xref: /openbmc/linux/arch/powerpc/mm/book3s64/pgtable.c (revision c57f3dbc3bd9ae3c4cf72c9937de205458815c8d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/debugfs.h>
11 #include <misc/cxl-base.h>
12 
13 #include <asm/pgalloc.h>
14 #include <asm/tlb.h>
15 #include <asm/trace.h>
16 #include <asm/powernv.h>
17 #include <asm/firmware.h>
18 #include <asm/ultravisor.h>
19 #include <asm/kexec.h>
20 
21 #include <mm/mmu_decl.h>
22 #include <trace/events/thp.h>
23 
24 #include "internal.h"
25 
26 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
27 EXPORT_SYMBOL_GPL(mmu_psize_defs);
28 
29 #ifdef CONFIG_SPARSEMEM_VMEMMAP
30 int mmu_vmemmap_psize = MMU_PAGE_4K;
31 #endif
32 
33 unsigned long __pmd_frag_nr;
34 EXPORT_SYMBOL(__pmd_frag_nr);
35 unsigned long __pmd_frag_size_shift;
36 EXPORT_SYMBOL(__pmd_frag_size_shift);
37 
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 /*
40  * This is called when relaxing access to a hugepage. It's also called in the page
41  * fault path when we don't hit any of the major fault cases, ie, a minor
42  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
43  * handled those two for us, we additionally deal with missing execute
44  * permission here on some processors
45  */
46 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
47 			  pmd_t *pmdp, pmd_t entry, int dirty)
48 {
49 	int changed;
50 #ifdef CONFIG_DEBUG_VM
51 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
52 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
53 #endif
54 	changed = !pmd_same(*(pmdp), entry);
55 	if (changed) {
56 		/*
57 		 * We can use MMU_PAGE_2M here, because only radix
58 		 * path look at the psize.
59 		 */
60 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
61 					pmd_pte(entry), address, MMU_PAGE_2M);
62 	}
63 	return changed;
64 }
65 
66 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
67 			      unsigned long address, pmd_t *pmdp)
68 {
69 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
70 }
71 /*
72  * set a new huge pmd. We should not be called for updating
73  * an existing pmd entry. That should go via pmd_hugepage_update.
74  */
75 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
76 		pmd_t *pmdp, pmd_t pmd)
77 {
78 #ifdef CONFIG_DEBUG_VM
79 	/*
80 	 * Make sure hardware valid bit is not set. We don't do
81 	 * tlb flush for this update.
82 	 */
83 
84 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
85 	assert_spin_locked(pmd_lockptr(mm, pmdp));
86 	WARN_ON(!(pmd_large(pmd)));
87 #endif
88 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
89 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
90 }
91 
92 static void do_serialize(void *arg)
93 {
94 	/* We've taken the IPI, so try to trim the mask while here */
95 	if (radix_enabled()) {
96 		struct mm_struct *mm = arg;
97 		exit_lazy_flush_tlb(mm, false);
98 	}
99 }
100 
101 /*
102  * Serialize against find_current_mm_pte which does lock-less
103  * lookup in page tables with local interrupts disabled. For huge pages
104  * it casts pmd_t to pte_t. Since format of pte_t is different from
105  * pmd_t we want to prevent transit from pmd pointing to page table
106  * to pmd pointing to huge page (and back) while interrupts are disabled.
107  * We clear pmd to possibly replace it with page table pointer in
108  * different code paths. So make sure we wait for the parallel
109  * find_current_mm_pte to finish.
110  */
111 void serialize_against_pte_lookup(struct mm_struct *mm)
112 {
113 	smp_mb();
114 	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
115 }
116 
117 /*
118  * We use this to invalidate a pmdp entry before switching from a
119  * hugepte to regular pmd entry.
