1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License, version 2, as 4 * published by the Free Software Foundation. 5 * 6 * This program is distributed in the hope that it will be useful, 7 * but WITHOUT ANY WARRANTY; without even the implied warranty of 8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 9 * GNU General Public License for more details. 10 * 11 * You should have received a copy of the GNU General Public License 12 * along with this program; if not, write to the Free Software 13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 14 * 15 * Copyright IBM Corp. 2007 16 * 17 * Authors: Hollis Blanchard <hollisb@us.ibm.com> 18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 19 */ 20 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/kvm_host.h> 24 #include <linux/vmalloc.h> 25 #include <linux/hrtimer.h> 26 #include <linux/sched/signal.h> 27 #include <linux/fs.h> 28 #include <linux/slab.h> 29 #include <linux/file.h> 30 #include <linux/module.h> 31 #include <linux/irqbypass.h> 32 #include <linux/kvm_irqfd.h> 33 #include <asm/cputable.h> 34 #include <linux/uaccess.h> 35 #include <asm/kvm_ppc.h> 36 #include <asm/cputhreads.h> 37 #include <asm/irqflags.h> 38 #include <asm/iommu.h> 39 #include <asm/switch_to.h> 40 #include <asm/xive.h> 41 #ifdef CONFIG_PPC_PSERIES 42 #include <asm/hvcall.h> 43 #include <asm/plpar_wrappers.h> 44 #endif 45 46 #include "timing.h" 47 #include "irq.h" 48 #include "../mm/mmu_decl.h" 49 50 #define CREATE_TRACE_POINTS 51 #include "trace.h" 52 53 struct kvmppc_ops *kvmppc_hv_ops; 54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops); 55 struct kvmppc_ops *kvmppc_pr_ops; 56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops); 57 58 59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 60 { 61 return !!(v->arch.pending_exceptions) || kvm_request_pending(v); 62 } 63 64 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 65 { 66 return false; 67 } 68 69 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 70 { 71 return 1; 72 } 73 74 /* 75 * Common checks before entering the guest world. Call with interrupts 76 * disabled. 77 * 78 * returns: 79 * 80 * == 1 if we're ready to go into guest state 81 * <= 0 if we need to go back to the host with return value 82 */ 83 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu) 84 { 85 int r; 86 87 WARN_ON(irqs_disabled()); 88 hard_irq_disable(); 89 90 while (true) { 91 if (need_resched()) { 92 local_irq_enable(); 93 cond_resched(); 94 hard_irq_disable(); 95 continue; 96 } 97 98 if (signal_pending(current)) { 99 kvmppc_account_exit(vcpu, SIGNAL_EXITS); 100 vcpu->run->exit_reason = KVM_EXIT_INTR; 101 r = -EINTR; 102 break; 103 } 104 105 vcpu->mode = IN_GUEST_MODE; 106 107 /* 108 * Reading vcpu->requests must happen after setting vcpu->mode, 109 * so we don't miss a request because the requester sees 110 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests 111 * before next entering the guest (and thus doesn't IPI). 112 * This also orders the write to mode from any reads 113 * to the page tables done while the VCPU is running. 114 * Please see the comment in kvm_flush_remote_tlbs. 115 */ 116 smp_mb(); 117 118 if (kvm_request_pending(vcpu)) { 119 /* Make sure we process requests preemptable */ 120 local_irq_enable(); 121 trace_kvm_check_requests(vcpu); 122 r = kvmppc_core_check_requests(vcpu); 123 hard_irq_disable(); 124 if (r > 0) 125 continue; 126 break; 127 } 128 129 if (kvmppc_core_prepare_to_enter(vcpu)) { 130 /* interrupts got enabled in between, so we 131 are back at square 1 */ 132 continue; 133 } 134 135 guest_enter_irqoff(); 136 return 1; 137 } 138 139 /* return to host */ 140 local_irq_enable(); 141 return r; 142 } 143 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter); 144 145 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 146 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu) 147 { 148 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared; 149 int i; 150 151 shared->sprg0 = swab64(shared->sprg0); 152 shared->sprg1 = swab64(shared->sprg1); 153 shared->sprg2 = swab64(shared->sprg2); 154 shared->sprg3 = swab64(shared->sprg3); 155 shared->srr0 = swab64(shared->srr0); 156 shared->srr1 = swab64(shared->srr1); 157 shared->dar = swab64(shared->dar); 158 shared->msr = swab64(shared->msr); 159 shared->dsisr = swab32(shared->dsisr); 160 shared->int_pending = swab32(shared->int_pending); 161 for (i = 0; i < ARRAY_SIZE(shared->sr); i++) 162 shared->sr[i] = swab32(shared->sr[i]); 163 } 164 #endif 165 166 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu) 167 { 168 int nr = kvmppc_get_gpr(vcpu, 11); 169 int r; 170 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3); 171 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4); 172 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5); 173 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6); 174 unsigned long r2 = 0; 175 176 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) { 177 /* 32 bit mode */ 178 param1 &= 0xffffffff; 179 param2 &= 0xffffffff; 180 param3 &= 0xffffffff; 181 param4 &= 0xffffffff; 182 } 183 184 switch (nr) { 185 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE): 186 { 187 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE) 188 /* Book3S can be little endian, find it out here */ 189 int shared_big_endian = true; 190 if (vcpu->arch.intr_msr & MSR_LE) 191 shared_big_endian = false; 192 if (shared_big_endian != vcpu->arch.shared_big_endian) 193 kvmppc_swab_shared(vcpu); 194 vcpu->arch.shared_big_endian = shared_big_endian; 195 #endif 196 197 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) { 198 /* 199 * Older versions of the Linux magic page code had 200 * a bug where they would map their trampoline code 201 * NX. If that's the case, remove !PR NX capability. 202 */ 203 vcpu->arch.disable_kernel_nx = true; 204 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 205 } 206 207 vcpu->arch.magic_page_pa = param1 & ~0xfffULL; 208 vcpu->arch.magic_page_ea = param2 & ~0xfffULL; 209 210 #ifdef CONFIG_PPC_64K_PAGES 211 /* 212 * Make sure our 4k magic page is in the same window of a 64k 213 * page within the guest and within the host's page. 214 */ 215 if ((vcpu->arch.magic_page_pa & 0xf000) != 216 ((ulong)vcpu->arch.shared & 0xf000)) { 217 void *old_shared = vcpu->arch.shared; 218 ulong shared = (ulong)vcpu->arch.shared; 219 void *new_shared; 220 221 shared &= PAGE_MASK; 222 shared |= vcpu->arch.magic_page_pa & 0xf000; 223 new_shared = (void*)shared; 224 memcpy(new_shared, old_shared, 0x1000); 225 vcpu->arch.shared = new_shared; 226 } 227 #endif 228 229 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7; 230 231 r = EV_SUCCESS; 232 break; 233 } 234 case KVM_HCALL_TOKEN(KVM_HC_FEATURES): 235 r = EV_SUCCESS; 236 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2) 237 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE); 238 #endif 239 240 /* Second return value is in r4 */ 241 break; 242 case EV_HCALL_TOKEN(EV_IDLE): 243 r = EV_SUCCESS; 244 kvm_vcpu_block(vcpu); 245 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 246 break; 247 default: 248 r = EV_UNIMPLEMENTED; 249 break; 250 } 251 252 kvmppc_set_gpr(vcpu, 4, r2); 253 254 return r; 255 } 256 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv); 257 258 int kvmppc_sanity_check(struct kvm_vcpu *vcpu) 259 { 260 int r = false; 261 262 /* We have to know what CPU to virtualize */ 263 if (!vcpu->arch.pvr) 264 goto out; 265 266 /* PAPR only works with book3s_64 */ 267 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled) 268 goto out; 269 270 /* HV KVM can only do PAPR mode for now */ 271 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm)) 272 goto out; 273 274 #ifdef CONFIG_KVM_BOOKE_HV 275 if (!cpu_has_feature(CPU_FTR_EMB_HV)) 276 goto out; 277 #endif 278 279 r = true; 280 281 out: 282 vcpu->arch.sane = r; 283 return r ? 