xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_book3s_uvmem.h>
76 #include <asm/ultravisor.h>
77 #include <asm/dtl.h>
78 
79 #include "book3s.h"
80 
81 #define CREATE_TRACE_POINTS
82 #include "trace_hv.h"
83 
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
87 
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
92 
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL	(~(u64)0)
95 
96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
97 
98 static int dynamic_mt_modes = 6;
99 module_param(dynamic_mt_modes, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode;
102 module_param(target_smt_mode, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104 
105 static bool indep_threads_mode = true;
106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
108 
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
112 
113 #ifdef CONFIG_KVM_XICS
114 static const struct kernel_param_ops module_param_ops = {
115 	.set = param_set_int,
116 	.get = param_get_int,
117 };
118 
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121 
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125 
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130 
131 static inline bool nesting_enabled(struct kvm *kvm)
132 {
133 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
134 }
135 
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix __read_mostly;
138 
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140 
141 /*
142  * RWMR values for POWER8.  These control the rate at which PURR
143  * and SPURR count and should be set according to the number of
144  * online threads in the vcore being run.
145  */
146 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
154 
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156 	RWMR_RPA_P8_1THREAD,
157 	RWMR_RPA_P8_1THREAD,
158 	RWMR_RPA_P8_2THREAD,
159 	RWMR_RPA_P8_3THREAD,
160 	RWMR_RPA_P8_4THREAD,
161 	RWMR_RPA_P8_5THREAD,
162 	RWMR_RPA_P8_6THREAD,
163 	RWMR_RPA_P8_7THREAD,
164 	RWMR_RPA_P8_8THREAD,
165 };
166 
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168 		int *ip)
169 {
170 	int i = *ip;
171 	struct kvm_vcpu *vcpu;
172 
173 	while (++i < MAX_SMT_THREADS) {
174 		vcpu = READ_ONCE(vc->runnable_threads[i]);
175 		if (vcpu) {
176 			*ip = i;
177 			return vcpu;
178 		}
179 	}
180 	return NULL;
181 }
182 
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186 
187 static bool kvmppc_ipi_thread(int cpu)
188 {
189 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190 
191 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192 	if (kvmhv_on_pseries())
193 		return false;
194 
195 	/* On POWER9 we can use msgsnd to IPI any cpu */
196 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197 		msg |= get_hard_smp_processor_id(cpu);
198 		smp_mb();
199 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200 		return true;
201 	}
202 
203 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
204 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205 		preempt_disable();
206 		if (cpu_first_thread_sibling(cpu) ==
207 		    cpu_first_thread_sibling(smp_processor_id())) {
208 			msg |= cpu_thread_in_core(cpu);
209 			smp_mb();
210 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211 			preempt_enable();
212 			return true;
213 		}
214 		preempt_enable();
215 	}
216 
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218 	if (cpu >= 0 && cpu < nr_cpu_ids) {
219 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220 			xics_wake_cpu(cpu);
221 			return true;
222 		}
223 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224 		return true;
225 	}
226 #endif
227 
228 	return false;
229 }
230 
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233 	int cpu;
234 	struct rcuwait *waitp;
235 
236 	waitp = kvm_arch_vcpu_get_wait(vcpu);
237 	if (rcuwait_wake_up(waitp))
238 		++vcpu->stat.halt_wakeup;
239 
240 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
241 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242 		return;
243 
244 	/* CPU points to the first thread of the core */
245 	cpu = vcpu->cpu;
246 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247 		smp_send_reschedule(cpu);
248 }
249 
250 /*
251  * We use the vcpu_load/put functions to measure stolen time.
252  * Stolen time is counted as time when either the vcpu is able to
253  * run as part of a virtual core, but the task running the vcore
254  * is preempted or sleeping, or when the vcpu needs something done
255  * in the kernel by the task running the vcpu, but that task is
256  * preempted or sleeping.  Those two things have to be counted
257  * separately, since one of the vcpu tasks will take on the job
258  * of running the core, and the other vcpu tasks in the vcore will
259  * sleep waiting for it to do that, but that sleep shouldn't count
260  * as stolen time.
261  *
262  * Hence we accumulate stolen time when the vcpu can run as part of
263  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264  * needs its task to do other things in the kernel (for example,
265  * service a page fault) in busy_stolen.  We don't accumulate
266  * stolen time for a vcore when it is inactive, or for a vcpu
267  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
268  * a misnomer; it means that the vcpu task is not executing in
269  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270  * the kernel.  We don't have any way of dividing up that time
271  * between time that the vcpu is genuinely stopped, time that
272  * the task is actively working on behalf of the vcpu, and time
273  * that the task is preempted, so we don't count any of it as
274  * stolen.
275  *
276  * Updates to busy_stolen are protected by arch.tbacct_lock;
277  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278  * lock.  The stolen times are measured in units of timebase ticks.
279  * (Note that the != TB_NIL checks below are purely defensive;
280  * they should never fail.)
281  */
282 
283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
284 {
285 	unsigned long flags;
286 
287 	spin_lock_irqsave(&vc->stoltb_lock, flags);
288 	vc->preempt_tb = mftb();
289 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
290 }
291 
292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
293 {
294 	unsigned long flags;
295 
296 	spin_lock_irqsave(&vc->stoltb_lock, flags);
297 	if (vc->preempt_tb != TB_NIL) {
298 		vc->stolen_tb += mftb() - vc->preempt_tb;
299 		vc->preempt_tb = TB_NIL;
300 	}
301 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303 
304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
305 {
306 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
307 	unsigned long flags;
308 
309 	/*
310 	 * We can test vc->runner without taking the vcore lock,
311 	 * because only this task ever sets vc->runner to this
312 	 * vcpu, and once it is set to this vcpu, only this task
313 	 * ever sets it to NULL.
