xref: /openbmc/linux/arch/powerpc/mm/book3s64/pkeys.c (revision 76c47183224c86e4011048b80f0e2d0d166f01c2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * PowerPC Memory Protection Keys management
4  *
5  * Copyright 2017, Ram Pai, IBM Corporation.
6  */
7 
8 #include <asm/mman.h>
9 #include <asm/mmu_context.h>
10 #include <asm/mmu.h>
11 #include <asm/setup.h>
12 #include <asm/smp.h>
13 
14 #include <linux/pkeys.h>
15 #include <linux/of_fdt.h>
16 
17 
18 int  num_pkey;		/* Max number of pkeys supported */
19 /*
20  *  Keys marked in the reservation list cannot be allocated by  userspace
21  */
22 u32 reserved_allocation_mask __ro_after_init;
23 
24 /* Bits set for the initially allocated keys */
25 static u32 initial_allocation_mask __ro_after_init;
26 
27 /*
28  * Even if we allocate keys with sys_pkey_alloc(), we need to make sure
29  * other thread still find the access denied using the same keys.
30  */
31 u64 default_amr __ro_after_init  = ~0x0UL;
32 u64 default_iamr __ro_after_init = 0x5555555555555555UL;
33 u64 default_uamor __ro_after_init;
34 EXPORT_SYMBOL(default_amr);
35 /*
36  * Key used to implement PROT_EXEC mmap. Denies READ/WRITE
37  * We pick key 2 because 0 is special key and 1 is reserved as per ISA.
38  */
39 static int execute_only_key = 2;
40 static bool pkey_execute_disable_supported;
41 
42 
43 #define AMR_BITS_PER_PKEY 2
44 #define AMR_RD_BIT 0x1UL
45 #define AMR_WR_BIT 0x2UL
46 #define IAMR_EX_BIT 0x1UL
47 #define PKEY_REG_BITS (sizeof(u64) * 8)
48 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
49 
50 static int __init dt_scan_storage_keys(unsigned long node,
51 				       const char *uname, int depth,
52 				       void *data)
53 {
54 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
55 	const __be32 *prop;
56 	int *pkeys_total = (int *) data;
57 
58 	/* We are scanning "cpu" nodes only */
59 	if (type == NULL || strcmp(type, "cpu") != 0)
60 		return 0;
61 
62 	prop = of_get_flat_dt_prop(node, "ibm,processor-storage-keys", NULL);
63 	if (!prop)
64 		return 0;
65 	*pkeys_total = be32_to_cpu(prop[0]);
66 	return 1;
67 }
68 
69 static int scan_pkey_feature(void)
70 {
71 	int ret;
72 	int pkeys_total = 0;
73 
74 	/*
75 	 * Pkey is not supported with Radix translation.
76 	 */
77 	if (early_radix_enabled())
78 		return 0;
79 
80 	ret = of_scan_flat_dt(dt_scan_storage_keys, &pkeys_total);
81 	if (ret == 0) {
82 		/*
83 		 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
84 		 * tree. We make this exception since some version of skiboot forgot to
85 		 * expose this property on power8/9.
86 		 */
87 		if (!firmware_has_feature(FW_FEATURE_LPAR)) {
88 			unsigned long pvr = mfspr(SPRN_PVR);
89 
90 			if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
91 			    PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
92 				pkeys_total = 32;
93 		}
94 	}
95 
96 #ifdef CONFIG_PPC_MEM_KEYS
97 	/*
98 	 * Adjust the upper limit, based on the number of bits supported by
99 	 * arch-neutral code.
100 	 */
101 	pkeys_total = min_t(int, pkeys_total,
102 			    ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1));
103 #endif
104 	return pkeys_total;
105 }
106 
107 void __init pkey_early_init_devtree(void)
108 {
109 	int pkeys_total, i;
110 
111 #ifdef CONFIG_PPC_MEM_KEYS
112 	/*
113 	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
114 	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
115 	 * Ensure that the bits a distinct.