0 : -EINVAL; 284 } 285 EXPORT_SYMBOL_GPL(kvmppc_sanity_check); 286 287 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu) 288 { 289 enum emulation_result er; 290 int r; 291 292 er = kvmppc_emulate_loadstore(vcpu); 293 switch (er) { 294 case EMULATE_DONE: 295 /* Future optimization: only reload non-volatiles if they were 296 * actually modified. */ 297 r = RESUME_GUEST_NV; 298 break; 299 case EMULATE_AGAIN: 300 r = RESUME_GUEST; 301 break; 302 case EMULATE_DO_MMIO: 303 run->exit_reason = KVM_EXIT_MMIO; 304 /* We must reload nonvolatiles because "update" load/store 305 * instructions modify register state. */ 306 /* Future optimization: only reload non-volatiles if they were 307 * actually modified. */ 308 r = RESUME_HOST_NV; 309 break; 310 case EMULATE_FAIL: 311 { 312 u32 last_inst; 313 314 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); 315 /* XXX Deliver Program interrupt to guest. */ 316 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst); 317 r = RESUME_HOST; 318 break; 319 } 320 default: 321 WARN_ON(1); 322 r = RESUME_GUEST; 323 } 324 325 return r; 326 } 327 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio); 328 329 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 330 bool data) 331 { 332 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 333 struct kvmppc_pte pte; 334 int r = -EINVAL; 335 336 vcpu->stat.st++; 337 338 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) 339 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, 340 size); 341 342 if ((!r) || (r == -EAGAIN)) 343 return r; 344 345 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 346 XLATE_WRITE, &pte); 347 if (r < 0) 348 return r; 349 350 *eaddr = pte.raddr; 351 352 if (!pte.may_write) 353 return -EPERM; 354 355 /* Magic page override */ 356 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 357 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 358 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 359 void *magic = vcpu->arch.shared; 360 magic += pte.eaddr & 0xfff; 361 memcpy(magic, ptr, size); 362 return EMULATE_DONE; 363 } 364 365 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size)) 366 return EMULATE_DO_MMIO; 367 368 return EMULATE_DONE; 369 } 370 EXPORT_SYMBOL_GPL(kvmppc_st); 371 372 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, 373 bool data) 374 { 375 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; 376 struct kvmppc_pte pte; 377 int rc = -EINVAL; 378 379 vcpu->stat.ld++; 380 381 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) 382 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, 383 size); 384 385 if ((!rc) || (rc == -EAGAIN)) 386 return rc; 387 388 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, 389 XLATE_READ, &pte); 390 if (rc) 391 return rc; 392 393 *eaddr = pte.raddr; 394 395 if (!pte.may_read) 396 return -EPERM; 397 398 if (!data && !pte.may_execute) 399 return -ENOEXEC; 400 401 /* Magic page override */ 402 if (kvmppc_supports_magic_page(vcpu) && mp_pa && 403 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) && 404 !(kvmppc_get_msr(vcpu) & MSR_PR)) { 405 void *magic = vcpu->arch.shared; 406 magic += pte.eaddr & 0xfff; 407 memcpy(ptr, magic, size); 408 return EMULATE_DONE; 409 } 410 411 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size)) 412 return EMULATE_DO_MMIO; 413 414 return EMULATE_DONE; 415 } 416 EXPORT_SYMBOL_GPL(kvmppc_ld); 417 418 int kvm_arch_hardware_enable(void) 419 { 420 return 0; 421 } 422 423 int kvm_arch_hardware_setup(void) 424 { 425 return 0; 426 } 427 428 void kvm_arch_check_processor_compat(void *rtn) 429 { 430 *(int *)rtn = kvmppc_core_check_processor_compat(); 431 } 432 433 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 434 { 435 struct kvmppc_ops *kvm_ops = NULL; 436 /* 437 * if we have both HV and PR enabled, default is HV 438 */ 439 if (type == 0) { 440 if (kvmppc_hv_ops) 441 kvm_ops = kvmppc_hv_ops; 442 else 443 kvm_ops = kvmppc_pr_ops; 444 if (!kvm_ops) 445 goto err_out; 446 } else if (type == KVM_VM_PPC_HV) { 447 if (!kvmppc_hv_ops) 448 goto err_out; 449 kvm_ops = kvmppc_hv_ops; 450 } else if (type == KVM_VM_PPC_PR) { 451 if (!kvmppc_pr_ops) 452 goto err_out; 453 kvm_ops = kvmppc_pr_ops; 454 } else 455 goto err_out; 456 457 if (kvm_ops->owner && !try_module_get(kvm_ops->owner)) 458 return -ENOENT; 459 460 kvm->arch.kvm_ops = kvm_ops; 461 return kvmppc_core_init_vm(kvm); 462 err_out: 463 return -EINVAL; 464 } 465 466 bool kvm_arch_has_vcpu_debugfs(void) 467 { 468 return false; 469 } 470 471 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 472 { 473 return 0; 474 } 475 476 void kvm_arch_destroy_vm(struct kvm *kvm) 477 { 478 unsigned int i; 479 struct kvm_vcpu *vcpu; 480 481 #ifdef CONFIG_KVM_XICS 482 /* 483 * We call kick_all_cpus_sync() to ensure that all 484 * CPUs have executed any pending IPIs before we 485 * continue and free VCPUs structures below. 486 */ 487 if (is_kvmppc_hv_enabled(kvm)) 488 kick_all_cpus_sync(); 489 #endif 490 491 kvm_for_each_vcpu(i, vcpu, kvm) 492 kvm_arch_vcpu_free(vcpu); 493 494 mutex_lock(&kvm->lock); 495 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 496 kvm->vcpus[i] = NULL; 497 498 atomic_set(&kvm->online_vcpus, 0); 499 500 kvmppc_core_destroy_vm(kvm); 501 502 mutex_unlock(&kvm->lock); 503 504 /* drop the module reference */ 505 module_put(kvm->arch.kvm_ops->owner); 506 } 507 508 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 509 { 510 int r; 511 /* Assume we're using HV mode when the HV module is loaded */ 512 int hv_enabled = kvmppc_hv_ops ? 1 : 0; 513 514 if (kvm) { 515 /* 516 * Hooray - we know which VM type we're running on. Depend on 517 * that rather than the guess above. 518 */ 519 hv_enabled = is_kvmppc_hv_enabled(kvm); 520 } 521 522 switch (ext) { 523 #ifdef CONFIG_BOOKE 524 case KVM_CAP_PPC_BOOKE_SREGS: 525 case KVM_CAP_PPC_BOOKE_WATCHDOG: 526 case KVM_CAP_PPC_EPR: 527 #else 528 case KVM_CAP_PPC_SEGSTATE: 529 case KVM_CAP_PPC_HIOR: 530 case KVM_CAP_PPC_PAPR: 531 #endif 532 case KVM_CAP_PPC_UNSET_IRQ: 533 case KVM_CAP_PPC_IRQ_LEVEL: 534 case KVM_CAP_ENABLE_CAP: 535 case KVM_CAP_ONE_REG: 536 case KVM_CAP_IOEVENTFD: 537 case KVM_CAP_DEVICE_CTRL: 538 case KVM_CAP_IMMEDIATE_EXIT: 539 r = 1; 540 break; 541 case KVM_CAP_PPC_PAIRED_SINGLES: 542 case KVM_CAP_PPC_OSI: 543 case KVM_CAP_PPC_GET_PVINFO: 544 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 545 case KVM_CAP_SW_TLB: 546 #endif 547 /* We support this only for PR */ 548 r = !hv_enabled; 549 break; 550 #ifdef CONFIG_KVM_MPIC 551 case KVM_CAP_IRQ_MPIC: 552 r = 1; 553 break; 554 #endif 555 556 #ifdef CONFIG_PPC_BOOK3S_64 557 case KVM_CAP_SPAPR_TCE: 558 case KVM_CAP_SPAPR_TCE_64: 559 r = 1; 560 break; 561 case KVM_CAP_SPAPR_TCE_VFIO: 562 r = !!cpu_has_feature(CPU_FTR_HVMODE); 563 break; 564 case KVM_CAP_PPC_RTAS: 565 case KVM_CAP_PPC_FIXUP_HCALL: 566 case KVM_CAP_PPC_ENABLE_HCALL: 567 #ifdef CONFIG_KVM_XICS 568 case KVM_CAP_IRQ_XICS: 569 #endif 570 case KVM_CAP_PPC_GET_CPU_CHAR: 571 r = 1; 572 break; 573 #ifdef CONFIG_KVM_XIVE 574 case KVM_CAP_PPC_IRQ_XIVE: 575 /* 576 * We need XIVE to be enabled on the platform (implies 577 * a POWER9 processor) and the PowerNV platform, as 578 * nested is not yet supported. 579 */ 580 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE); 581 break; 582 #endif 583 584 case KVM_CAP_PPC_ALLOC_HTAB: 585 r = hv_enabled; 586 break; 587 #endif /* CONFIG_PPC_BOOK3S_64 */ 588 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 589 case KVM_CAP_PPC_SMT: 590 r = 0; 591 if (kvm) { 592 if (kvm->arch.emul_smt_mode > 1) 593 r = kvm->arch.emul_smt_mode; 594 else 595 r = kvm->arch.smt_mode; 596 } else if (hv_enabled) { 597 if (cpu_has_feature(CPU_FTR_ARCH_300)) 598 r = 1; 599 else 600 r = threads_per_subcore; 601 } 602 break; 603 case KVM_CAP_PPC_SMT_POSSIBLE: 604 r = 1; 605 if (hv_enabled) { 606 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 607 r = ((threads_per_subcore << 1) - 1); 608 else 609 /* P9 can emulate dbells, so allow any mode */ 610 r = 8 | 4 | 2 | 1; 611 } 612 break; 613 case KVM_CAP_PPC_RMA: 614 r = 0; 615 break; 616 case KVM_CAP_PPC_HWRNG: 617 r = kvmppc_hwrng_present(); 618 break; 619 case KVM_CAP_PPC_MMU_RADIX: 620 r = !!