	unsigned long align = table_size;
112 
113 	/* When batching pgtable pointers for RCU freeing, we store
114 	 * the index size in the low bits.  Table alignment must be
115 	 * big enough to fit it.
116 	 *
117 	 * Likewise, hugeapge pagetable pointers contain a (different)
118 	 * shift value in the low bits.  All tables must be aligned so
119 	 * as to leave enough 0 bits in the address to contain it. */
120 	unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
121 				     HUGEPD_SHIFT_MASK + 1);
122 	struct kmem_cache *new;
123 
124 	/* It would be nice if this was a BUILD_BUG_ON(), but at the
125 	 * moment, gcc doesn't seem to recognize is_power_of_2 as a
126 	 * constant expression, so so much for that. */
127 	BUG_ON(!is_power_of_2(minalign));
128 	BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
129 
130 	if (PGT_CACHE(shift))
131 		return; /* Already have a cache of this size */
132 
133 	align = max_t(unsigned long, align, minalign);
134 	name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
135 	new = kmem_cache_create(name, table_size, align, 0, ctor);
136 	pgtable_cache[shift - 1] = new;
137 	pr_debug("Allocated pgtable cache for order %d\n", shift);
138 }
139 
140 
141 void pgtable_cache_init(void)
142 {
143 	pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
144 	pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
145 	if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
146 		panic("Couldn't allocate pgtable caches");
147 	/* In all current configs, when the PUD index exists it's the
148 	 * same size as either the pgd or pmd index.  Verify that the
149 	 * initialization above has also created a PUD cache.  This
150 	 * will need re-examiniation if we add new possibilities for
151 	 * the pagetable layout. */
152 	BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
153 }
154 
155 #ifdef CONFIG_SPARSEMEM_VMEMMAP
156 /*
157  * Given an address within the vmemmap, determine the pfn of the page that
158  * represents the start of the section it is within.  Note that we have to
159  * do this by hand as the proffered address may not be correctly aligned.
160  * Subtraction of non-aligned pointers produces undefined results.
161  */
162 static unsigned long __meminit vmemmap_section_start(unsigned long page)
163 {
164 	unsigned long offset = page - ((unsigned long)(vmemmap));
165 
166 	/* Return the pfn of the start of the section. */
167 	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
168 }
169 
170 /*
171  * Check if this vmemmap page is already initialised.  If any section
172  * which overlaps this vmemmap page is initialised then this page is
173  * initialised already.
174  */
175 static int __meminit vmemmap_populated(unsigned long start, int page_size)
176 {
177 	unsigned long end = start + page_size;
178 	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
179 
180 	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
181 		if (pfn_valid(page_to_pfn((struct page *)start)))
182 			return 1;
183 
184 	return 0;
185 }
186 
187 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
188  *
189  * On Book3E CPUs, the vmemmap is currently mapped in the top half of
190  * the vmalloc space using normal page tables, though the size of
191  * pages encoded in the PTEs can be different
192  */
193 
194 #ifdef CONFIG_PPC_BOOK3E
195 static void __meminit vmemmap_create_mapping(unsigned long start,
196 					     unsigned long page_size,
197 					     unsigned long phys)
198 {
199 	/* Create a PTE encoding without page size */
200 	unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
201 		_PAGE_KERNEL_RW;
202 
203 	/* PTEs only contain page size encodings up to 32M */
204 	BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
205 
206 	/* Encode the size in the PTE */
207 	flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
208 
209 	/* For each PTE for that area, map things. Note that we don't
210 	 * increment phys because all PTEs are of the large size and
211 	 * thus must have the low bits clear
212 	 */
213 	for (i = 0; i < page_size; i += PAGE_SIZE)
214 		BUG_ON(map_kernel_page(start + i, phys, flags));
215 }
216 
217 #ifdef CONFIG_MEMORY_HOTPLUG
218 static void vmemmap_remove_mapping(unsigned long start,
219 				   unsigned long page_size)
220 {
221 }
222 #endif
223 #else /* CONFIG_PPC_BOOK3E */
224 static void __meminit vmemmap_create_mapping(unsigned long start,
225 					     unsigned long page_size,
226 					     unsigned long phys)
227 {
228 	int  mapped = htab_bolt_mapping(start, start + page_size, phys,
229 					pgprot_val(PAGE_KERNEL),
230 					mmu_vmemmap_psize,
231 					mmu_kernel_ssize);
232 	BUG_ON(mapped < 0);
233 }
234 
235 #ifdef CONFIG_MEMORY_HOTPLUG
236 extern int htab_remove_mapping(unsigned long vstart, unsigned long vend,
237 			int psize, int ssize);
238 
239 static void vmemmap_remove_mapping(unsigned long start,
240 				   unsigned long page_size)
241 {
242 	int mapped = htab_remove_mapping(start, start + page_size,
243 					 mmu_vmemmap_psize,
244 					 mmu_kernel_ssize);
245 	BUG_ON(mapped < 0);
246 }
247 #endif
248 
249 #endif /* CONFIG_PPC_BOOK3E */
250 
251 struct vmemmap_backing *vmemmap_list;
252 static struct vmemmap_backing *next;
253 static int num_left;
254 static int num_freed;
255 
256 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
257 {
258 	struct vmemmap_backing *vmem_back;
259 	/* get from freed entries first */
260 	if (num_freed) {
261 		num_freed--;
262 		vmem_back = next;
263 		next = next->list;
264 
265 		return vmem_back;
266 	}
267 
268 	/* allocate a page when required and hand out chunks */
269 	if (!num_left) {