116 	 */
117 	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
118 		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
119 
120 	/*
121 	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
122 	 * in the vmaflag. Make sure that is really the case.
123 	 */
124 	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
125 		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
126 				!= (sizeof(u64) * BITS_PER_BYTE));
127 #endif
128 	/*
129 	 * Only P7 and above supports SPRN_AMR update with MSR[PR] = 1
130 	 */
131 	if (!early_cpu_has_feature(CPU_FTR_ARCH_206))
132 		return;
133 
134 	/* scan the device tree for pkey feature */
135 	pkeys_total = scan_pkey_feature();
136 	if (!pkeys_total)
137 		goto out;
138 
139 	/* Allow all keys to be modified by default */
140 	default_uamor = ~0x0UL;
141 
142 	cur_cpu_spec->mmu_features |= MMU_FTR_PKEY;
143 
144 	/*
145 	 * The device tree cannot be relied to indicate support for
146 	 * execute_disable support. Instead we use a PVR check.
147 	 */
148 	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
149 		pkey_execute_disable_supported = false;
150 	else
151 		pkey_execute_disable_supported = true;
152 
153 #ifdef CONFIG_PPC_4K_PAGES
154 	/*
155 	 * The OS can manage only 8 pkeys due to its inability to represent them
156 	 * in the Linux 4K PTE. Mark all other keys reserved.
157 	 */
158 	num_pkey = min(8, pkeys_total);
159 #else
160 	num_pkey = pkeys_total;
161 #endif
162 
163 	if (unlikely(num_pkey <= execute_only_key) || !pkey_execute_disable_supported) {
164 		/*
165 		 * Insufficient number of keys to support
166 		 * execute only key. Mark it unavailable.
167 		 */
168 		execute_only_key = -1;
169 	} else {
170 		/*
171 		 * Mark the execute_only_pkey as not available for
172 		 * user allocation via pkey_alloc.
173 		 */
174 		reserved_allocation_mask |= (0x1 << execute_only_key);
175 
176 		/*
177 		 * Deny READ/WRITE for execute_only_key.
178 		 * Allow execute in IAMR.
179 		 */
180 		default_amr  |= (0x3ul << pkeyshift(execute_only_key));
181 		default_iamr &= ~(0x1ul << pkeyshift(execute_only_key));
182 
183 		/*
184 		 * Clear the uamor bits for this key.
185 		 */
186 		default_uamor &= ~(0x3ul << pkeyshift(execute_only_key));
187 	}
188 
189 	if (unlikely(num_pkey <= 3)) {
190 		/*
191 		 * Insufficient number of keys to support
192 		 * KUAP/KUEP feature.
193 		 */
194 		disable_kuep = true;
195 		disable_kuap = true;
196 		WARN(1, "Disabling kernel user protection due to low (%d) max supported keys\n", num_pkey);
197 	} else {
198 		/*  handle key which is used by kernel for KAUP */
199 		reserved_allocation_mask |= (0x1 << 3);
200 		/*
201 		 * Mark access for kup_key in default amr so that
202 		 * we continue to operate with that AMR in
203 		 * copy_to/from_user().
204 		 */
205 		default_amr   &= ~(0x3ul << pkeyshift(3));
206 		default_iamr  &= ~(0x1ul << pkeyshift(3));
207 		default_uamor &= ~(0x3ul << pkeyshift(3));
208 	}
209 
210 	/*
211 	 * Allow access for only key 0. And prevent any other modification.
212 	 */
213 	default_amr   &= ~(0x3ul << pkeyshift(0));
214 	default_iamr  &= ~(0x1ul << pkeyshift(0));
215 	default_uamor &= ~(0x3ul << pkeyshift(0));
216 	/*
217 	 * key 0 is special in that we want to consider it an allocated
218 	 * key which is preallocated. We don't allow changing AMR bits
219 	 * w.r.t key 0. But one can pkey_free(key0)
220 	 */
221 	initial_allocation_mask |= (0x1 << 0);
222 
223 	/*
224 	 * key 1 is recommended not to be used. PowerISA(3.0) page 1015,
225 	 * programming note.