(hv_enabled && radix_enabled()); 621 break; 622 case KVM_CAP_PPC_MMU_HASH_V3: 623 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) && 624 cpu_has_feature(CPU_FTR_HVMODE)); 625 break; 626 case KVM_CAP_PPC_NESTED_HV: 627 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested && 628 !kvmppc_hv_ops->enable_nested(NULL)); 629 break; 630 #endif 631 case KVM_CAP_SYNC_MMU: 632 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 633 r = hv_enabled; 634 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) 635 r = 1; 636 #else 637 r = 0; 638 #endif 639 break; 640 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 641 case KVM_CAP_PPC_HTAB_FD: 642 r = hv_enabled; 643 break; 644 #endif 645 case KVM_CAP_NR_VCPUS: 646 /* 647 * Recommending a number of CPUs is somewhat arbitrary; we 648 * return the number of present CPUs for -HV (since a host 649 * will have secondary threads "offline"), and for other KVM 650 * implementations just count online CPUs. 651 */ 652 if (hv_enabled) 653 r = num_present_cpus(); 654 else 655 r = num_online_cpus(); 656 break; 657 case KVM_CAP_MAX_VCPUS: 658 r = KVM_MAX_VCPUS; 659 break; 660 case KVM_CAP_MAX_VCPU_ID: 661 r = KVM_MAX_VCPU_ID; 662 break; 663 #ifdef CONFIG_PPC_BOOK3S_64 664 case KVM_CAP_PPC_GET_SMMU_INFO: 665 r = 1; 666 break; 667 case KVM_CAP_SPAPR_MULTITCE: 668 r = 1; 669 break; 670 case KVM_CAP_SPAPR_RESIZE_HPT: 671 r = !!hv_enabled; 672 break; 673 #endif 674 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 675 case KVM_CAP_PPC_FWNMI: 676 r = hv_enabled; 677 break; 678 #endif 679 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 680 case KVM_CAP_PPC_HTM: 681 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) || 682 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)); 683 break; 684 #endif 685 default: 686 r = 0; 687 break; 688 } 689 return r; 690 691 } 692 693 long kvm_arch_dev_ioctl(struct file *filp, 694 unsigned int ioctl, unsigned long arg) 695 { 696 return -EINVAL; 697 } 698 699 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 700 struct kvm_memory_slot *dont) 701 { 702 kvmppc_core_free_memslot(kvm, free, dont); 703 } 704 705 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 706 unsigned long npages) 707 { 708 return kvmppc_core_create_memslot(kvm, slot, npages); 709 } 710 711 int kvm_arch_prepare_memory_region(struct kvm *kvm, 712 struct kvm_memory_slot *memslot, 713 const struct kvm_userspace_memory_region *mem, 714 enum kvm_mr_change change) 715 { 716 return kvmppc_core_prepare_memory_region(kvm, memslot, mem); 717 } 718 719 void kvm_arch_commit_memory_region(struct kvm *kvm, 720 const struct kvm_userspace_memory_region *mem, 721 const struct kvm_memory_slot *old, 722 const struct kvm_memory_slot *new, 723 enum kvm_mr_change change) 724 { 725 kvmppc_core_commit_memory_region(kvm, mem, old, new, change); 726 } 727 728 void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 729 struct kvm_memory_slot *slot) 730 { 731 kvmppc_core_flush_memslot(kvm, slot); 732 } 733 734 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) 735 { 736 struct kvm_vcpu *vcpu; 737 vcpu = kvmppc_core_vcpu_create(kvm, id); 738 if (!IS_ERR(vcpu)) { 739 vcpu->arch.wqp = &vcpu->wq; 740 kvmppc_create_vcpu_debugfs(vcpu, id); 741 } 742 return vcpu; 743 } 744 745 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 746 { 747 } 748 749 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) 750 { 751 /* Make sure we're not using the vcpu anymore */ 752 hrtimer_cancel(&vcpu->arch.dec_timer); 753 754 kvmppc_remove_vcpu_debugfs(vcpu); 755 756 switch (vcpu->arch.irq_type) { 757 case KVMPPC_IRQ_MPIC: 758 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu); 759 break; 760 case KVMPPC_IRQ_XICS: 761 if (xics_on_xive()) 762 kvmppc_xive_cleanup_vcpu(vcpu); 763 else 764 kvmppc_xics_free_icp(vcpu); 765 break; 766 case KVMPPC_IRQ_XIVE: 767 kvmppc_xive_native_cleanup_vcpu(vcpu); 768 break; 769 } 770 771 kvmppc_core_vcpu_free(vcpu); 772 } 773 774 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 775 { 776 kvm_arch_vcpu_free(vcpu); 777 } 778 779 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 780 { 781 return kvmppc_core_pending_dec(vcpu); 782 } 783 784 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer) 785 { 786 struct kvm_vcpu *vcpu; 787 788 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer); 789 kvmppc_decrementer_func(vcpu); 790 791 return HRTIMER_NORESTART; 792 } 793 794 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 795 { 796 int ret; 797 798 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 799 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup; 800 vcpu->arch.dec_expires = get_tb(); 801 802 #ifdef CONFIG_KVM_EXIT_TIMING 803 mutex_init(&vcpu->arch.exit_timing_lock); 804 #endif 805 ret = kvmppc_subarch_vcpu_init(vcpu); 806 return ret; 807 } 808 809 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) 810 { 811 kvmppc_mmu_destroy(vcpu); 812 kvmppc_subarch_vcpu_uninit(vcpu); 813 } 814 815 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 816 { 817 #ifdef CONFIG_BOOKE 818 /* 819 * vrsave (formerly usprg0) isn't used by Linux, but may 820 * be used by the guest. 821 * 822 * On non-booke this is associated with Altivec and 823 * is handled by code in book3s.c. 824 */ 825 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 826 #endif 827 kvmppc_core_vcpu_load(vcpu, cpu); 828 } 829 830 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 831 { 832 kvmppc_core_vcpu_put(vcpu); 833 #ifdef CONFIG_BOOKE 834 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 835 #endif 836 } 837 838 /* 839 * irq_bypass_add_producer and irq_bypass_del_producer are only 840 * useful if the architecture supports PCI passthrough. 841 * irq_bypass_stop and irq_bypass_start are not needed and so 842 * kvm_ops are not defined for them. 843 */ 844 bool kvm_arch_has_irq_bypass(void) 845 { 846 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) || 847 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer)); 848 } 849 850 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 851 struct irq_bypass_producer *prod) 852 { 853 struct kvm_kernel_irqfd *irqfd = 854 container_of(cons, struct kvm_kernel_irqfd, consumer); 855 struct kvm *kvm = irqfd->kvm; 856 857 if (kvm->arch.kvm_ops->irq_bypass_add_producer) 858 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod); 859 860 return 0; 861 } 862 863 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 864 struct irq_bypass_producer *prod) 865 { 866 struct kvm_kernel_irqfd *irqfd = 867 container_of(cons, struct kvm_kernel_irqfd, consumer); 868 struct kvm *kvm = irqfd->kvm; 869 870 if (kvm->arch.kvm_ops->irq_bypass_del_producer) 871 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod); 872 } 873 874 #ifdef CONFIG_VSX 875 static inline int kvmppc_get_vsr_dword_offset(int index) 876 { 877 int offset; 878 879 if ((index != 0) && (index != 1)) 880 return -1; 881 882 #ifdef __BIG_ENDIAN 883 offset = index; 884 #else 885 offset = 1 - index; 886 #endif 887 888 return offset; 889 } 890 891 static inline int kvmppc_get_vsr_word_offset(int index) 892 { 893 int offset; 894 895 if ((index > 3) || (index < 0)) 896 return -1; 897 898 #ifdef __BIG_ENDIAN 899 offset = index; 900 #else 901 offset = 3 - index; 902 #endif 903 return offset; 904 } 905 906 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu, 907 u64 gpr) 908 { 909 union kvmppc_one_reg val; 910 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 911 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 912 913 if (offset == -1) 914 return; 915 916 if (index >= 32) { 917 val.vval = VCPU_VSX_VR(vcpu, index - 32); 918 val.vsxval[offset] = gpr; 919 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 920 } else { 921 VCPU_VSX_FPR(vcpu, index, offset) = gpr; 922 } 923 } 924 925 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu, 926 u64 gpr) 927 { 928 union kvmppc_one_reg val; 929 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 930 931 if (index >= 32) { 932 val.vval = VCPU_VSX_VR(vcpu, index - 32); 933 val.vsxval[0] = gpr; 934 val.vsxval[1] = gpr; 935 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 936 } else { 937 VCPU_VSX_FPR(vcpu, index, 0) = gpr; 938 VCPU_VSX_FPR(vcpu, index, 1) = gpr; 939 } 940 } 941 942 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu, 943 u32 gpr) 944 { 945 union kvmppc_one_reg val; 946 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 947 948 if (index >= 32) { 949 val.vsx32val[0] = gpr; 950 val.vsx32val[1] = gpr; 951 val.vsx32val[2] = gpr; 952 val.vsx32val[3] = gpr; 953 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 954 } else { 