120  */
121 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
122 		     pmd_t *pmdp)
123 {
124 	unsigned long old_pmd;
125 
126 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
127 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
128 	return __pmd(old_pmd);
129 }
130 
131 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
132 				   unsigned long addr, pmd_t *pmdp, int full)
133 {
134 	pmd_t pmd;
135 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
136 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
137 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
138 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
139 	/*
140 	 * if it not a fullmm flush, then we can possibly end up converting
141 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
142 	 * Make sure we flush the tlb in this case.
143 	 */
144 	if (!full)
145 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
146 	return pmd;
147 }
148 
149 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
150 {
151 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
152 }
153 
154 /*
155  * At some point we should be able to get rid of
156  * pmd_mkhuge() and mk_huge_pmd() when we update all the
157  * other archs to mark the pmd huge in pfn_pmd()
158  */
159 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
160 {
161 	unsigned long pmdv;
162 
163 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
164 
165 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
166 }
167 
168 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
169 {
170 	return pfn_pmd(page_to_pfn(page), pgprot);
171 }
172 
173 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
174 {
175 	unsigned long pmdv;
176 
177 	pmdv = pmd_val(pmd);
178 	pmdv &= _HPAGE_CHG_MASK;
179 	return pmd_set_protbits(__pmd(pmdv), newprot);
180 }
181 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
182 
183 /* For use by kexec, called with MMU off */
184 notrace void mmu_cleanup_all(void)
185 {
186 	if (radix_enabled())
187 		radix__mmu_cleanup_all();
188 	else if (mmu_hash_ops.hpte_clear_all)
189 		mmu_hash_ops.hpte_clear_all();
190 
191 	reset_sprs();
192 }
193 
194 #ifdef CONFIG_MEMORY_HOTPLUG
195 int __meminit create_section_mapping(unsigned long start, unsigned long end,
196 				     int nid, pgprot_t prot)
197 {
198 	if (radix_enabled())
199 		return radix__create_section_mapping(start, end, nid, prot);
200 
201 	return hash__create_section_mapping(start, end, nid, prot);
202 }
203 
204 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
205 {
206 	if (radix_enabled())
207 		return radix__remove_section_mapping(start, end);
208 
209 	return hash__remove_section_mapping(start, end);
210 }
211 #endif /* CONFIG_MEMORY_HOTPLUG */
212 
213 void __init mmu_partition_table_init(void)
214 {
215 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
216 	unsigned long ptcr;
217 
218 	/* Initialize the Partition Table with no entries */
219 	partition_tb = memblock_alloc(patb_size, patb_size);
220 	if (!partition_tb)
221 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
222 		      __func__, patb_size, patb_size);
223 
224 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
225 	set_ptcr_when_no_uv(ptcr);
226 	powernv_set_nmmu_ptcr(ptcr);
227 }
228 
229 static void flush_partition(unsigned int lpid, bool radix)
230 {
231 	if (radix) {
232 		radix__flush_all_lpid(lpid);
233 		radix__flush_all_lpid_guest(lpid);
234 	} else {
235 		asm volatile("ptesync" : : : "memory");
236 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
237 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
238 		/* do we need fixup here ?*/
239 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
240 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
241 	}
242 }
243 
244 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
245 				  unsigned long dw1, bool flush)
246 {
247 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
248 
249 	/*
250 	 * When ultravisor is enabled, the partition table is stored in secure
251 	 * memory and can only be accessed doing an ultravisor call. However, we
252 	 * maintain a copy of the partition table in normal memory to allow Nest
253 	 * MMU translations to occur (for normal VMs).
254 	 *
255 	 * Therefore, here we always update partition_tb, regardless of whether
256 	 * we are running under an ultravisor or not.
257 	 */
258 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
259 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
260 
261 	/*
262 	 * If ultravisor is enabled, we do an ultravisor call to register the
263 	 * partition table entry (PATE), which also do a global flush of TLBs
264 	 * and partition table caches for the lpid. Otherwise, just do the
265 	 * flush. The type of flush (hash or radix) depends on what the previous
266 	 * use of the partition ID was, not the new use.