314 	 */
315 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316 		kvmppc_core_end_stolen(vc);
317 
318 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
320 	    vcpu->arch.busy_preempt != TB_NIL) {
321 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
322 		vcpu->arch.busy_preempt = TB_NIL;
323 	}
324 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
325 }
326 
327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
328 {
329 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
330 	unsigned long flags;
331 
332 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
333 		kvmppc_core_start_stolen(vc);
334 
335 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
336 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
337 		vcpu->arch.busy_preempt = mftb();
338 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
339 }
340 
341 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
342 {
343 	vcpu->arch.pvr = pvr;
344 }
345 
346 /* Dummy value used in computing PCR value below */
347 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
348 
349 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
350 {
351 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
352 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
353 
354 	/* We can (emulate) our own architecture version and anything older */
355 	if (cpu_has_feature(CPU_FTR_ARCH_31))
356 		host_pcr_bit = PCR_ARCH_31;
357 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
358 		host_pcr_bit = PCR_ARCH_300;
359 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
360 		host_pcr_bit = PCR_ARCH_207;
361 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
362 		host_pcr_bit = PCR_ARCH_206;
363 	else
364 		host_pcr_bit = PCR_ARCH_205;
365 
366 	/* Determine lowest PCR bit needed to run guest in given PVR level */
367 	guest_pcr_bit = host_pcr_bit;
368 	if (arch_compat) {
369 		switch (arch_compat) {
370 		case PVR_ARCH_205:
371 			guest_pcr_bit = PCR_ARCH_205;
372 			break;
373 		case PVR_ARCH_206:
374 		case PVR_ARCH_206p:
375 			guest_pcr_bit = PCR_ARCH_206;
376 			break;
377 		case PVR_ARCH_207:
378 			guest_pcr_bit = PCR_ARCH_207;
379 			break;
380 		case PVR_ARCH_300:
381 			guest_pcr_bit = PCR_ARCH_300;
382 			break;
383 		case PVR_ARCH_31:
384 			guest_pcr_bit = PCR_ARCH_31;
385 			break;
386 		default:
387 			return -EINVAL;
388 		}
389 	}
390 
391 	/* Check requested PCR bits don't exceed our capabilities */
392 	if (guest_pcr_bit > host_pcr_bit)
393 		return -EINVAL;
394 
395 	spin_lock(&vc->lock);
396 	vc->arch_compat = arch_compat;
397 	/*
398 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
399 	 * Also set all reserved PCR bits
400 	 */
401 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
402 	spin_unlock(&vc->lock);
403 
404 	return 0;
405 }
406 
407 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
408 {
409 	int r;
410 
411 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
412 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
413 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
414 	for (r = 0; r < 16; ++r)
415 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
416 		       r, kvmppc_get_gpr(vcpu, r),
417 		       r+16, kvmppc_get_gpr(vcpu, r+16));
418 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
419 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
420 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
421 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
422 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
423 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
424 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
425 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
426 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
427 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
428 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
429 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
430 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
431 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
432 	for (r = 0; r < vcpu->arch.slb_max; ++r)
433 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
434 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
435 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
436 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
437 	       vcpu->arch.last_inst);
438 }
439 
440 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
441 {
442 	return kvm_get_vcpu_by_id(kvm, id);
443 }
444 
445 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
446 {
447 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
448 	vpa->yield_count = cpu_to_be32(1);
449 }
450 
451 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
452 		   unsigned long addr, unsigned long len)
453 {
454 	/* check address is cacheline aligned */
455 	if (addr & (L1_CACHE_BYTES - 1))
456 		return -EINVAL;
457 	spin_lock(&vcpu->arch.vpa_update_lock);
458 	if (v->next_gpa != addr || v->len != len) {
459 		v->next_gpa = addr;
460 		v->len = addr ? len : 0;
461 		v->update_pending = 1;
462 	}
463 	spin_unlock(&vcpu->arch.vpa_update_lock);
464 	return 0;
465 }
466 
467 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
468 struct reg_vpa {
469 	u32 dummy;
470 	union {
471 		__be16 hword;
472 		__be32 word;
473 	} length;
474 };
475 
476 static int vpa_is_registered(struct kvmppc_vpa *vpap)
477 {
478 	if (vpap->update_pending)
479 		return vpap->next_gpa != 0;
480 	return vpap->pinned_addr != NULL;
481 }
482 
483 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
484 				       unsigned long flags,
485 				       unsigned long vcpuid, unsigned long vpa)
486 {
487 	struct kvm *kvm = vcpu->kvm;
488 	unsigned long len, nb;
489 	void *va;
490 	struct kvm_vcpu *tvcpu;
491 	int err;
492 	int subfunc;
493 	struct kvmppc_vpa *vpap;
494 
495 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
496 	if (!tvcpu)
497 		return H_PARAMETER;
498 
499 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
500 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
501 	    subfunc == H_VPA_REG_SLB) {
502 		/* Registering new area - address must be cache-line aligned */
503 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
504 			return H_PARAMETER;
505 
506 		/* convert logical addr to kernel addr and read length */
507 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
508 		if (va == NULL)
509 			return H_PARAMETER;
510 		if (subfunc == H_VPA_REG_VPA)
511 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
512 		else
513 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
514 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
515 
516 		/* Check length */
517 		if (len > nb || len < sizeof(struct reg_vpa))
518 			return H_PARAMETER;
519 	} else {
520 		vpa = 0;
521 		len = 0;
522 	}
523 
524 	err = H_PARAMETER;
525 	vpap = NULL;
526 	spin_lock(&tvcpu->arch.vpa_update_lock);
527 
528 	switch (subfunc) {
529 	case H_VPA_REG_VPA:		/* register VPA */
530 		/*
531 		 * The size of our lppaca is 1kB because of the way we align
532 		 * it for the guest to avoid crossing a 4kB boundary. We only
533 		 * use 640 bytes of the structure though, so we should accept
534 		 * clients that set a size of 640.