955 val.vsx32val[0] = gpr; 956 val.vsx32val[1] = gpr; 957 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0]; 958 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0]; 959 } 960 } 961 962 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu, 963 u32 gpr32) 964 { 965 union kvmppc_one_reg val; 966 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 967 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 968 int dword_offset, word_offset; 969 970 if (offset == -1) 971 return; 972 973 if (index >= 32) { 974 val.vval = VCPU_VSX_VR(vcpu, index - 32); 975 val.vsx32val[offset] = gpr32; 976 VCPU_VSX_VR(vcpu, index - 32) = val.vval; 977 } else { 978 dword_offset = offset / 2; 979 word_offset = offset % 2; 980 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset); 981 val.vsx32val[word_offset] = gpr32; 982 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0]; 983 } 984 } 985 #endif /* CONFIG_VSX */ 986 987 #ifdef CONFIG_ALTIVEC 988 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu, 989 int index, int element_size) 990 { 991 int offset; 992 int elts = sizeof(vector128)/element_size; 993 994 if ((index < 0) || (index >= elts)) 995 return -1; 996 997 if (kvmppc_need_byteswap(vcpu)) 998 offset = elts - index - 1; 999 else 1000 offset = index; 1001 1002 return offset; 1003 } 1004 1005 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu, 1006 int index) 1007 { 1008 return kvmppc_get_vmx_offset_generic(vcpu, index, 8); 1009 } 1010 1011 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu, 1012 int index) 1013 { 1014 return kvmppc_get_vmx_offset_generic(vcpu, index, 4); 1015 } 1016 1017 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu, 1018 int index) 1019 { 1020 return kvmppc_get_vmx_offset_generic(vcpu, index, 2); 1021 } 1022 1023 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu, 1024 int index) 1025 { 1026 return kvmppc_get_vmx_offset_generic(vcpu, index, 1); 1027 } 1028 1029 1030 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu, 1031 u64 gpr) 1032 { 1033 union kvmppc_one_reg val; 1034 int offset = kvmppc_get_vmx_dword_offset(vcpu, 1035 vcpu->arch.mmio_vmx_offset); 1036 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1037 1038 if (offset == -1) 1039 return; 1040 1041 val.vval = VCPU_VSX_VR(vcpu, index); 1042 val.vsxval[offset] = gpr; 1043 VCPU_VSX_VR(vcpu, index) = val.vval; 1044 } 1045 1046 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu, 1047 u32 gpr32) 1048 { 1049 union kvmppc_one_reg val; 1050 int offset = kvmppc_get_vmx_word_offset(vcpu, 1051 vcpu->arch.mmio_vmx_offset); 1052 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1053 1054 if (offset == -1) 1055 return; 1056 1057 val.vval = VCPU_VSX_VR(vcpu, index); 1058 val.vsx32val[offset] = gpr32; 1059 VCPU_VSX_VR(vcpu, index) = val.vval; 1060 } 1061 1062 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu, 1063 u16 gpr16) 1064 { 1065 union kvmppc_one_reg val; 1066 int offset = kvmppc_get_vmx_hword_offset(vcpu, 1067 vcpu->arch.mmio_vmx_offset); 1068 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1069 1070 if (offset == -1) 1071 return; 1072 1073 val.vval = VCPU_VSX_VR(vcpu, index); 1074 val.vsx16val[offset] = gpr16; 1075 VCPU_VSX_VR(vcpu, index) = val.vval; 1076 } 1077 1078 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu, 1079 u8 gpr8) 1080 { 1081 union kvmppc_one_reg val; 1082 int offset = kvmppc_get_vmx_byte_offset(vcpu, 1083 vcpu->arch.mmio_vmx_offset); 1084 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK; 1085 1086 if (offset == -1) 1087 return; 1088 1089 val.vval = VCPU_VSX_VR(vcpu, index); 1090 val.vsx8val[offset] = gpr8; 1091 VCPU_VSX_VR(vcpu, index) = val.vval; 1092 } 1093 #endif /* CONFIG_ALTIVEC */ 1094 1095 #ifdef CONFIG_PPC_FPU 1096 static inline u64 sp_to_dp(u32 fprs) 1097 { 1098 u64 fprd; 1099 1100 preempt_disable(); 1101 enable_kernel_fp(); 1102 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs) 1103 : "fr0"); 1104 preempt_enable(); 1105 return fprd; 1106 } 1107 1108 static inline u32 dp_to_sp(u64 fprd) 1109 { 1110 u32 fprs; 1111 1112 preempt_disable(); 1113 enable_kernel_fp(); 1114 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd) 1115 : "fr0"); 1116 preempt_enable(); 1117 return fprs; 1118 } 1119 1120 #else 1121 #define sp_to_dp(x) (x) 1122 #define dp_to_sp(x) (x) 1123 #endif /* CONFIG_PPC_FPU */ 1124 1125 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, 1126 struct kvm_run *run) 1127 { 1128 u64 uninitialized_var(gpr); 1129 1130 if (run->mmio.len > sizeof(gpr)) { 1131 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len); 1132 return; 1133 } 1134 1135 if (!vcpu->arch.mmio_host_swabbed) { 1136 switch (run->mmio.len) { 1137 case 8: gpr = *(u64 *)run->mmio.data; break; 1138 case 4: gpr = *(u32 *)run->mmio.data; break; 1139 case 2: gpr = *(u16 *)run->mmio.data; break; 1140 case 1: gpr = *(u8 *)run->mmio.data; break; 1141 } 1142 } else { 1143 switch (run->mmio.len) { 1144 case 8: gpr = swab64(*(u64 *)run->mmio.data); break; 1145 case 4: gpr = swab32(*(u32 *)run->mmio.data); break; 1146 case 2: gpr = swab16(*(u16 *)run->mmio.data); break; 1147 case 1: gpr = *(u8 *)run->mmio.data; break; 1148 } 1149 } 1150 1151 /* conversion between single and double precision */ 1152 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4)) 1153 gpr = sp_to_dp(gpr); 1154 1155 if (vcpu->arch.mmio_sign_extend) { 1156 switch (run->mmio.len) { 1157 #ifdef CONFIG_PPC64 1158 case 4: 1159 gpr = (s64)(s32)gpr; 1160 break; 1161 #endif 1162 case 2: 1163 gpr = (s64)(s16)gpr; 1164 break; 1165 case 1: 1166 gpr = (s64)(s8)gpr; 1167 break; 1168 } 1169 } 1170 1171 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) { 1172 case KVM_MMIO_REG_GPR: 1173 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr); 1174 break; 1175 case KVM_MMIO_REG_FPR: 1176 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1177 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP); 1178 1179 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1180 break; 1181 #ifdef CONFIG_PPC_BOOK3S 1182 case KVM_MMIO_REG_QPR: 1183 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1184 break; 1185 case KVM_MMIO_REG_FQPR: 1186 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr; 1187 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr; 1188 break; 1189 #endif 1190 #ifdef CONFIG_VSX 1191 case KVM_MMIO_REG_VSX: 1192 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1193 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX); 1194 1195 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD) 1196 kvmppc_set_vsr_dword(vcpu, gpr); 1197 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD) 1198 kvmppc_set_vsr_word(vcpu, gpr); 1199 else if (vcpu->arch.mmio_copy_type == 1200 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP) 1201 kvmppc_set_vsr_dword_dump(vcpu, gpr); 1202 else if (vcpu->arch.mmio_copy_type == 1203 KVMPPC_VSX_COPY_WORD_LOAD_DUMP) 1204 kvmppc_set_vsr_word_dump(vcpu, gpr); 1205 break; 1206 #endif 1207 #ifdef CONFIG_ALTIVEC 1208 case KVM_MMIO_REG_VMX: 1209 if (vcpu->kvm->arch.kvm_ops->giveup_ext) 1210 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC); 1211 1212 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD) 1213 kvmppc_set_vmx_dword(vcpu, gpr); 1214 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD) 1215 kvmppc_set_vmx_word(vcpu, gpr); 1216 else if (vcpu->arch.mmio_copy_type == 1217 KVMPPC_VMX_COPY_HWORD) 1218 kvmppc_set_vmx_hword(vcpu, gpr); 1219 else if (vcpu->arch.mmio_copy_type == 1220 KVMPPC_VMX_COPY_BYTE) 1221 kvmppc_set_vmx_byte(vcpu, gpr); 1222 break; 1223 #endif 1224 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1225 case KVM_MMIO_REG_NESTED_GPR: 1226 if (kvmppc_need_byteswap(vcpu)) 1227 gpr = swab64(gpr); 1228 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, 1229 sizeof(gpr)); 1230 break; 1231 #endif 1232 default: 1233 BUG(); 1234 } 1235 } 1236 1237 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1238 unsigned int rt, unsigned int bytes, 1239 int is_default_endian, int sign_extend) 1240 { 1241 int idx, ret; 1242 bool host_swabbed; 1243 1244 /* Pity C doesn't have a logical XOR operator */ 1245 if (kvmppc_need_byteswap(vcpu)) { 1246 host_swabbed = is_default_endian; 1247 } else { 1248 