xref: /openbmc/linux/arch/powerpc/mm/fault.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/mmu.h>
36 #include <asm/mmu_context.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/siginfo.h>
41 
42 
43 #ifdef CONFIG_KPROBES
44 static inline int notify_page_fault(struct pt_regs *regs)
45 {
46 	int ret = 0;
47 
48 	/* kprobe_running() needs smp_processor_id() */
49 	if (!user_mode(regs)) {
50 		preempt_disable();
51 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
52 			ret = 1;
53 		preempt_enable();
54 	}
55 
56 	return ret;
57 }
58 #else
59 static inline int notify_page_fault(struct pt_regs *regs)
60 {
61 	return 0;
62 }
63 #endif
64 
65 /*
66  * Check whether the instruction at regs->nip is a store using
67  * an update addressing form which will update r1.
68  */
69 static int store_updates_sp(struct pt_regs *regs)
70 {
71 	unsigned int inst;
72 
73 	if (get_user(inst, (unsigned int __user *)regs->nip))
74 		return 0;
75 	/* check for 1 in the rA field */
76 	if (((inst >> 16) & 0x1f) != 1)
77 		return 0;
78 	/* check major opcode */
79 	switch (inst >> 26) {
80 	case 37:	/* stwu */
81 	case 39:	/* stbu */
82 	case 45:	/* sthu */
83 	case 53:	/* stfsu */
84 	case 55:	/* stfdu */
85 		return 1;
86 	case 62:	/* std or stdu */
87 		return (inst & 3) == 1;
88 	case 31:
89 		/* check minor opcode */
90 		switch ((inst >> 1) & 0x3ff) {
91 		case 181:	/* stdux */
92 		case 183:	/* stwux */
93 		case 247:	/* stbux */
94 		case 439:	/* sthux */
95 		case 695:	/* stfsux */
96 		case 759:	/* stfdux */
97 			return 1;
98 		}
99 	}
100 	return 0;
101 }
102 
103 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
104 static void do_dabr(struct pt_regs *regs, unsigned long address,
105 		    unsigned long error_code)
106 {
107 	siginfo_t info;
108 
109 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
110 			11, SIGSEGV) == NOTIFY_STOP)
111 		return;
112 
113 	if (debugger_dabr_match(regs))
114 		return;
115 
116 	/* Clear the DABR */
117 	set_dabr(0);
118 
119 	/* Deliver the signal to userspace */
120 	info.si_signo = SIGTRAP;
121 	info.si_errno = 0;
122 	info.si_code = TRAP_HWBKPT;
123 	info.si_addr = (void __user *)address;
124 	force_sig_info(SIGTRAP, &info, current);
125 }
126 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
127 
128 /*
129  * For 600- and 800-family processors, the error_code parameter is DSISR
130  * for a data fault, SRR1 for an instruction fault. For 400-family processors
131  * the error_code parameter is ESR for a data fault, 0 for an instruction
132  * fault.
133  * For 64-bit processors, the error_code parameter is
134  *  - DSISR for a non-SLB data access fault,
135  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
136  *  - 0 any SLB fault.
137  *
138  * The return value is 0 if the fault was handled, or the signal
139  * number if this is a kernel fault that can't be handled here.
140  */
141 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
142 			    unsigned long error_code)
143 {
144 	struct vm_area_struct * vma;
145 	struct mm_struct *mm = current->mm;
146 	siginfo_t info;
147 	int code = SEGV_MAPERR;
148 	int is_write = 0, ret;
149 	int trap = TRAP(regs);
150  	int is_exec = trap == 0x400;
151 
152 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
153 	/*
154 	 * Fortunately the bit assignments in SRR1 for an instruction
155 	 * fault and DSISR for a data fault are mostly the same for the
156 	 * bits we are interested in.  But there are some bits which
157 	 * indicate errors in DSISR but can validly be set in SRR1.