267 	 */
268 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
269 		uv_register_pate(lpid, dw0, dw1);
270 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
271 			dw0, dw1);
272 	} else if (flush) {
273 		/*
274 		 * Boot does not need to flush, because MMU is off and each
275 		 * CPU does a tlbiel_all() before switching them on, which
276 		 * flushes everything.
277 		 */
278 		flush_partition(lpid, (old & PATB_HR));
279 	}
280 }
281 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
282 
283 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
284 {
285 	void *pmd_frag, *ret;
286 
287 	if (PMD_FRAG_NR == 1)
288 		return NULL;
289 
290 	spin_lock(&mm->page_table_lock);
291 	ret = mm->context.pmd_frag;
292 	if (ret) {
293 		pmd_frag = ret + PMD_FRAG_SIZE;
294 		/*
295 		 * If we have taken up all the fragments mark PTE page NULL
296 		 */
297 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
298 			pmd_frag = NULL;
299 		mm->context.pmd_frag = pmd_frag;
300 	}
301 	spin_unlock(&mm->page_table_lock);
302 	return (pmd_t *)ret;
303 }
304 
305 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
306 {
307 	void *ret = NULL;
308 	struct page *page;
309 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
310 
311 	if (mm == &init_mm)
312 		gfp &= ~__GFP_ACCOUNT;
313 	page = alloc_page(gfp);
314 	if (!page)
315 		return NULL;
316 	if (!pgtable_pmd_page_ctor(page)) {
317 		__free_pages(page, 0);
318 		return NULL;
319 	}
320 
321 	atomic_set(&page->pt_frag_refcount, 1);
322 
323 	ret = page_address(page);
324 	/*
325 	 * if we support only one fragment just return the
326 	 * allocated page.
327 	 */
328 	if (PMD_FRAG_NR == 1)
329 		return ret;
330 
331 	spin_lock(&mm->page_table_lock);
332 	/*
333 	 * If we find pgtable_page set, we return
334 	 * the allocated page with single fragement
335 	 * count.
336 	 */
337 	if (likely(!mm->context.pmd_frag)) {
338 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
339 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
340 	}
341 	spin_unlock(&mm->page_table_lock);
342 
343 	return (pmd_t *)ret;
344 }
345 
346 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
347 {
348 	pmd_t *pmd;
349 
350 	pmd = get_pmd_from_cache(mm);
351 	if (pmd)
352 		return pmd;
353 
354 	return __alloc_for_pmdcache(mm);
355 }
356 
357 void pmd_fragment_free(unsigned long *pmd)
358 {
359 	struct page *page = virt_to_page(pmd);
360 
361 	if (PageReserved(page))
362 		return free_reserved_page(page);
363 
364 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
365 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
366 		pgtable_pmd_page_dtor(page);
367 		__free_page(page);
368 	}
369 }
370 
371 static inline void pgtable_free(void *table, int index)
372 {
373 	switch (index) {
374 	case PTE_INDEX:
375 		pte_fragment_free(table, 0);
376 		break;
377 	case PMD_INDEX:
378 		pmd_fragment_free(table);
379 		break;
380 	case PUD_INDEX:
381 		__pud_free(table);
382 		break;
383 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
384 		/* 16M hugepd directory at pud level */
385 	case HTLB_16M_INDEX:
386 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
387 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
388 		break;
389 		/* 16G hugepd directory at the pgd level */
390 	case HTLB_16G_INDEX:
391 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
392 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
393 		break;
394 #endif
395 		/* We don't free pgd table via RCU callback */
396 	default:
397 		BUG();
398 	}
399 }
400 
401 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
402 {
403 	unsigned long pgf = (unsigned long)table;
404 
405 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
406 	pgf |= index;
407 	tlb_remove_table(tlb, (void *)pgf);
408 }
409 
410 void __tlb_remove_table(void *_table)
411 {
412 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
413 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
414 
415 	return pgtable_free(table, index);
416 }
417 
418 #ifdef CONFIG_PROC_FS
419 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
420 
421 void arch_report_meminfo(struct seq_file *m)
422 {
423 	/*
424 	 * Hash maps the memory with one size mmu_linear_psize.