host_swabbed = !is_default_endian; 1249 } 1250 1251 if (bytes > sizeof(run->mmio.data)) { 1252 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1253 run->mmio.len); 1254 } 1255 1256 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1257 run->mmio.len = bytes; 1258 run->mmio.is_write = 0; 1259 1260 vcpu->arch.io_gpr = rt; 1261 vcpu->arch.mmio_host_swabbed = host_swabbed; 1262 vcpu->mmio_needed = 1; 1263 vcpu->mmio_is_write = 0; 1264 vcpu->arch.mmio_sign_extend = sign_extend; 1265 1266 idx = srcu_read_lock(&vcpu->kvm->srcu); 1267 1268 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1269 bytes, &run->mmio.data); 1270 1271 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1272 1273 if (!ret) { 1274 kvmppc_complete_mmio_load(vcpu, run); 1275 vcpu->mmio_needed = 0; 1276 return EMULATE_DONE; 1277 } 1278 1279 return EMULATE_DO_MMIO; 1280 } 1281 1282 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1283 unsigned int rt, unsigned int bytes, 1284 int is_default_endian) 1285 { 1286 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0); 1287 } 1288 EXPORT_SYMBOL_GPL(kvmppc_handle_load); 1289 1290 /* Same as above, but sign extends */ 1291 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu, 1292 unsigned int rt, unsigned int bytes, 1293 int is_default_endian) 1294 { 1295 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1); 1296 } 1297 1298 #ifdef CONFIG_VSX 1299 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1300 unsigned int rt, unsigned int bytes, 1301 int is_default_endian, int mmio_sign_extend) 1302 { 1303 enum emulation_result emulated = EMULATE_DONE; 1304 1305 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1306 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1307 return EMULATE_FAIL; 1308 1309 while (vcpu->arch.mmio_vsx_copy_nums) { 1310 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1311 is_default_endian, mmio_sign_extend); 1312 1313 if (emulated != EMULATE_DONE) 1314 break; 1315 1316 vcpu->arch.paddr_accessed += run->mmio.len; 1317 1318 vcpu->arch.mmio_vsx_copy_nums--; 1319 vcpu->arch.mmio_vsx_offset++; 1320 } 1321 return emulated; 1322 } 1323 #endif /* CONFIG_VSX */ 1324 1325 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1326 u64 val, unsigned int bytes, int is_default_endian) 1327 { 1328 void *data = run->mmio.data; 1329 int idx, ret; 1330 bool host_swabbed; 1331 1332 /* Pity C doesn't have a logical XOR operator */ 1333 if (kvmppc_need_byteswap(vcpu)) { 1334 host_swabbed = is_default_endian; 1335 } else { 1336 host_swabbed = !is_default_endian; 1337 } 1338 1339 if (bytes > sizeof(run->mmio.data)) { 1340 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__, 1341 run->mmio.len); 1342 } 1343 1344 run->mmio.phys_addr = vcpu->arch.paddr_accessed; 1345 run->mmio.len = bytes; 1346 run->mmio.is_write = 1; 1347 vcpu->mmio_needed = 1; 1348 vcpu->mmio_is_write = 1; 1349 1350 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4)) 1351 val = dp_to_sp(val); 1352 1353 /* Store the value at the lowest bytes in 'data'. */ 1354 if (!host_swabbed) { 1355 switch (bytes) { 1356 case 8: *(u64 *)data = val; break; 1357 case 4: *(u32 *)data = val; break; 1358 case 2: *(u16 *)data = val; break; 1359 case 1: *(u8 *)data = val; break; 1360 } 1361 } else { 1362 switch (bytes) { 1363 case 8: *(u64 *)data = swab64(val); break; 1364 case 4: *(u32 *)data = swab32(val); break; 1365 case 2: *(u16 *)data = swab16(val); break; 1366 case 1: *(u8 *)data = val; break; 1367 } 1368 } 1369 1370 idx = srcu_read_lock(&vcpu->kvm->srcu); 1371 1372 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr, 1373 bytes, &run->mmio.data); 1374 1375 srcu_read_unlock(&vcpu->kvm->srcu, idx); 1376 1377 if (!ret) { 1378 vcpu->mmio_needed = 0; 1379 return EMULATE_DONE; 1380 } 1381 1382 return EMULATE_DO_MMIO; 1383 } 1384 EXPORT_SYMBOL_GPL(kvmppc_handle_store); 1385 1386 #ifdef CONFIG_VSX 1387 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val) 1388 { 1389 u32 dword_offset, word_offset; 1390 union kvmppc_one_reg reg; 1391 int vsx_offset = 0; 1392 int copy_type = vcpu->arch.mmio_copy_type; 1393 int result = 0; 1394 1395 switch (copy_type) { 1396 case KVMPPC_VSX_COPY_DWORD: 1397 vsx_offset = 1398 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset); 1399 1400 if (vsx_offset == -1) { 1401 result = -1; 1402 break; 1403 } 1404 1405 if (rs < 32) { 1406 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset); 1407 } else { 1408 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1409 *val = reg.vsxval[vsx_offset]; 1410 } 1411 break; 1412 1413 case KVMPPC_VSX_COPY_WORD: 1414 vsx_offset = 1415 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset); 1416 1417 if (vsx_offset == -1) { 1418 result = -1; 1419 break; 1420 } 1421 1422 if (rs < 32) { 1423 dword_offset = vsx_offset / 2; 1424 word_offset = vsx_offset % 2; 1425 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset); 1426 *val = reg.vsx32val[word_offset]; 1427 } else { 1428 reg.vval = VCPU_VSX_VR(vcpu, rs - 32); 1429 *val = reg.vsx32val[vsx_offset]; 1430 } 1431 break; 1432 1433 default: 1434 result = -1; 1435 break; 1436 } 1437 1438 return result; 1439 } 1440 1441 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1442 int rs, unsigned int bytes, int is_default_endian) 1443 { 1444 u64 val; 1445 enum emulation_result emulated = EMULATE_DONE; 1446 1447 vcpu->arch.io_gpr = rs; 1448 1449 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */ 1450 if (vcpu->arch.mmio_vsx_copy_nums > 4) 1451 return EMULATE_FAIL; 1452 1453 while (vcpu->arch.mmio_vsx_copy_nums) { 1454 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1) 1455 return EMULATE_FAIL; 1456 1457 emulated = kvmppc_handle_store(run, vcpu, 1458 val, bytes, is_default_endian); 1459 1460 if (emulated != EMULATE_DONE) 1461 break; 1462 1463 vcpu->arch.paddr_accessed += run->mmio.len; 1464 1465 vcpu->arch.mmio_vsx_copy_nums--; 1466 vcpu->arch.mmio_vsx_offset++; 1467 } 1468 1469 return emulated; 1470 } 1471 1472 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu, 1473 struct kvm_run *run) 1474 { 1475 enum emulation_result emulated = EMULATE_FAIL; 1476 int r; 1477 1478 vcpu->arch.paddr_accessed += run->mmio.len; 1479 1480 if (!vcpu->mmio_is_write) { 1481 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr, 1482 run->mmio.len, 1, vcpu->arch.mmio_sign_extend); 1483 } else { 1484 emulated = kvmppc_handle_vsx_store(run, vcpu, 1485 vcpu->arch.io_gpr, run->mmio.len, 1); 1486 } 1487 1488 switch (emulated) { 1489 case EMULATE_DO_MMIO: 1490 run->exit_reason = KVM_EXIT_MMIO; 1491 r = RESUME_HOST; 1492 break; 1493 case EMULATE_FAIL: 1494 pr_info("KVM: MMIO emulation failed (VSX repeat)\n"); 1495 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1496 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1497 r = RESUME_HOST; 1498 break; 1499 default: 1500 r = RESUME_GUEST; 1501 break; 1502 } 1503 return r; 1504 } 1505 #endif /* CONFIG_VSX */ 1506 1507 #ifdef CONFIG_ALTIVEC 1508 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu, 1509 unsigned int rt, unsigned int bytes, int is_default_endian) 1510 { 1511 enum emulation_result emulated = EMULATE_DONE; 1512 1513 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1514 return EMULATE_FAIL; 1515 1516 while (vcpu->arch.mmio_vmx_copy_nums) { 1517 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes, 1518 is_default_endian, 0); 1519 1520 if (emulated != EMULATE_DONE) 1521 break; 1522 1523 vcpu->arch.paddr_accessed += run->mmio.len; 1524 vcpu->arch.mmio_vmx_copy_nums--; 1525 vcpu->arch.mmio_vmx_offset++; 1526 } 1527 1528 return emulated; 1529 } 1530 1531 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) 1532 { 1533 union kvmppc_one_reg reg; 1534 int vmx_offset = 0; 1535 int result = 0; 1536 1537 vmx_offset = 1538 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1539 1540 if (vmx_offset == -1) 1541 return -1; 1542 1543 reg.vval = VCPU_VSX_VR(vcpu, index); 1544 *val = reg.vsxval[vmx_offset]; 1545 1546 return result; 1547 } 1548 1549 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) 1550 { 1551 union kvmppc_one_reg reg; 1552 int vmx_offset = 0; 1553 int result = 0; 1554 1555 vmx_offset = 1556 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1557 1558 if (vmx_offset == -1) 1559 