226 	 */
227 	reserved_allocation_mask |= (0x1 << 1);
228 	default_uamor &= ~(0x3ul << pkeyshift(1));
229 
230 	/*
231 	 * Prevent the usage of OS reserved keys. Update UAMOR
232 	 * for those keys. Also mark the rest of the bits in the
233 	 * 32 bit mask as reserved.
234 	 */
235 	for (i = num_pkey; i < 32 ; i++) {
236 		reserved_allocation_mask |= (0x1 << i);
237 		default_uamor &= ~(0x3ul << pkeyshift(i));
238 	}
239 	/*
240 	 * Prevent the allocation of reserved keys too.
241 	 */
242 	initial_allocation_mask |= reserved_allocation_mask;
243 
244 	pr_info("Enabling pkeys with max key count %d\n", num_pkey);
245 out:
246 	/*
247 	 * Setup uamor on boot cpu
248 	 */
249 	mtspr(SPRN_UAMOR, default_uamor);
250 
251 	return;
252 }
253 
254 #ifdef CONFIG_PPC_KUEP
255 void setup_kuep(bool disabled)
256 {
257 	if (disabled)
258 		return;
259 	/*
260 	 * On hash if PKEY feature is not enabled, disable KUAP too.
261 	 */
262 	if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY))
263 		return;
264 
265 	if (smp_processor_id() == boot_cpuid) {
266 		pr_info("Activating Kernel Userspace Execution Prevention\n");
267 		cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUEP;
268 	}
269 
270 	/*
271 	 * Radix always uses key0 of the IAMR to determine if an access is
272 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
273 	 * fetch.
274 	 */
275 	mtspr(SPRN_IAMR, AMR_KUEP_BLOCKED);
276 	isync();
277 }
278 #endif
279 
280 #ifdef CONFIG_PPC_KUAP
281 void setup_kuap(bool disabled)
282 {
283 	if (disabled)
284 		return;
285 	/*
286 	 * On hash if PKEY feature is not enabled, disable KUAP too.
287 	 */
288 	if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY))
289 		return;
290 
291 	if (smp_processor_id() == boot_cpuid) {
292 		pr_info("Activating Kernel Userspace Access Prevention\n");
293 		cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUAP;
294 	}
295 
296 	/*
297 	 * Set the default kernel AMR values on all cpus.
298 	 */
299 	mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
300 	isync();
301 }
302 #endif
303 
304 #ifdef CONFIG_PPC_MEM_KEYS
305 void pkey_mm_init(struct mm_struct *mm)
306 {
307 	if (!mmu_has_feature(MMU_FTR_PKEY))
308 		return;
309 	mm_pkey_allocation_map(mm) = initial_allocation_mask;
310 	mm->context.execute_only_pkey = execute_only_key;
311 }
312 
313 static inline void init_amr(int pkey, u8 init_bits)
314 {
315 	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
316 	u64 old_amr = current_thread_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
317 
318 	current->thread.regs->amr = old_amr | new_amr_bits;
319 }
320 
321 static inline void init_iamr(int pkey, u8 init_bits)
322 {
323 	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
324 	u64 old_iamr = current_thread_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
325 
326 	if (!likely(pkey_execute_disable_supported))
327 		return;
328 
329 	current->thread.regs->iamr = old_iamr | new_iamr_bits;
330 }
331 
332 /*
333  * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
334  * specified in @init_val.
335  */
336 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
337 				unsigned long init_val)
338 {
339 	u64 new_amr_bits = 0x0ul;
340 	u64 new_iamr_bits = 0x0ul;
341 	u64 pkey_bits, uamor_pkey_bits;
342 
343 	/*
344 	 * Check whether the key is disabled by UAMOR.