425 	 * So don't bother to print these on hash
426 	 */
427 	if (!radix_enabled())
428 		return;
429 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
430 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
431 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
432 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
433 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
434 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
435 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
436 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
437 }
438 #endif /* CONFIG_PROC_FS */
439 
440 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
441 			     pte_t *ptep)
442 {
443 	unsigned long pte_val;
444 
445 	/*
446 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
447 	 * possible. Also keep the pte_present true so that we don't take
448 	 * wrong fault.
449 	 */
450 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
451 
452 	return __pte(pte_val);
453 
454 }
455 
456 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
457 			     pte_t *ptep, pte_t old_pte, pte_t pte)
458 {
459 	if (radix_enabled())
460 		return radix__ptep_modify_prot_commit(vma, addr,
461 						      ptep, old_pte, pte);
462 	set_pte_at(vma->vm_mm, addr, ptep, pte);
463 }
464 
465 /*
466  * For hash translation mode, we use the deposited table to store hash slot
467  * information and they are stored at PTRS_PER_PMD offset from related pmd
468  * location. Hence a pmd move requires deposit and withdraw.
469  *
470  * For radix translation with split pmd ptl, we store the deposited table in the
471  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
472  * move.
473  *
474  * With hash we use deposited table always irrespective of anon or not.
475  * With radix we use deposited table only for anonymous mapping.
476  */
477 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
478 			   struct spinlock *old_pmd_ptl,
479 			   struct vm_area_struct *vma)
480 {
481 	if (radix_enabled())
482 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
483 
484 	return true;
485 }
486 
487 /*
488  * Does the CPU support tlbie?
489  */
490 bool tlbie_capable __read_mostly = true;
491 EXPORT_SYMBOL(tlbie_capable);
492 
493 /*
494  * Should tlbie be used for management of CPU TLBs, for kernel and process
495  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
496  * guest address spaces.
497  */
498 bool tlbie_enabled __read_mostly = true;
499 
500 static int __init setup_disable_tlbie(char *str)
501 {
502 	if (!radix_enabled()) {
503 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
504 		return 1;
505 	}
506 
507 	tlbie_capable = false;
508 	tlbie_enabled = false;
509 
510         return 1;
511 }
512 __setup("disable_tlbie", setup_disable_tlbie);
513 
514 static int __init pgtable_debugfs_setup(void)
515 {
516 	if (!tlbie_capable)
517 		return 0;
518 
519 	/*
520 	 * There is no locking vs tlb flushing when changing this value.
521 	 * The tlb flushers will see one value or another, and use either
522 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
523 	 * invalidated as expected.
524 	 */
525 	debugfs_create_bool("tlbie_enabled", 0600,
526 			arch_debugfs_dir,
527 			&tlbie_enabled);
528 
529 	return 0;
530 }
531 arch_initcall(pgtable_debugfs_setup);
532 
533 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
534 /*
535  * Override the generic version in mm/memremap.c.
536  *
537  * With hash translation, the direct-map range is mapped with just one
538  * page size selected by htab_init_page_sizes(). Consult
539  * mmu_psize_defs[] to determine the minimum page size alignment.
540 */
541 unsigned long memremap_compat_align(void)
542 {
543 	if (!radix_enabled()) {
544 		unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
545 		return max(SUBSECTION_SIZE, 1UL << shift);
546 	}
547 
548 	return SUBSECTION_SIZE;
549 }
550 EXPORT_SYMBOL_GPL(memremap_compat_align);
551 #endif
552