158 	 */
159 	if (trap == 0x400)
160 		error_code &= 0x48200000;
161 	else
162 		is_write = error_code & DSISR_ISSTORE;
163 #else
164 	is_write = error_code & ESR_DST;
165 #endif /* CONFIG_4xx || CONFIG_BOOKE */
166 
167 	if (notify_page_fault(regs))
168 		return 0;
169 
170 	if (trap == 0x300) {
171 		if (debugger_fault_handler(regs))
172 			return 0;
173 	}
174 
175 	/* On a kernel SLB miss we can only check for a valid exception entry */
176 	if (!user_mode(regs) && (address >= TASK_SIZE))
177 		return SIGSEGV;
178 
179 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
180   	if (error_code & DSISR_DABRMATCH) {
181 		/* DABR match */
182 		do_dabr(regs, address, error_code);
183 		return 0;
184 	}
185 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
186 
187 	if (in_atomic() || mm == NULL) {
188 		if (!user_mode(regs))
189 			return SIGSEGV;
190 		/* in_atomic() in user mode is really bad,
191 		   as is current->mm == NULL. */
192 		printk(KERN_EMERG "Page fault in user mode with"
193 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
194 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
195 		       regs->nip, regs->msr);
196 		die("Weird page fault", regs, SIGSEGV);
197 	}
198 
199 	/* When running in the kernel we expect faults to occur only to
200 	 * addresses in user space.  All other faults represent errors in the
201 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
202 	 * erroneous fault occurring in a code path which already holds mmap_sem
203 	 * we will deadlock attempting to validate the fault against the
204 	 * address space.  Luckily the kernel only validly references user
205 	 * space from well defined areas of code, which are listed in the
206 	 * exceptions table.
207 	 *
208 	 * As the vast majority of faults will be valid we will only perform
209 	 * the source reference check when there is a possibility of a deadlock.
210 	 * Attempt to lock the address space, if we cannot we then validate the
211 	 * source.  If this is invalid we can skip the address space check,
212 	 * thus avoiding the deadlock.
213 	 */
214 	if (!down_read_trylock(&mm->mmap_sem)) {
215 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
216 			goto bad_area_nosemaphore;
217 
218 		down_read(&mm->mmap_sem);
219 	}
220 
221 	vma = find_vma(mm, address);
222 	if (!vma)
223 		goto bad_area;
224 	if (vma->vm_start <= address)
225 		goto good_area;
226 	if (!(vma->vm_flags & VM_GROWSDOWN))
227 		goto bad_area;
228 
229 	/*
230 	 * N.B. The POWER/Open ABI allows programs to access up to
231 	 * 288 bytes below the stack pointer.
232 	 * The kernel signal delivery code writes up to about 1.5kB
233 	 * below the stack pointer (r1) before decrementing it.
234 	 * The exec code can write slightly over 640kB to the stack
235 	 * before setting the user r1.  Thus we allow the stack to
236 	 * expand to 1MB without further checks.
237 	 */
238 	if (address + 0x100000 < vma->vm_end) {
239 		/* get user regs even if this fault is in kernel mode */
240 		struct pt_regs *uregs = current->thread.regs;
241 		if (uregs == NULL)
242 			goto bad_area;
243 
244 		/*
245 		 * A user-mode access to an address a long way below
246 		 * the stack pointer is only valid if the instruction
247 		 * is one which would update the stack pointer to the
248 		 * address accessed if the instruction completed,
249 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
250 		 * (or the byte, halfword, float or double forms).
251 		 *
252 		 * If we don't check this then any write to the area
253 		 * between the last mapped region and the stack will
254 		 * expand the stack rather than segfaulting.
255 		 */
256 		if (address + 2048 < uregs->gpr[1]
257 		    && (!user_mode(regs) || !store_updates_sp(regs)))
258 			goto bad_area;
259 	}
260 	if (expand_stack(vma, address))
261 		goto bad_area;
262 
263 good_area:
264 	code = SEGV_ACCERR;
265 #if defined(CONFIG_6xx)
266 	if (error_code & 0x95700000)
267 		/* an error such as lwarx to I/O controller space,
268 		   address matching DABR, eciwx, etc. */
269 		goto bad_area;
270 #endif /* CONFIG_6xx */
271 #if defined(CONFIG_8xx)
272         /* The MPC8xx seems to always set 0x80000000, which is
273          * "undefined".  Of those that can be set, this is the only
274          * one which seems bad.
275          */
276 	if (error_code & 0x10000000)
277                 /* Guarded storage error. */
278 		goto bad_area;
279 #endif /* CONFIG_8xx */
280 
281 	if (is_exec) {
282 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
283 		/* protection fault */
284 		if (error_code & DSISR_PROTFAULT)
285 			goto bad_area;
286 		/*
287 		 * Allow execution from readable areas if the MMU does not
288 		 * provide separate controls over reading and executing.