270 		next = vmemmap_alloc_block(PAGE_SIZE, node);
271 		if (unlikely(!next)) {
272 			WARN_ON(1);
273 			return NULL;
274 		}
275 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
276 	}
277 
278 	num_left--;
279 
280 	return next++;
281 }
282 
283 static __meminit void vmemmap_list_populate(unsigned long phys,
284 					    unsigned long start,
285 					    int node)
286 {
287 	struct vmemmap_backing *vmem_back;
288 
289 	vmem_back = vmemmap_list_alloc(node);
290 	if (unlikely(!vmem_back)) {
291 		WARN_ON(1);
292 		return;
293 	}
294 
295 	vmem_back->phys = phys;
296 	vmem_back->virt_addr = start;
297 	vmem_back->list = vmemmap_list;
298 
299 	vmemmap_list = vmem_back;
300 }
301 
302 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
303 {
304 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
305 
306 	/* Align to the page size of the linear mapping. */
307 	start = _ALIGN_DOWN(start, page_size);
308 
309 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
310 
311 	for (; start < end; start += page_size) {
312 		void *p;
313 
314 		if (vmemmap_populated(start, page_size))
315 			continue;
316 
317 		p = vmemmap_alloc_block(page_size, node);
318 		if (!p)
319 			return -ENOMEM;
320 
321 		vmemmap_list_populate(__pa(p), start, node);
322 
323 		pr_debug("      * %016lx..%016lx allocated at %p\n",
324 			 start, start + page_size, p);
325 
326 		vmemmap_create_mapping(start, page_size, __pa(p));
327 	}
328 
329 	return 0;
330 }
331 
332 #ifdef CONFIG_MEMORY_HOTPLUG
333 static unsigned long vmemmap_list_free(unsigned long start)
334 {
335 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
336 
337 	vmem_back_prev = vmem_back = vmemmap_list;
338 
339 	/* look for it with prev pointer recorded */
340 	for (; vmem_back; vmem_back = vmem_back->list) {
341 		if (vmem_back->virt_addr == start)
342 			break;
343 		vmem_back_prev = vmem_back;
344 	}
345 
346 	if (unlikely(!vmem_back)) {
347 		WARN_ON(1);
348 		return 0;
349 	}
350 
351 	/* remove it from vmemmap_list */
352 	if (vmem_back == vmemmap_list) /* remove head */
353 		vmemmap_list = vmem_back->list;
354 	else
355 		vmem_back_prev->list = vmem_back->list;
356 
357 	/* next point to this freed entry */
358 	vmem_back->list = next;
359 	next = vmem_back;
360 	num_freed++;
361 
362 	return vmem_back->phys;
363 }
364 
365 void __ref vmemmap_free(unsigned long start, unsigned long end)
366 {
367 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
368 
369 	start = _ALIGN_DOWN(start, page_size);
370 
371 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
372 
373 	for (; start < end; start += page_size) {
374 		unsigned long addr;
375 
376 		/*
377 		 * the section has already be marked as invalid, so
378 		 * vmemmap_populated() true means some other sections still
379 		 * in this page, so skip it.
380 		 */
381 		if (vmemmap_populated(start, page_size))
382 			continue;
383 
384 		addr = vmemmap_list_free(start);
385 		if (addr) {
386 			struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
387 
388 			if (PageReserved(page)) {
389 				/* allocated from bootmem */
390 				if (page_size < PAGE_SIZE) {
391 					/*
392 					 * this shouldn't happen, but if it is
393 					 * the case, leave the memory there
394 					 */
395 					WARN_ON_ONCE(1);
396 				} else {
397 					unsigned int nr_pages =
398 						1 << get_order(page_size);
399 					while (nr_pages--)
400 						free_reserved_page(page++);
401 				}
402 			} else
403 				free_pages((unsigned long)(__va(addr)),
404 							get_order(page_size));
405 
406 			vmemmap_remove_mapping(start, page_size);
407 		}
408 	}
409 }
410 #endif
411 void register_page_bootmem_memmap(unsigned long section_nr,
412 				  struct page *start_page, unsigned long size)
413 {
414 }
415 
416 /*
417  * We do not have access to the sparsemem vmemmap, so we fallback to
418  * walking the list of sparsemem blocks which we already maintain for
419  * the sake of crashdump. In the long run, we might want to maintain
420  * a tree if performance of that linear walk becomes a problem.
421  *
422  * realmode_pfn_to_page functions can fail due to:
423  * 1) As real sparsemem blocks do not lay in RAM continously (they
424  * are in virtual address space which is not available in the real mode),
425  * the requested page struct can be split between blocks so get_page/put_page
426  * may fail.
427  * 2) When huge pages are used, the get_page/put_page API will fail
428  * in real mode as the linked addresses in the page struct are virtual
429  * too.
430  */
431 struct page *realmode_pfn_to_page(unsigned long pfn)
432 {
433 	struct vmemmap_backing *vmem_back;
434 	struct page *page;
435 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
436 	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
437 
438 	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
439 		if (pg_va < vmem_back->virt_addr)
440 			continue;
441 
442 		/* After vmemmap_list entry free is possible, need check all */
443 		if ((pg_va + sizeof(struct page)) <=
444 				(vmem_back->virt_addr + page_size)) {
445 			page = (struct page *) (vmem_back->phys + pg_va -
446 				vmem_back->virt_addr);
447 			return page;
448 		}
449 	}
450 
451 	/* Probably that page struct is split between real pages */
452 	return NULL;
453 }
454 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
455 
456 #elif defined(CONFIG_FLATMEM)
457 
458 struct page *realmode_pfn_to_page(unsigned long pfn)
459 {
460 	struct page *page = pfn_to_page(pfn);
461 	return page;
462 }
463 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
464 
465 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
466