535 		 */
536 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
537 		if (len < sizeof(struct lppaca))
538 			break;
539 		vpap = &tvcpu->arch.vpa;
540 		err = 0;
541 		break;
542 
543 	case H_VPA_REG_DTL:		/* register DTL */
544 		if (len < sizeof(struct dtl_entry))
545 			break;
546 		len -= len % sizeof(struct dtl_entry);
547 
548 		/* Check that they have previously registered a VPA */
549 		err = H_RESOURCE;
550 		if (!vpa_is_registered(&tvcpu->arch.vpa))
551 			break;
552 
553 		vpap = &tvcpu->arch.dtl;
554 		err = 0;
555 		break;
556 
557 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
558 		/* Check that they have previously registered a VPA */
559 		err = H_RESOURCE;
560 		if (!vpa_is_registered(&tvcpu->arch.vpa))
561 			break;
562 
563 		vpap = &tvcpu->arch.slb_shadow;
564 		err = 0;
565 		break;
566 
567 	case H_VPA_DEREG_VPA:		/* deregister VPA */
568 		/* Check they don't still have a DTL or SLB buf registered */
569 		err = H_RESOURCE;
570 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
571 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
572 			break;
573 
574 		vpap = &tvcpu->arch.vpa;
575 		err = 0;
576 		break;
577 
578 	case H_VPA_DEREG_DTL:		/* deregister DTL */
579 		vpap = &tvcpu->arch.dtl;
580 		err = 0;
581 		break;
582 
583 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
584 		vpap = &tvcpu->arch.slb_shadow;
585 		err = 0;
586 		break;
587 	}
588 
589 	if (vpap) {
590 		vpap->next_gpa = vpa;
591 		vpap->len = len;
592 		vpap->update_pending = 1;
593 	}
594 
595 	spin_unlock(&tvcpu->arch.vpa_update_lock);
596 
597 	return err;
598 }
599 
600 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
601 {
602 	struct kvm *kvm = vcpu->kvm;
603 	void *va;
604 	unsigned long nb;
605 	unsigned long gpa;
606 
607 	/*
608 	 * We need to pin the page pointed to by vpap->next_gpa,
609 	 * but we can't call kvmppc_pin_guest_page under the lock
610 	 * as it does get_user_pages() and down_read().  So we
611 	 * have to drop the lock, pin the page, then get the lock
612 	 * again and check that a new area didn't get registered
613 	 * in the meantime.
614 	 */
615 	for (;;) {
616 		gpa = vpap->next_gpa;
617 		spin_unlock(&vcpu->arch.vpa_update_lock);
618 		va = NULL;
619 		nb = 0;
620 		if (gpa)
621 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
622 		spin_lock(&vcpu->arch.vpa_update_lock);
623 		if (gpa == vpap->next_gpa)
624 			break;
625 		/* sigh... unpin that one and try again */
626 		if (va)
627 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
628 	}
629 
630 	vpap->update_pending = 0;
631 	if (va && nb < vpap->len) {
632 		/*
633 		 * If it's now too short, it must be that userspace
634 		 * has changed the mappings underlying guest memory,
635 		 * so unregister the region.
636 		 */
637 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
638 		va = NULL;
639 	}
640 	if (vpap->pinned_addr)
641 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
642 					vpap->dirty);
643 	vpap->gpa = gpa;
644 	vpap->pinned_addr = va;
645 	vpap->dirty = false;
646 	if (va)
647 		vpap->pinned_end = va + vpap->len;
648 }
649 
650 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
651 {
652 	if (!(vcpu->arch.vpa.update_pending ||
653 	      vcpu->arch.slb_shadow.update_pending ||
654 	      vcpu->arch.dtl.update_pending))
655 		return;
656 
657 	spin_lock(&vcpu->arch.vpa_update_lock);
658 	if (vcpu->arch.vpa.update_pending) {
659 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
660 		if (vcpu->arch.vpa.pinned_addr)
661 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
662 	}
663 	if (vcpu->arch.dtl.update_pending) {
664 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
665 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
666 		vcpu->arch.dtl_index = 0;
667 	}
668 	if (vcpu->arch.slb_shadow.update_pending)
669 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
670 	spin_unlock(&vcpu->arch.vpa_update_lock);
671 }
672 
673 /*
674  * Return the accumulated stolen time for the vcore up until `now'.
675  * The caller should hold the vcore lock.
676  */
677 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
678 {
679 	u64 p;
680 	unsigned long flags;
681 
682 	spin_lock_irqsave(&vc->stoltb_lock, flags);
683 	p = vc->stolen_tb;
684 	if (vc->vcore_state != VCORE_INACTIVE &&
685 	    vc->preempt_tb != TB_NIL)
686 		p += now - vc->preempt_tb;
687 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
688 	return p;
689 }
690 
691 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
692 				    struct kvmppc_vcore *vc)
693 {
694 	struct dtl_entry *dt;
695 	struct lppaca *vpa;
696 	unsigned long stolen;
697 	unsigned long core_stolen;
698 	u64 now;
699 	unsigned long flags;
700 
701 	dt = vcpu->arch.dtl_ptr;
702 	vpa = vcpu->arch.vpa.pinned_addr;
703 	now = mftb();
704 	core_stolen = vcore_stolen_time(vc, now);
705 	stolen = core_stolen - vcpu->arch.stolen_logged;
706 	vcpu->arch.stolen_logged = core_stolen;
707 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
708 	stolen += vcpu->arch.busy_stolen;
709 	vcpu->arch.busy_stolen = 0;
710 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
711 	if (!dt || !vpa)
712 		return;
713 	memset(dt, 0, sizeof(struct dtl_entry));
714 	dt->dispatch_reason = 7;
715 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
716 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
717 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
718 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
719 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
720 	++dt;
721 	if (dt == vcpu->arch.dtl.pinned_end)
722 		dt = vcpu->arch.dtl.pinned_addr;
723 	vcpu->arch.dtl_ptr = dt;
724 	/* order writing *dt vs. writing vpa->dtl_idx */
725 	smp_wmb();
726 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
727 	vcpu->arch.dtl.dirty = true;
728 }
729 
730 /* See if there is a doorbell interrupt pending for a vcpu */
731 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
732 {
733 	int thr;
734 	struct kvmppc_vcore *vc;
735 
736 	if (vcpu->arch.doorbell_request)
737 		return true;
738 	/*
739 	 * Ensure that the read of vcore->dpdes comes after the read
740 	 * of vcpu->doorbell_request.  This barrier matches the
741 	 * smp_wmb() in kvmppc_guest_entry_inject().