return -1; 1560 1561 reg.vval = VCPU_VSX_VR(vcpu, index); 1562 *val = reg.vsx32val[vmx_offset]; 1563 1564 return result; 1565 } 1566 1567 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) 1568 { 1569 union kvmppc_one_reg reg; 1570 int vmx_offset = 0; 1571 int result = 0; 1572 1573 vmx_offset = 1574 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1575 1576 if (vmx_offset == -1) 1577 return -1; 1578 1579 reg.vval = VCPU_VSX_VR(vcpu, index); 1580 *val = reg.vsx16val[vmx_offset]; 1581 1582 return result; 1583 } 1584 1585 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) 1586 { 1587 union kvmppc_one_reg reg; 1588 int vmx_offset = 0; 1589 int result = 0; 1590 1591 vmx_offset = 1592 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset); 1593 1594 if (vmx_offset == -1) 1595 return -1; 1596 1597 reg.vval = VCPU_VSX_VR(vcpu, index); 1598 *val = reg.vsx8val[vmx_offset]; 1599 1600 return result; 1601 } 1602 1603 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu, 1604 unsigned int rs, unsigned int bytes, int is_default_endian) 1605 { 1606 u64 val = 0; 1607 unsigned int index = rs & KVM_MMIO_REG_MASK; 1608 enum emulation_result emulated = EMULATE_DONE; 1609 1610 if (vcpu->arch.mmio_vsx_copy_nums > 2) 1611 return EMULATE_FAIL; 1612 1613 vcpu->arch.io_gpr = rs; 1614 1615 while (vcpu->arch.mmio_vmx_copy_nums) { 1616 switch (vcpu->arch.mmio_copy_type) { 1617 case KVMPPC_VMX_COPY_DWORD: 1618 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1) 1619 return EMULATE_FAIL; 1620 1621 break; 1622 case KVMPPC_VMX_COPY_WORD: 1623 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1) 1624 return EMULATE_FAIL; 1625 break; 1626 case KVMPPC_VMX_COPY_HWORD: 1627 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1) 1628 return EMULATE_FAIL; 1629 break; 1630 case KVMPPC_VMX_COPY_BYTE: 1631 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1) 1632 return EMULATE_FAIL; 1633 break; 1634 default: 1635 return EMULATE_FAIL; 1636 } 1637 1638 emulated = kvmppc_handle_store(run, vcpu, val, bytes, 1639 is_default_endian); 1640 if (emulated != EMULATE_DONE) 1641 break; 1642 1643 vcpu->arch.paddr_accessed += run->mmio.len; 1644 vcpu->arch.mmio_vmx_copy_nums--; 1645 vcpu->arch.mmio_vmx_offset++; 1646 } 1647 1648 return emulated; 1649 } 1650 1651 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu, 1652 struct kvm_run *run) 1653 { 1654 enum emulation_result emulated = EMULATE_FAIL; 1655 int r; 1656 1657 vcpu->arch.paddr_accessed += run->mmio.len; 1658 1659 if (!vcpu->mmio_is_write) { 1660 emulated = kvmppc_handle_vmx_load(run, vcpu, 1661 vcpu->arch.io_gpr, run->mmio.len, 1); 1662 } else { 1663 emulated = kvmppc_handle_vmx_store(run, vcpu, 1664 vcpu->arch.io_gpr, run->mmio.len, 1); 1665 } 1666 1667 switch (emulated) { 1668 case EMULATE_DO_MMIO: 1669 run->exit_reason = KVM_EXIT_MMIO; 1670 r = RESUME_HOST; 1671 break; 1672 case EMULATE_FAIL: 1673 pr_info("KVM: MMIO emulation failed (VMX repeat)\n"); 1674 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1675 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 1676 r = RESUME_HOST; 1677 break; 1678 default: 1679 r = RESUME_GUEST; 1680 break; 1681 } 1682 return r; 1683 } 1684 #endif /* CONFIG_ALTIVEC */ 1685 1686 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1687 { 1688 int r = 0; 1689 union kvmppc_one_reg val; 1690 int size; 1691 1692 size = one_reg_size(reg->id); 1693 if (size > sizeof(val)) 1694 return -EINVAL; 1695 1696 r = kvmppc_get_one_reg(vcpu, reg->id, &val); 1697 if (r == -EINVAL) { 1698 r = 0; 1699 switch (reg->id) { 1700 #ifdef CONFIG_ALTIVEC 1701 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1702 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1703 r = -ENXIO; 1704 break; 1705 } 1706 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0]; 1707 break; 1708 case KVM_REG_PPC_VSCR: 1709 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1710 r = -ENXIO; 1711 break; 1712 } 1713 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]); 1714 break; 1715 case KVM_REG_PPC_VRSAVE: 1716 val = get_reg_val(reg->id, vcpu->arch.vrsave); 1717 break; 1718 #endif /* CONFIG_ALTIVEC */ 1719 default: 1720 r = -EINVAL; 1721 break; 1722 } 1723 } 1724 1725 if (r) 1726 return r; 1727 1728 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size)) 1729 r = -EFAULT; 1730 1731 return r; 1732 } 1733 1734 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 1735 { 1736 int r; 1737 union kvmppc_one_reg val; 1738 int size; 1739 1740 size = one_reg_size(reg->id); 1741 if (size > sizeof(val)) 1742 return -EINVAL; 1743 1744 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size)) 1745 return -EFAULT; 1746 1747 r = kvmppc_set_one_reg(vcpu, reg->id, &val); 1748 if (r == -EINVAL) { 1749 r = 0; 1750 switch (reg->id) { 1751 #ifdef CONFIG_ALTIVEC 1752 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31: 1753 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1754 r = -ENXIO; 1755 break; 1756 } 1757 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval; 1758 break; 1759 case KVM_REG_PPC_VSCR: 1760 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1761 r = -ENXIO; 1762 break; 1763 } 1764 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val); 1765 break; 1766 case KVM_REG_PPC_VRSAVE: 1767 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) { 1768 r = -ENXIO; 1769 break; 1770 } 1771 vcpu->arch.vrsave = set_reg_val(reg->id, val); 1772 break; 1773 #endif /* CONFIG_ALTIVEC */ 1774 default: 1775 r = -EINVAL; 1776 break; 1777 } 1778 } 1779 1780 return r; 1781 } 1782 1783 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) 1784 { 1785 int r; 1786 1787 vcpu_load(vcpu); 1788 1789 if (vcpu->mmio_needed) { 1790 vcpu->mmio_needed = 0; 1791 if (!vcpu->mmio_is_write) 1792 kvmppc_complete_mmio_load(vcpu, run); 1793 #ifdef CONFIG_VSX 1794 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1795 vcpu->arch.mmio_vsx_copy_nums--; 1796 vcpu->arch.mmio_vsx_offset++; 1797 } 1798 1799 if (vcpu->arch.mmio_vsx_copy_nums > 0) { 1800 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run); 1801 if (r == RESUME_HOST) { 1802 vcpu->mmio_needed = 1; 1803 goto out; 1804 } 1805 } 1806 #endif 1807 #ifdef CONFIG_ALTIVEC 1808 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1809 vcpu->arch.mmio_vmx_copy_nums--; 1810 vcpu->arch.mmio_vmx_offset++; 1811 } 1812 1813 if (vcpu->arch.mmio_vmx_copy_nums > 0) { 1814 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run); 1815 if (r == RESUME_HOST) { 1816 vcpu->mmio_needed = 1; 1817 goto out; 1818 } 1819 } 1820 #endif 1821 } else if (vcpu->arch.osi_needed) { 1822 u64 *gprs = run->osi.gprs; 1823 int i; 1824 1825 for (i = 0; i < 32; i++) 1826 kvmppc_set_gpr(vcpu, i, gprs[i]); 1827 vcpu->arch.osi_needed = 0; 1828 } else if (vcpu->arch.hcall_needed) { 1829 int i; 1830 1831 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret); 1832 for (i = 0; i < 9; ++i) 1833 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]); 1834 vcpu->arch.hcall_needed = 0; 1835 #ifdef CONFIG_BOOKE 1836 } else if (vcpu->arch.epr_needed) { 1837 kvmppc_set_epr(vcpu, run->epr.epr); 1838 vcpu->arch.epr_needed = 0; 1839 #endif 1840 } 1841 1842 kvm_sigset_activate(vcpu); 1843 1844 if (run->immediate_exit) 1845 r = -EINTR; 1846 else 1847 r = kvmppc_vcpu_run(run, vcpu); 1848 1849 kvm_sigset_deactivate(vcpu); 1850 1851 #ifdef CONFIG_ALTIVEC 1852 out: 1853 #endif 1854 vcpu_put(vcpu); 1855 return r; 1856 } 1857 1858 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) 1859 { 1860 if (irq->irq == KVM_INTERRUPT_UNSET) { 1861 kvmppc_core_dequeue_external(vcpu); 1862 return 0; 1863 } 1864 1865 kvmppc_core_queue_external(vcpu, irq); 1866 1867 kvm_vcpu_kick(vcpu); 1868 1869 return 0; 1870 } 1871 1872 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 1873 struct kvm_enable_cap *cap) 1874 { 1875 int r; 1876 1877 if (cap->flags) 1878 return -EINVAL; 1879 1880 switch (cap->cap) { 1881 case KVM_CAP_PPC_OSI: 1882 r = 0; 1883 vcpu->arch.osi_enabled = true; 1884 break; 1885 case KVM_CAP_PPC_PAPR: 1886 r = 0; 1887 vcpu->arch.papr_enabled = true; 1888 break; 1889 case KVM_CAP_PPC_EPR: 1890 r = 0; 1891 if (cap->args[0]) 1892 vcpu->arch.epr_flags |= KVMPPC_EPR_USER; 1893 else 1894 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER; 