289 		 */
290 		if (!(vma->vm_flags & VM_EXEC) &&
291 		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
292 		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
293 			goto bad_area;
294 #else
295 		pte_t *ptep;
296 		pmd_t *pmdp;
297 
298 		/* Since 4xx/Book-E supports per-page execute permission,
299 		 * we lazily flush dcache to icache. */
300 		ptep = NULL;
301 		if (get_pteptr(mm, address, &ptep, &pmdp)) {
302 			spinlock_t *ptl = pte_lockptr(mm, pmdp);
303 			spin_lock(ptl);
304 			if (pte_present(*ptep)) {
305 				struct page *page = pte_page(*ptep);
306 
307 				if (!test_bit(PG_arch_1, &page->flags)) {
308 					flush_dcache_icache_page(page);
309 					set_bit(PG_arch_1, &page->flags);
310 				}
311 				pte_update(ptep, 0, _PAGE_HWEXEC);
312 				_tlbie(address);
313 				pte_unmap_unlock(ptep, ptl);
314 				up_read(&mm->mmap_sem);
315 				return 0;
316 			}
317 			pte_unmap_unlock(ptep, ptl);
318 		}
319 #endif
320 	/* a write */
321 	} else if (is_write) {
322 		if (!(vma->vm_flags & VM_WRITE))
323 			goto bad_area;
324 	/* a read */
325 	} else {
326 		/* protection fault */
327 		if (error_code & 0x08000000)
328 			goto bad_area;
329 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
330 			goto bad_area;
331 	}
332 
333 	/*
334 	 * If for any reason at all we couldn't handle the fault,
335 	 * make sure we exit gracefully rather than endlessly redo
336 	 * the fault.
337 	 */
338  survive:
339 	ret = handle_mm_fault(mm, vma, address, is_write);
340 	if (unlikely(ret & VM_FAULT_ERROR)) {
341 		if (ret & VM_FAULT_OOM)
342 			goto out_of_memory;
343 		else if (ret & VM_FAULT_SIGBUS)
344 			goto do_sigbus;
345 		BUG();
346 	}
347 	if (ret & VM_FAULT_MAJOR)
348 		current->maj_flt++;
349 	else
350 		current->min_flt++;
351 	up_read(&mm->mmap_sem);
352 	return 0;
353 
354 bad_area:
355 	up_read(&mm->mmap_sem);
356 
357 bad_area_nosemaphore:
358 	/* User mode accesses cause a SIGSEGV */
359 	if (user_mode(regs)) {
360 		_exception(SIGSEGV, regs, code, address);
361 		return 0;
362 	}
363 
364 	if (is_exec && (error_code & DSISR_PROTFAULT)
365 	    && printk_ratelimit())
366 		printk(KERN_CRIT "kernel tried to execute NX-protected"
367 		       " page (%lx) - exploit attempt? (uid: %d)\n",
368 		       address, current->uid);
369 
370 	return SIGSEGV;
371 
372 /*
373  * We ran out of memory, or some other thing happened to us that made
374  * us unable to handle the page fault gracefully.
375  */
376 out_of_memory:
377 	up_read(&mm->mmap_sem);
378 	if (is_global_init(current)) {
379 		yield();
380 		down_read(&mm->mmap_sem);
381 		goto survive;
382 	}
383 	printk("VM: killing process %s\n", current->comm);
384 	if (user_mode(regs))
385 		do_group_exit(SIGKILL);
386 	return SIGKILL;
387 
388 do_sigbus:
389 	up_read(&mm->mmap_sem);
390 	if (user_mode(regs)) {
391 		info.si_signo = SIGBUS;
392 		info.si_errno = 0;
393 		info.si_code = BUS_ADRERR;
394 		info.si_addr = (void __user *)address;
395 		force_sig_info(SIGBUS, &info, current);
396 		return 0;
397 	}
398 	return SIGBUS;
399 }
400 
401 /*
402  * bad_page_fault is called when we have a bad access from the kernel.
403  * It is called from the DSI and ISI handlers in head.S and from some
404  * of the procedures in traps.c.
405  */
406 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
407 {
408 	const struct exception_table_entry *entry;
409 
410 	/* Are we prepared to handle this fault?  */
411 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
412 		regs->nip = entry->fixup;
413 		return;
414 	}
415 
416 	/* kernel has accessed a bad area */
417 
418 	switch (regs->trap) {
419 	case 0x300:
420 	case 0x380:
421 		printk(KERN_ALERT "Unable to handle kernel paging request for "
422 			"data at address 0x%08lx\n", regs->dar);
423 		break;
424 	case 0x400:
425 	case 0x480:
426 		printk(KERN_ALERT "Unable to handle kernel paging request for "
427 			"instruction fetch\n");
428 		break;
429 	default:
430 		printk(KERN_ALERT "Unable to handle kernel paging request for "
431 			"unknown fault\n");
432 		break;
433 	}
434 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
435 		regs->nip);
436 
437 	die("Kernel access of bad area", regs, sig);
438 }
439