742 	 */
743 	smp_rmb();
744 	vc = vcpu->arch.vcore;
745 	thr = vcpu->vcpu_id - vc->first_vcpuid;
746 	return !!(vc->dpdes & (1 << thr));
747 }
748 
749 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
750 {
751 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
752 		return true;
753 	if ((!vcpu->arch.vcore->arch_compat) &&
754 	    cpu_has_feature(CPU_FTR_ARCH_207S))
755 		return true;
756 	return false;
757 }
758 
759 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
760 			     unsigned long resource, unsigned long value1,
761 			     unsigned long value2)
762 {
763 	switch (resource) {
764 	case H_SET_MODE_RESOURCE_SET_CIABR:
765 		if (!kvmppc_power8_compatible(vcpu))
766 			return H_P2;
767 		if (value2)
768 			return H_P4;
769 		if (mflags)
770 			return H_UNSUPPORTED_FLAG_START;
771 		/* Guests can't breakpoint the hypervisor */
772 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
773 			return H_P3;
774 		vcpu->arch.ciabr  = value1;
775 		return H_SUCCESS;
776 	case H_SET_MODE_RESOURCE_SET_DAWR0:
777 		if (!kvmppc_power8_compatible(vcpu))
778 			return H_P2;
779 		if (!ppc_breakpoint_available())
780 			return H_P2;
781 		if (mflags)
782 			return H_UNSUPPORTED_FLAG_START;
783 		if (value2 & DABRX_HYP)
784 			return H_P4;
785 		vcpu->arch.dawr0  = value1;
786 		vcpu->arch.dawrx0 = value2;
787 		return H_SUCCESS;
788 	case H_SET_MODE_RESOURCE_SET_DAWR1:
789 		if (!kvmppc_power8_compatible(vcpu))
790 			return H_P2;
791 		if (!ppc_breakpoint_available())
792 			return H_P2;
793 		if (!cpu_has_feature(CPU_FTR_DAWR1))
794 			return H_P2;
795 		if (!vcpu->kvm->arch.dawr1_enabled)
796 			return H_FUNCTION;
797 		if (mflags)
798 			return H_UNSUPPORTED_FLAG_START;
799 		if (value2 & DABRX_HYP)
800 			return H_P4;
801 		vcpu->arch.dawr1  = value1;
802 		vcpu->arch.dawrx1 = value2;
803 		return H_SUCCESS;
804 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
805 		/* KVM does not support mflags=2 (AIL=2) */
806 		if (mflags != 0 && mflags != 3)
807 			return H_UNSUPPORTED_FLAG_START;
808 		return H_TOO_HARD;
809 	default:
810 		return H_TOO_HARD;
811 	}
812 }
813 
814 /* Copy guest memory in place - must reside within a single memslot */
815 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
816 				  unsigned long len)
817 {
818 	struct kvm_memory_slot *to_memslot = NULL;
819 	struct kvm_memory_slot *from_memslot = NULL;
820 	unsigned long to_addr, from_addr;
821 	int r;
822 
823 	/* Get HPA for from address */
824 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
825 	if (!from_memslot)
826 		return -EFAULT;
827 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
828 			     << PAGE_SHIFT))
829 		return -EINVAL;
830 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
831 	if (kvm_is_error_hva(from_addr))
832 		return -EFAULT;
833 	from_addr |= (from & (PAGE_SIZE - 1));
834 
835 	/* Get HPA for to address */
836 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
837 	if (!to_memslot)
838 		return -EFAULT;
839 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
840 			   << PAGE_SHIFT))
841 		return -EINVAL;
842 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
843 	if (kvm_is_error_hva(to_addr))
844 		return -EFAULT;
845 	to_addr |= (to & (PAGE_SIZE - 1));
846 
847 	/* Perform copy */
848 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
849 			     len);
850 	if (r)
851 		return -EFAULT;
852 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
853 	return 0;
854 }
855 
856 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
857 			       unsigned long dest, unsigned long src)
858 {
859 	u64 pg_sz = SZ_4K;		/* 4K page size */
860 	u64 pg_mask = SZ_4K - 1;
861 	int ret;
862 
863 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
864 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
865 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
866 		return H_PARAMETER;
867 
868 	/* dest (and src if copy_page flag set) must be page aligned */
869 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
870 		return H_PARAMETER;
871 
872 	/* zero and/or copy the page as determined by the flags */
873 	if (flags & H_COPY_PAGE) {
874 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
875 		if (ret < 0)
876 			return H_PARAMETER;
877 	} else if (flags & H_ZERO_PAGE) {
878 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
879 		if (ret < 0)
880 			return H_PARAMETER;
881 	}
882 
883 	/* We can ignore the remaining flags */
884 
885 	return H_SUCCESS;
886 }
887 
888 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
889 {
890 	struct kvmppc_vcore *vcore = target->arch.vcore;
891 
892 	/*
893 	 * We expect to have been called by the real mode handler
894 	 * (kvmppc_rm_h_confer()) which would have directly returned
895 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
896 	 * have useful work to do and should not confer) so we don't
897 	 * recheck that here.