1895 break; 1896 #ifdef CONFIG_BOOKE 1897 case KVM_CAP_PPC_BOOKE_WATCHDOG: 1898 r = 0; 1899 vcpu->arch.watchdog_enabled = true; 1900 break; 1901 #endif 1902 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 1903 case KVM_CAP_SW_TLB: { 1904 struct kvm_config_tlb cfg; 1905 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0]; 1906 1907 r = -EFAULT; 1908 if (copy_from_user(&cfg, user_ptr, sizeof(cfg))) 1909 break; 1910 1911 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg); 1912 break; 1913 } 1914 #endif 1915 #ifdef CONFIG_KVM_MPIC 1916 case KVM_CAP_IRQ_MPIC: { 1917 struct fd f; 1918 struct kvm_device *dev; 1919 1920 r = -EBADF; 1921 f = fdget(cap->args[0]); 1922 if (!f.file) 1923 break; 1924 1925 r = -EPERM; 1926 dev = kvm_device_from_filp(f.file); 1927 if (dev) 1928 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]); 1929 1930 fdput(f); 1931 break; 1932 } 1933 #endif 1934 #ifdef CONFIG_KVM_XICS 1935 case KVM_CAP_IRQ_XICS: { 1936 struct fd f; 1937 struct kvm_device *dev; 1938 1939 r = -EBADF; 1940 f = fdget(cap->args[0]); 1941 if (!f.file) 1942 break; 1943 1944 r = -EPERM; 1945 dev = kvm_device_from_filp(f.file); 1946 if (dev) { 1947 if (xics_on_xive()) 1948 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]); 1949 else 1950 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]); 1951 } 1952 1953 fdput(f); 1954 break; 1955 } 1956 #endif /* CONFIG_KVM_XICS */ 1957 #ifdef CONFIG_KVM_XIVE 1958 case KVM_CAP_PPC_IRQ_XIVE: { 1959 struct fd f; 1960 struct kvm_device *dev; 1961 1962 r = -EBADF; 1963 f = fdget(cap->args[0]); 1964 if (!f.file) 1965 break; 1966 1967 r = -ENXIO; 1968 if (!xive_enabled()) 1969 break; 1970 1971 r = -EPERM; 1972 dev = kvm_device_from_filp(f.file); 1973 if (dev) 1974 r = kvmppc_xive_native_connect_vcpu(dev, vcpu, 1975 cap->args[1]); 1976 1977 fdput(f); 1978 break; 1979 } 1980 #endif /* CONFIG_KVM_XIVE */ 1981 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1982 case KVM_CAP_PPC_FWNMI: 1983 r = -EINVAL; 1984 if (!is_kvmppc_hv_enabled(vcpu->kvm)) 1985 break; 1986 r = 0; 1987 vcpu->kvm->arch.fwnmi_enabled = true; 1988 break; 1989 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ 1990 default: 1991 r = -EINVAL; 1992 break; 1993 } 1994 1995 if (!r) 1996 r = kvmppc_sanity_check(vcpu); 1997 1998 return r; 1999 } 2000 2001 bool kvm_arch_intc_initialized(struct kvm *kvm) 2002 { 2003 #ifdef CONFIG_KVM_MPIC 2004 if (kvm->arch.mpic) 2005 return true; 2006 #endif 2007 #ifdef CONFIG_KVM_XICS 2008 if (kvm->arch.xics || kvm->arch.xive) 2009 return true; 2010 #endif 2011 return false; 2012 } 2013 2014 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2015 struct kvm_mp_state *mp_state) 2016 { 2017 return -EINVAL; 2018 } 2019 2020 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2021 struct kvm_mp_state *mp_state) 2022 { 2023 return -EINVAL; 2024 } 2025 2026 long kvm_arch_vcpu_async_ioctl(struct file *filp, 2027 unsigned int ioctl, unsigned long arg) 2028 { 2029 struct kvm_vcpu *vcpu = filp->private_data; 2030 void __user *argp = (void __user *)arg; 2031 2032 if (ioctl == KVM_INTERRUPT) { 2033 struct kvm_interrupt irq; 2034 if (copy_from_user(&irq, argp, sizeof(irq))) 2035 return -EFAULT; 2036 return kvm_vcpu_ioctl_interrupt(vcpu, &irq); 2037 } 2038 return -ENOIOCTLCMD; 2039 } 2040 2041 long kvm_arch_vcpu_ioctl(struct file *filp, 2042 unsigned int ioctl, unsigned long arg) 2043 { 2044 struct kvm_vcpu *vcpu = filp->private_data; 2045 void __user *argp = (void __user *)arg; 2046 long r; 2047 2048 switch (ioctl) { 2049 case KVM_ENABLE_CAP: 2050 { 2051 struct kvm_enable_cap cap; 2052 r = -EFAULT; 2053 vcpu_load(vcpu); 2054 if (copy_from_user(&cap, argp, sizeof(cap))) 2055 goto out; 2056 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 2057 vcpu_put(vcpu); 2058 break; 2059 } 2060 2061 case KVM_SET_ONE_REG: 2062 case KVM_GET_ONE_REG: 2063 { 2064 struct kvm_one_reg reg; 2065 r = -EFAULT; 2066 if (copy_from_user(®, argp, sizeof(reg))) 2067 goto out; 2068 if (ioctl == KVM_SET_ONE_REG) 2069 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®); 2070 else 2071 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®); 2072 break; 2073 } 2074 2075 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) 2076 case KVM_DIRTY_TLB: { 2077 struct kvm_dirty_tlb dirty; 2078 r = -EFAULT; 2079 vcpu_load(vcpu); 2080 if (copy_from_user(&dirty, argp, sizeof(dirty))) 2081 goto out; 2082 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty); 2083 vcpu_put(vcpu); 2084 break; 2085 } 2086 #endif 2087 default: 2088 r = -EINVAL; 2089 } 2090 2091 out: 2092 return r; 2093 } 2094 2095 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 2096 { 2097 return VM_FAULT_SIGBUS; 2098 } 2099 2100 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo) 2101 { 2102 u32 inst_nop = 0x60000000; 2103 #ifdef CONFIG_KVM_BOOKE_HV 2104 u32 inst_sc1 = 0x44000022; 2105 pvinfo->hcall[0] = cpu_to_be32(inst_sc1); 2106 pvinfo->hcall[1] = cpu_to_be32(inst_nop); 2107 pvinfo->hcall[2] = cpu_to_be32(inst_nop); 2108 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2109 #else 2110 u32 inst_lis = 0x3c000000; 2111 u32 inst_ori = 0x60000000; 2112 u32 inst_sc = 0x44000002; 2113 u32 inst_imm_mask = 0xffff; 2114 2115 /* 2116 * The hypercall to get into KVM from within guest context is as 2117 * follows: 2118 * 2119 * lis r0, r0, KVM_SC_MAGIC_R0@h 2120 * ori r0, KVM_SC_MAGIC_R0@l 2121 * sc 2122 * nop 2123 */ 2124 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask)); 2125 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask)); 2126 pvinfo->hcall[2] = cpu_to_be32(inst_sc); 2127 pvinfo->hcall[3] = cpu_to_be32(inst_nop); 2128 #endif 2129 2130 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE; 2131 2132 return 0; 2133 } 2134 2135 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 2136 bool line_status) 2137 { 2138 if (!irqchip_in_kernel(kvm)) 2139 return -ENXIO; 2140 2141 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 2142 irq_event->irq, irq_event->level, 2143 line_status); 2144 return 0; 2145 } 2146 2147 2148 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 2149 struct kvm_enable_cap *cap) 2150 { 2151 int r; 2152 2153 if (cap->flags) 2154 return -EINVAL; 2155 2156 switch (cap->cap) { 2157 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2158 case KVM_CAP_PPC_ENABLE_HCALL: { 2159 unsigned long hcall = cap->args[0]; 2160 2161 r = -EINVAL; 2162 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) || 2163 cap->args[1] > 1) 2164 break; 2165 if (!kvmppc_book3s_hcall_implemented(kvm, hcall)) 2166 break; 2167 if (cap->args[1]) 2168 set_bit(hcall / 4, kvm->arch.enabled_hcalls); 2169 else 2170 clear_bit(hcall / 4, kvm->arch.enabled_hcalls); 2171 r = 0; 2172 break; 2173 } 2174 case KVM_CAP_PPC_SMT: { 2175 unsigned long mode = cap->args[0]; 2176 unsigned long flags = cap->args[1]; 2177 2178 r = -EINVAL; 2179 if (kvm->arch.kvm_ops->set_smt_mode) 2180 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags); 2181 break; 2182 } 2183 2184 case KVM_CAP_PPC_NESTED_HV: 2185 r = -EINVAL; 2186 if (!is_kvmppc_hv_enabled(kvm) || 2187 !kvm->arch.kvm_ops->enable_nested) 2188 break; 2189 r = kvm->arch.kvm_ops->enable_nested(kvm); 2190 break; 2191 #endif 2192 default: 2193 r = -EINVAL; 2194 break; 2195 } 2196 2197 return r; 2198 } 2199 2200 #ifdef CONFIG_PPC_BOOK3S_64 2201 /* 2202 * These functions check whether the underlying hardware is safe 2203 * against attacks based on observing the effects of speculatively 2204 * executed instructions, and whether it supplies instructions for 2205 * use in workarounds. The information comes from firmware, either 2206 * via the device tree on powernv platforms or from an hcall on 2207 * pseries platforms. 