345 	 */
346 	pkey_bits = 0x3ul << pkeyshift(pkey);
347 	uamor_pkey_bits = (default_uamor & pkey_bits);
348 
349 	/*
350 	 * Both the bits in UAMOR corresponding to the key should be set
351 	 */
352 	if (uamor_pkey_bits != pkey_bits)
353 		return -EINVAL;
354 
355 	if (init_val & PKEY_DISABLE_EXECUTE) {
356 		if (!pkey_execute_disable_supported)
357 			return -EINVAL;
358 		new_iamr_bits |= IAMR_EX_BIT;
359 	}
360 	init_iamr(pkey, new_iamr_bits);
361 
362 	/* Set the bits we need in AMR: */
363 	if (init_val & PKEY_DISABLE_ACCESS)
364 		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
365 	else if (init_val & PKEY_DISABLE_WRITE)
366 		new_amr_bits |= AMR_WR_BIT;
367 
368 	init_amr(pkey, new_amr_bits);
369 	return 0;
370 }
371 
372 int execute_only_pkey(struct mm_struct *mm)
373 {
374 	return mm->context.execute_only_pkey;
375 }
376 
377 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
378 {
379 	/* Do this check first since the vm_flags should be hot */
380 	if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC)
381 		return false;
382 
383 	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
384 }
385 
386 /*
387  * This should only be called for *plain* mprotect calls.
388  */
389 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
390 				  int pkey)
391 {
392 	/*
393 	 * If the currently associated pkey is execute-only, but the requested
394 	 * protection is not execute-only, move it back to the default pkey.
395 	 */
396 	if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
397 		return 0;
398 
399 	/*
400 	 * The requested protection is execute-only. Hence let's use an
401 	 * execute-only pkey.
402 	 */
403 	if (prot == PROT_EXEC) {
404 		pkey = execute_only_pkey(vma->vm_mm);
405 		if (pkey > 0)
406 			return pkey;
407 	}
408 
409 	/* Nothing to override. */
410 	return vma_pkey(vma);
411 }
412 
413 static bool pkey_access_permitted(int pkey, bool write, bool execute)
414 {
415 	int pkey_shift;
416 	u64 amr;
417 
418 	pkey_shift = pkeyshift(pkey);
419 	if (execute)
420 		return !(current_thread_iamr() & (IAMR_EX_BIT << pkey_shift));
421 
422 	amr = current_thread_amr();
423 	if (write)
424 		return !(amr & (AMR_WR_BIT << pkey_shift));
425 
426 	return !(amr & (AMR_RD_BIT << pkey_shift));
427 }
428 
429 bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
430 {
431 	if (!mmu_has_feature(MMU_FTR_PKEY))
432 		return true;
433 
434 	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
435 }
436 
437 /*
438  * We only want to enforce protection keys on the current thread because we
439  * effectively have no access to AMR/IAMR for other threads or any way to tell
440  * which AMR/IAMR in a threaded process we could use.
441  *
442  * So do not enforce things if the VMA is not from the current mm, or if we are
443  * in a kernel thread.
444  */
445 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
446 			       bool execute, bool foreign)
447 {
448 	if (!mmu_has_feature(MMU_FTR_PKEY))
449 		return true;
450 	/*
451 	 * Do not enforce our key-permissions on a foreign vma.
452 	 */
453 	if (foreign || vma_is_foreign(vma))
454 		return true;
455 
456 	return pkey_access_permitted(vma_pkey(vma), write, execute);
457 }
458 
459 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
460 {
461 	if (!mmu_has_feature(MMU_FTR_PKEY))
462 		return;
463 
464 	/* Duplicate the oldmm pkey state in mm: */
465 	mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
466 	mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
467 }
468 
469 #endif /* CONFIG_PPC_MEM_KEYS */
470