898 	 */
899 
900 	spin_lock(&vcore->lock);
901 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
902 	    vcore->vcore_state != VCORE_INACTIVE &&
903 	    vcore->runner)
904 		target = vcore->runner;
905 	spin_unlock(&vcore->lock);
906 
907 	return kvm_vcpu_yield_to(target);
908 }
909 
910 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
911 {
912 	int yield_count = 0;
913 	struct lppaca *lppaca;
914 
915 	spin_lock(&vcpu->arch.vpa_update_lock);
916 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
917 	if (lppaca)
918 		yield_count = be32_to_cpu(lppaca->yield_count);
919 	spin_unlock(&vcpu->arch.vpa_update_lock);
920 	return yield_count;
921 }
922 
923 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
924 {
925 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
926 	unsigned long target, ret = H_SUCCESS;
927 	int yield_count;
928 	struct kvm_vcpu *tvcpu;
929 	int idx, rc;
930 
931 	if (req <= MAX_HCALL_OPCODE &&
932 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
933 		return RESUME_HOST;
934 
935 	switch (req) {
936 	case H_CEDE:
937 		break;
938 	case H_PROD:
939 		target = kvmppc_get_gpr(vcpu, 4);
940 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
941 		if (!tvcpu) {
942 			ret = H_PARAMETER;
943 			break;
944 		}
945 		tvcpu->arch.prodded = 1;
946 		smp_mb();
947 		if (tvcpu->arch.ceded)
948 			kvmppc_fast_vcpu_kick_hv(tvcpu);
949 		break;
950 	case H_CONFER:
951 		target = kvmppc_get_gpr(vcpu, 4);
952 		if (target == -1)
953 			break;
954 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
955 		if (!tvcpu) {
956 			ret = H_PARAMETER;
957 			break;
958 		}
959 		yield_count = kvmppc_get_gpr(vcpu, 5);
960 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
961 			break;
962 		kvm_arch_vcpu_yield_to(tvcpu);
963 		break;
964 	case H_REGISTER_VPA:
965 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
966 					kvmppc_get_gpr(vcpu, 5),
967 					kvmppc_get_gpr(vcpu, 6));
968 		break;
969 	case H_RTAS:
970 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
971 			return RESUME_HOST;
972 
973 		idx = srcu_read_lock(&vcpu->kvm->srcu);
974 		rc = kvmppc_rtas_hcall(vcpu);
975 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
976 
977 		if (rc == -ENOENT)
978 			return RESUME_HOST;
979 		else if (rc == 0)
980 			break;
981 
982 		/* Send the error out to userspace via KVM_RUN */
983 		return rc;
984 	case H_LOGICAL_CI_LOAD:
985 		ret = kvmppc_h_logical_ci_load(vcpu);
986 		if (ret == H_TOO_HARD)
987 			return RESUME_HOST;
988 		break;
989 	case H_LOGICAL_CI_STORE:
990 		ret = kvmppc_h_logical_ci_store(vcpu);
991 		if (ret == H_TOO_HARD)
992 			return RESUME_HOST;
993 		break;
994 	case H_SET_MODE:
995 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
996 					kvmppc_get_gpr(vcpu, 5),
997 					kvmppc_get_gpr(vcpu, 6),
998 					kvmppc_get_gpr(vcpu, 7));
999 		if (ret == H_TOO_HARD)
1000 			return RESUME_HOST;
1001 		break;
1002 	case H_XIRR:
1003 	case H_CPPR:
1004 	case H_EOI:
1005 	case H_IPI:
1006 	case H_IPOLL:
1007 	case H_XIRR_X:
1008 		if (kvmppc_xics_enabled(vcpu)) {
1009 			if (xics_on_xive()) {
1010 				ret = H_NOT_AVAILABLE;
1011 				return RESUME_GUEST;
1012 			}
1013 			ret = kvmppc_xics_hcall(vcpu, req);
1014 			break;
1015 		}
1016 		return RESUME_HOST;
1017 	case H_SET_DABR:
1018 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1019 		break;
1020 	case H_SET_XDABR:
1021 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1022 						kvmppc_get_gpr(vcpu, 5));
1023 		break;
1024 #ifdef CONFIG_SPAPR_TCE_IOMMU
1025 	case H_GET_TCE:
1026 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1027 						kvmppc_get_gpr(vcpu, 5));
1028 		if (ret == H_TOO_HARD)
1029 			return RESUME_HOST;
1030 		break;
1031 	case H_PUT_TCE:
1032 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1033 						kvmppc_get_gpr(vcpu, 5),
1034 						kvmppc_get_gpr(vcpu, 6));
1035 		if (ret == H_TOO_HARD)
1036 			return RESUME_HOST;
1037 		break;
1038 	case H_PUT_TCE_INDIRECT:
1039 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1040 						kvmppc_get_gpr(vcpu, 5),
1041 						kvmppc_get_gpr(vcpu, 6),
1042 						kvmppc_get_gpr(vcpu, 7));
1043 		if (ret == H_TOO_HARD)
1044 			return RESUME_HOST;
1045 		break;
1046 	case H_STUFF_TCE:
1047 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1048 						kvmppc_get_gpr(vcpu, 5),
1049 						kvmppc_get_gpr(vcpu, 6),
1050 						kvmppc_get_gpr(vcpu, 7));
1051 		if (ret == H_TOO_HARD)
1052 			return RESUME_HOST;
1053 		break;
1054 #endif
1055 	case H_RANDOM:
1056 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1057 			ret = H_HARDWARE;
1058 		break;
1059 
1060 	case H_SET_PARTITION_TABLE:
1061 		ret = H_FUNCTION;
1062 		if (nesting_enabled(vcpu->kvm))
1063 			ret = kvmhv_set_partition_table(vcpu);
1064 		break;
1065 	case H_ENTER_NESTED:
1066 		ret = H_FUNCTION;
1067 		if (!nesting_enabled(vcpu->kvm))
1068 			break;
1069 		ret = kvmhv_enter_nested_guest(vcpu);
1070 		if (ret == H_INTERRUPT) {
1071 			kvmppc_set_gpr(vcpu, 3, 0);
1072 			vcpu->arch.hcall_needed = 0;
1073 			return -EINTR;
1074 		} else if (ret == H_TOO_HARD) {
1075 			kvmppc_set_gpr(vcpu, 3, 0);
1076 			vcpu->arch.hcall_needed = 0;
1077 			return RESUME_HOST;
1078 		}
1079 		break;
1080 	case H_TLB_INVALIDATE:
1081 		ret = H_FUNCTION;
1082 		if (nesting_enabled(vcpu->kvm))
1083 			ret = kvmhv_do_nested_tlbie(vcpu);
1084 		break;
1085 	case H_COPY_TOFROM_GUEST:
1086 		ret = H_FUNCTION;
1087 		if (nesting_enabled(vcpu->kvm))
1088 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1089 		break;
1090 	case H_PAGE_INIT:
1091 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1092 					 kvmppc_get_gpr(vcpu, 5),
1093 					 kvmppc_get_gpr(vcpu, 6));
1094 		break;
1095 	case H_SVM_PAGE_IN:
1096 		ret = H_UNSUPPORTED;
1097 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1098 			ret = kvmppc_h_svm_page_in(vcpu->kvm,
1099 						   kvmppc_get_gpr(vcpu, 4),
1100 						   kvmppc_get_gpr(vcpu, 5),
1101 						   kvmppc_get_gpr(vcpu, 6));
1102 		break;
1103 	case H_SVM_PAGE_OUT:
1104 		ret = H_UNSUPPORTED;
1105 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1106 			ret = kvmppc_h_svm_page_out(vcpu->kvm,
1107 						    kvmppc_get_gpr(vcpu, 4),
1108 						    kvmppc_get_gpr(vcpu, 5),
1109 						    kvmppc_get_gpr(vcpu, 6));
1110 		break;
1111 	case H_SVM_INIT_START:
1112 		ret = H_UNSUPPORTED;
1113 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1114 			ret = kvmppc_h_svm_init_start(vcpu->kvm);
1115 		break;
1116 	case H_SVM_INIT_DONE:
1117 		ret = H_UNSUPPORTED;
1118 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1119 			ret = kvmppc_h_svm_init_done(vcpu->kvm);
1120 		break;
1121 	case H_SVM_INIT_ABORT:
1122 		/*
1123 		 * Even if that call is made by the Ultravisor, the SSR1 value
1124 		 * is the guest context one, with the secure bit clear as it has
1125 		 * not yet been secured. So we can't check it here.