2208 */ 2209 #ifdef CONFIG_PPC_PSERIES 2210 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2211 { 2212 struct h_cpu_char_result c; 2213 unsigned long rc; 2214 2215 if (!machine_is(pseries)) 2216 return -ENOTTY; 2217 2218 rc = plpar_get_cpu_characteristics(&c); 2219 if (rc == H_SUCCESS) { 2220 cp->character = c.character; 2221 cp->behaviour = c.behaviour; 2222 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2223 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2224 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2225 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2226 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2227 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED | 2228 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF | 2229 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2230 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2231 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2232 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2233 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2234 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2235 } 2236 return 0; 2237 } 2238 #else 2239 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2240 { 2241 return -ENOTTY; 2242 } 2243 #endif 2244 2245 static inline bool have_fw_feat(struct device_node *fw_features, 2246 const char *state, const char *name) 2247 { 2248 struct device_node *np; 2249 bool r = false; 2250 2251 np = of_get_child_by_name(fw_features, name); 2252 if (np) { 2253 r = of_property_read_bool(np, state); 2254 of_node_put(np); 2255 } 2256 return r; 2257 } 2258 2259 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp) 2260 { 2261 struct device_node *np, *fw_features; 2262 int r; 2263 2264 memset(cp, 0, sizeof(*cp)); 2265 r = pseries_get_cpu_char(cp); 2266 if (r != -ENOTTY) 2267 return r; 2268 2269 np = of_find_node_by_name(NULL, "ibm,opal"); 2270 if (np) { 2271 fw_features = of_get_child_by_name(np, "fw-features"); 2272 of_node_put(np); 2273 if (!fw_features) 2274 return 0; 2275 if (have_fw_feat(fw_features, "enabled", 2276 "inst-spec-barrier-ori31,31,0")) 2277 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31; 2278 if (have_fw_feat(fw_features, "enabled", 2279 "fw-bcctrl-serialized")) 2280 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED; 2281 if (have_fw_feat(fw_features, "enabled", 2282 "inst-l1d-flush-ori30,30,0")) 2283 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30; 2284 if (have_fw_feat(fw_features, "enabled", 2285 "inst-l1d-flush-trig2")) 2286 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2; 2287 if (have_fw_feat(fw_features, "enabled", 2288 "fw-l1d-thread-split")) 2289 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV; 2290 if (have_fw_feat(fw_features, "enabled", 2291 "fw-count-cache-disabled")) 2292 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS; 2293 if (have_fw_feat(fw_features, "enabled", 2294 "fw-count-cache-flush-bcctr2,0,0")) 2295 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2296 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 | 2297 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED | 2298 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 | 2299 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 | 2300 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV | 2301 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS | 2302 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST; 2303 2304 if (have_fw_feat(fw_features, "enabled", 2305 "speculation-policy-favor-security")) 2306 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY; 2307 if (!have_fw_feat(fw_features, "disabled", 2308 "needs-l1d-flush-msr-pr-0-to-1")) 2309 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR; 2310 if (!have_fw_feat(fw_features, "disabled", 2311 "needs-spec-barrier-for-bound-checks")) 2312 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 2313 if (have_fw_feat(fw_features, "enabled", 2314 "needs-count-cache-flush-on-context-switch")) 2315 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2316 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY | 2317 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR | 2318 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR | 2319 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE; 2320 2321 of_node_put(fw_features); 2322 } 2323 2324 return 0; 2325 } 2326 #endif 2327 2328 long kvm_arch_vm_ioctl(struct file *filp, 2329 unsigned int ioctl, unsigned long arg) 2330 { 2331 struct kvm *kvm __maybe_unused = filp->private_data; 2332 void __user *argp = (void __user *)arg; 2333 long r; 2334 2335 switch (ioctl) { 2336 case KVM_PPC_GET_PVINFO: { 2337 struct kvm_ppc_pvinfo pvinfo; 2338 memset(&pvinfo, 0, sizeof(pvinfo)); 2339 r = kvm_vm_ioctl_get_pvinfo(&pvinfo); 2340 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) { 2341 r = -EFAULT; 2342 goto out; 2343 } 2344 2345 break; 2346 } 2347 #ifdef CONFIG_SPAPR_TCE_IOMMU 2348 case KVM_CREATE_SPAPR_TCE_64: { 2349 struct kvm_create_spapr_tce_64 create_tce_64; 2350 2351 r = -EFAULT; 2352 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64))) 2353 goto out; 2354 if (create_tce_64.flags) { 2355 r = -EINVAL; 2356 goto out; 2357 } 2358 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2359 goto out; 2360 } 2361 case KVM_CREATE_SPAPR_TCE: { 2362 struct kvm_create_spapr_tce create_tce; 2363 struct kvm_create_spapr_tce_64 create_tce_64; 2364 2365 r = -EFAULT; 2366 if (copy_from_user(&create_tce, argp, sizeof(create_tce))) 2367 goto out; 2368 2369 create_tce_64.liobn = create_tce.liobn; 2370 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K; 2371 create_tce_64.offset = 0; 2372 create_tce_64.size = create_tce.window_size >> 2373 IOMMU_PAGE_SHIFT_4K; 2374 create_tce_64.flags = 0; 2375 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64); 2376 goto out; 2377 } 2378 #endif 2379 #ifdef CONFIG_PPC_BOOK3S_64 2380 case KVM_PPC_GET_SMMU_INFO: { 2381 struct kvm_ppc_smmu_info info; 2382 struct kvm *kvm = filp->private_data; 2383 2384 memset(&info, 0, sizeof(info)); 2385 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info); 2386 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2387 r = -EFAULT; 2388 break; 2389 } 2390 case KVM_PPC_RTAS_DEFINE_TOKEN: { 2391 struct kvm *kvm = filp->private_data; 2392 2393 r = kvm_vm_ioctl_rtas_define_token(kvm, argp); 2394 break; 2395 } 2396 case KVM_PPC_CONFIGURE_V3_MMU: { 2397 struct kvm *kvm = filp->private_data; 2398 struct kvm_ppc_mmuv3_cfg cfg; 2399 2400 r = -EINVAL; 2401 if (!kvm->arch.kvm_ops->configure_mmu) 2402 goto out; 2403 r = -EFAULT; 2404 if (copy_from_user(&cfg, argp, sizeof(cfg))) 2405 goto out; 2406 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg); 2407 break; 2408 } 2409 case KVM_PPC_GET_RMMU_INFO: { 2410 struct kvm *kvm = filp->private_data; 2411 struct kvm_ppc_rmmu_info info; 2412 2413 r = -EINVAL; 2414 if (!kvm->arch.kvm_ops->get_rmmu_info) 2415 goto out; 2416 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info); 2417 if (r >= 0 && copy_to_user(argp, &info, sizeof(info))) 2418 r = -EFAULT; 2419 break; 2420 } 2421 case KVM_PPC_GET_CPU_CHAR: { 2422 struct kvm_ppc_cpu_char cpuchar; 2423 2424 r = kvmppc_get_cpu_char(&cpuchar); 2425 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar))) 2426 r = -EFAULT; 2427 break; 2428 } 2429 default: { 2430 struct kvm *kvm = filp->private_data; 2431 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg); 2432 } 2433 #else /* CONFIG_PPC_BOOK3S_64 */ 2434 default: 2435 r = -ENOTTY; 2436 #endif 2437 } 2438 out: 2439 return r; 2440 } 2441 2442 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)]; 2443 static unsigned long nr_lpids; 2444 2445 long kvmppc_alloc_lpid(void) 2446 { 2447 long lpid; 2448 2449 do { 2450 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS); 2451 if (lpid >= nr_lpids) { 2452 pr_err("%s: No LPIDs free\n", __func__); 2453 return -ENOMEM; 2454 } 2455 } while (test_and_set_bit(lpid, lpid_inuse)); 2456 2457 return lpid; 2458 } 2459 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid); 2460 2461 void kvmppc_claim_lpid(long lpid) 2462 { 2463 set_bit(lpid, lpid_inuse); 2464 } 2465 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid); 2466 2467 void kvmppc_free_lpid(long lpid) 2468 { 2469 clear_bit(lpid, lpid_inuse); 2470 } 2471 EXPORT_SYMBOL_GPL(kvmppc_free_lpid); 2472 2473 void kvmppc_init_lpid(unsigned long nr_lpids_param) 2474 { 2475 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param); 2476 memset(lpid_inuse, 0, sizeof(lpid_inuse)); 2477 } 2478 EXPORT_SYMBOL_GPL(kvmppc_init_lpid); 2479 2480 int kvm_arch_init(void *opaque) 2481 { 2482 return 0; 2483 } 2484 2485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr); 2486