1126 		 * Instead the kvm->arch.secure_guest flag is checked inside
1127 		 * kvmppc_h_svm_init_abort().
1128 		 */
1129 		ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1130 		break;
1131 
1132 	default:
1133 		return RESUME_HOST;
1134 	}
1135 	kvmppc_set_gpr(vcpu, 3, ret);
1136 	vcpu->arch.hcall_needed = 0;
1137 	return RESUME_GUEST;
1138 }
1139 
1140 /*
1141  * Handle H_CEDE in the nested virtualization case where we haven't
1142  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1143  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1144  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1145  */
1146 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1147 {
1148 	vcpu->arch.shregs.msr |= MSR_EE;
1149 	vcpu->arch.ceded = 1;
1150 	smp_mb();
1151 	if (vcpu->arch.prodded) {
1152 		vcpu->arch.prodded = 0;
1153 		smp_mb();
1154 		vcpu->arch.ceded = 0;
1155 	}
1156 }
1157 
1158 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1159 {
1160 	switch (cmd) {
1161 	case H_CEDE:
1162 	case H_PROD:
1163 	case H_CONFER:
1164 	case H_REGISTER_VPA:
1165 	case H_SET_MODE:
1166 	case H_LOGICAL_CI_LOAD:
1167 	case H_LOGICAL_CI_STORE:
1168 #ifdef CONFIG_KVM_XICS
1169 	case H_XIRR:
1170 	case H_CPPR:
1171 	case H_EOI:
1172 	case H_IPI:
1173 	case H_IPOLL:
1174 	case H_XIRR_X:
1175 #endif
1176 	case H_PAGE_INIT:
1177 		return 1;
1178 	}
1179 
1180 	/* See if it's in the real-mode table */
1181 	return kvmppc_hcall_impl_hv_realmode(cmd);
1182 }
1183 
1184 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1185 {
1186 	u32 last_inst;
1187 
1188 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1189 					EMULATE_DONE) {
1190 		/*
1191 		 * Fetch failed, so return to guest and
1192 		 * try executing it again.
1193 		 */
1194 		return RESUME_GUEST;
1195 	}
1196 
1197 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1198 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1199 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1200 		return RESUME_HOST;
1201 	} else {
1202 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1203 		return RESUME_GUEST;
1204 	}
1205 }
1206 
1207 static void do_nothing(void *x)
1208 {
1209 }
1210 
1211 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1212 {
1213 	int thr, cpu, pcpu, nthreads;
1214 	struct kvm_vcpu *v;
1215 	unsigned long dpdes;
1216 
1217 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1218 	dpdes = 0;
1219 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1220 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1221 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1222 		if (!v)
1223 			continue;
1224 		/*
1225 		 * If the vcpu is currently running on a physical cpu thread,
1226 		 * interrupt it in order to pull it out of the guest briefly,
1227 		 * which will update its vcore->dpdes value.
1228 		 */
1229 		pcpu = READ_ONCE(v->cpu);
1230 		if (pcpu >= 0)
1231 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1232 		if (kvmppc_doorbell_pending(v))
1233 			dpdes |= 1 << thr;
1234 	}
1235 	return dpdes;
1236 }
1237 
1238 /*
1239  * On POWER9, emulate doorbell-related instructions in order to
1240  * give the guest the illusion of running on a multi-threaded core.
1241  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1242  * and mfspr DPDES.
1243  */
1244 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1245 {
1246 	u32 inst, rb, thr;
1247 	unsigned long arg;
1248 	struct kvm *kvm = vcpu->kvm;
1249 	struct kvm_vcpu *tvcpu;
1250 
1251 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1252 		return RESUME_GUEST;
1253 	if (get_op(inst) != 31)
1254 		return EMULATE_FAIL;
1255 	rb = get_rb(inst);
1256 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1257 	switch (get_xop(inst)) {
1258 	case OP_31_XOP_MSGSNDP:
1259 		arg = kvmppc_get_gpr(vcpu, rb);
1260 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1261 			break;
1262 		arg &= 0x7f;
1263 		if (arg >= kvm->arch.emul_smt_mode)
1264 			break;
1265 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1266 		if (!tvcpu)
1267 			break;
1268 		if (!tvcpu->arch.doorbell_request) {
1269 			tvcpu->arch.doorbell_request = 1;
1270 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1271 		}
1272 		break;
1273 	case OP_31_XOP_MSGCLRP:
1274 		arg = kvmppc_get_gpr(vcpu, rb);
1275 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1276 			break;
1277 		vcpu->arch.vcore->dpdes = 0;
1278 		vcpu->arch.doorbell_request = 0;
1279 		break;
1280 	case OP_31_XOP_MFSPR:
1281 		switch (get_sprn(inst)) {
1282 		case SPRN_TIR:
1283 			arg = thr;
1284 			break;
1285 		case SPRN_DPDES:
1286 			arg = kvmppc_read_dpdes(vcpu);
1287 			break;
1288 		default:
1289 			return EMULATE_FAIL;
1290 		}
1291 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1292 		break;
1293 	default:
1294 		return EMULATE_FAIL;
1295 	}
1296 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1297 	return RESUME_GUEST;
1298 }
1299 
1300 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1301 				 struct task_struct *tsk)
1302 {
1303 	struct kvm_run *run = vcpu->run;
1304 	int r = RESUME_HOST;
1305 
1306 	vcpu->stat.sum_exits++;
1307 
1308 	/*
1309 	 * This can happen if an interrupt occurs in the last stages
1310 	 * of guest entry or the first stages of guest exit (i.e. after
1311 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1312 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1313 	 * That can happen due to a bug, or due to a machine check
1314 	 * occurring at just the wrong time.
1315 	 */
1316 	if (vcpu->arch.shregs.msr & MSR_HV) {
1317 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1318 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1319 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1320 			vcpu->arch.shregs.msr);
1321 		kvmppc_dump_regs(vcpu);
1322 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1323 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1324 		return RESUME_HOST;
1325 	}
1326 	run->exit_reason = KVM_EXIT_UNKNOWN;
1327 	run->ready_for_interrupt_injection = 1;
1328 	switch (vcpu->arch.trap) {
1329 	/* We're good on these - the host merely wanted to get our attention */
1330 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1331 		vcpu->stat.dec_exits++;
1332 		r = RESUME_GUEST;
1333 		break;
1334 	case BOOK3S_INTERRUPT_EXTERNAL:
1335 	case BOOK3S_INTERRUPT_H_DOORBELL:
1336 	case BOOK3S_INTERRUPT_H_VIRT:
1337 		vcpu->stat.ext_intr_exits++;
1338 		r = RESUME_GUEST;
1339 		break;
1340 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1341 	case BOOK3S_INTERRUPT_HMI:
1342 	case BOOK3S_INTERRUPT_PERFMON:
1343 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1344 		r = RESUME_GUEST;
1345 		break;
1346 	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1347 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1348 					      DEFAULT_RATELIMIT_BURST);
1349 		/*
1350 		 * Print the MCE event to host console. Ratelimit so the guest
1351 		 * can't flood the host log.
1352 		 */
1353 		if (__ratelimit(&rs))
1354 			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1355 
1356 		/*
1357 		 * If the guest can do FWNMI, exit to userspace so it can
1358 		 * deliver a FWNMI to the guest.
1359 		 * Otherwise we synthesize a machine check for the guest
1360 		 * so that it knows that the machine check occurred.
1361 		 */
1362 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1363 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1364 			kvmppc_core_queue_machine_check(vcpu, flags);
1365 			r = RESUME_GUEST;
1366 			break;
1367 		}
1368 
1369 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1370 		run->exit_reason = KVM_EXIT_NMI;
1371 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1372 		/* Clear out the old NMI status from run->flags */
1373 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1374 		/* Now set the NMI status */
1375 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1376 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1377 		else
1378 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1379 
1380 		r = RESUME_HOST;
1381 		break;
1382 	}
1383 	case BOOK3S_INTERRUPT_PROGRAM:
1384 	{
1385 		ulong flags;
1386 		/*
1387 		 * Normally program interrupts are delivered directly
1388 		 * to the guest by the hardware, but we can get here
1389 		 * as a result of a hypervisor emulation interrupt
1390 		 * (e40) getting turned into a 700 by BML RTAS.
1391 		 */
1392 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1393 		kvmppc_core_queue_program(vcpu, flags);
1394 		r = RESUME_GUEST;
1395 		break;
1396 	}
1397 	case BOOK3S_INTERRUPT_SYSCALL:
1398 	{
1399 		/* hcall - punt to userspace */
1400 		int i;
1401 
1402 		/* hypercall with MSR_PR has already been handled in rmode,
1403 		 * and never reaches here.
1404 		 */
1405 
1406 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1407 		for (i = 0; i < 9; ++i)
1408 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1409 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1410 		vcpu->arch.hcall_needed = 1;
1411 		r = RESUME_HOST;
1412 		break;
1413 	}
1414 	/*
1415 	 * We get these next two if the guest accesses a page which it thinks
1416 	 * it has mapped but which is not actually present, either because
1417 	 * it is for an emulated I/O device or because the corresonding
1418 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1419 	 * have been handled already.
1420 	 */
1421 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1422 		r = RESUME_PAGE_FAULT;
1423 		break;
1424 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1425 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1426 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1427 			DSISR_SRR1_MATCH_64S;
1428 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1429 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1430 		r = RESUME_PAGE_FAULT;
1431 		break;
1432 	/*
1433 	 * This occurs if the guest executes an illegal instruction.
1434 	 * If the guest debug is disabled, generate a program interrupt
1435 	 * to the guest. If guest debug is enabled, we need to check
1436 	 * whether the instruction is a software breakpoint instruction.
1437 	 * Accordingly return to Guest or Host.
1438 	 */
1439 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1440 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1441 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1442 				swab32(vcpu->arch.emul_inst) :
1443 				vcpu->arch.emul_inst;
1444 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1445 			r = kvmppc_emulate_debug_inst(vcpu);
1446 		} else {
1447 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1448 			r = RESUME_GUEST;
1449 		}
1450 		break;
1451 	/*
1452 	 * This occurs if the guest (kernel or userspace), does something that
1453 	 * is prohibited by HFSCR.
1454 	 * On POWER9, this could be a doorbell instruction that we need
1455 	 * to emulate.
1456 	 * Otherwise, we just generate a program interrupt to the guest.
1457 	 */
1458 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1459 		r = EMULATE_FAIL;
1460 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1461 		    cpu_has_feature(CPU_FTR_ARCH_300))
1462 			r = kvmppc_emulate_doorbell_instr(vcpu);
1463 		if (r == EMULATE_FAIL) {
1464 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1465 			r = RESUME_GUEST;
1466 		}
1467 		break;
1468 
1469 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1470 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1471 		/*
1472 		 * This occurs for various TM-related instructions that
1473 		 * we need to emulate on POWER9 DD2.2.  We have already
1474 		 * handled the cases where the guest was in real-suspend
1475 		 * mode and was transitioning to transactional state.
1476 		 */
1477 		r = kvmhv_p9_tm_emulation(vcpu);
1478 		break;
1479 #endif
1480 
1481 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1482 		r = RESUME_PASSTHROUGH;
1483 		break;
1484 	default:
1485 		kvmppc_dump_regs(vcpu);
1486 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1487 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1488 			vcpu->arch.shregs.msr);
1489 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1490 		r = RESUME_HOST;
1491 		break;
1492 	}
1493 
1494 	return r;
1495 }
1496 
1497 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1498 {
1499 	int r;
1500 	int srcu_idx;
1501 
1502 	vcpu->stat.sum_exits++;
1503 
1504 	/*
1505 	 * This can happen if an interrupt occurs in the last stages
1506 	 * of guest entry or the first stages of guest exit (i.e. after
1507 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1508 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1509 	 * That can happen due to a bug, or due to a machine check
1510 	 * occurring at just the wrong time.
1511 	 */
1512 	if (vcpu->arch.shregs.msr & MSR_HV) {
1513 		pr_emerg("KVM trap in HV mode while nested!\n");
1514 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1515 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1516 			 vcpu->arch.shregs.msr);
1517 		kvmppc_dump_regs(vcpu);
1518 		return RESUME_HOST;
1519 	}
1520 	switch (vcpu->arch.trap) {
1521 	/* We're good on these - the host merely wanted to get our attention */
1522 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1523 		vcpu->stat.dec_exits++;
1524 		r = RESUME_GUEST;
1525 		break;
1526 	case BOOK3S_INTERRUPT_EXTERNAL:
1527 		vcpu->stat.ext_intr_exits++;
1528 		r = RESUME_HOST;
1529 		break;
1530 	case BOOK3S_INTERRUPT_H_DOORBELL:
1531 	case BOOK3S_INTERRUPT_H_VIRT:
1532 		vcpu->stat.ext_intr_exits++;
1533 		r = RESUME_GUEST;
1534 		break;
1535 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1536 	case BOOK3S_INTERRUPT_HMI:
1537 	case BOOK3S_INTERRUPT_PERFMON:
1538 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1539 		r = RESUME_GUEST;
1540 		break;
1541 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1542 	{
1543 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1544 					      DEFAULT_RATELIMIT_BURST);
1545 		/* Pass the machine check to the L1 guest */
1546 		r = RESUME_HOST;
1547 		/* Print the MCE event to host console. */
1548 		if (__ratelimit(&rs))
1549 			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1550 		break;
1551 	}
1552 	/*
1553 	 * We get these next two if the guest accesses a page which it thinks
1554 	 * it has mapped but which is not actually present, either because
1555 	 * it is for an emulated I/O device or because the corresonding
1556 	 * host page has been paged out.
1557 	 */
1558 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1559 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1560 		r = kvmhv_nested_page_fault(vcpu);
1561 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1562 		break;
1563 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1564 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1565 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1566 					 DSISR_SRR1_MATCH_64S;
1567 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1568 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1569 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1570 		r = kvmhv_nested_page_fault(vcpu);
1571 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1572 		break;
1573 
1574 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1575 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1576 		/*
1577 		 * This occurs for various TM-related instructions that
1578 		 * we need to emulate on POWER9 DD2.2.  We have already
1579 		 * handled the cases where the guest was in real-suspend
1580 		 * mode and was transitioning to transactional state.
1581 		 */
1582 		r = kvmhv_p9_tm_emulation(vcpu);
1583 		break;
1584 #endif
1585 
1586 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1587 		vcpu->arch.trap = 0;
1588 		r = RESUME_GUEST;
1589 		if (!xics_on_xive())
1590 			kvmppc_xics_rm_complete(vcpu, 0);
1591 		break;
1592 	default:
1593 		r = RESUME_HOST;
1594 		break;
1595 	}
1596 
1597 	return r;
1598 }
1599 
1600 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1601 					    struct kvm_sregs *sregs)
1602 {
1603 	int i;
1604 
1605 	memset(sregs, 0, sizeof(struct kvm_sregs));
1606 	sregs->pvr = vcpu->arch.pvr;
1607 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1608 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1609 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1610 	}
1611 
1612 	return 0;
1613 }
1614 
1615 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1616 					    struct kvm_sregs *sregs)
1617 {
1618 	int i, j;
1619 
1620 	/* Only accept the same PVR as the host's, since we can't spoof it */
1621 	if (sregs->pvr != vcpu->arch.pvr)
1622 		return -EINVAL;
1623 
1624 	j = 0;
1625 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1626 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1627 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1628 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1629 			++j;
1630 		}
1631 	}
1632 	vcpu->arch.slb_max = j;
1633 
1634 	return 0;
1635 }
1636 
1637 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1638 		bool preserve_top32)
1639 {
1640 	struct kvm *kvm = vcpu->kvm;
1641 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1642 	u64 mask;
1643 
1644 	spin_lock(&vc->lock);
1645 	/*
1646 	 * If ILE (interrupt little-endian) has changed, update the
1647 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1648 	 */
1649 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1650 		struct kvm_vcpu *vcpu;
1651 		int i;
1652 
1653 		kvm_for_each_vcpu(i, vcpu, kvm) {
1654 			if (vcpu->arch.vcore != vc)
1655 				continue;
1656 			if (new_lpcr & LPCR_ILE)
1657 				vcpu->arch.intr_msr |= MSR_LE;
1658 			else
1659 				vcpu->arch.intr_msr &= ~MSR_LE;
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * Userspace can only modify DPFD (default prefetch depth),
1665 	 * ILE (interrupt little-endian) and TC (translation control).
1666 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1667 	 */
1668 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1669 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1670 		mask |= LPCR_AIL;
1671 	/*
1672 	 * On POWER9, allow userspace to enable large decrementer for the
1673 	 * guest, whether or not the host has it enabled.
1674 	 */
1675 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1676 		mask |= LPCR_LD;
1677 
1678 	/* Broken 32-bit version of LPCR must not clear top bits */
1679 	if (preserve_top32)
1680 		mask &= 0xFFFFFFFF;
1681 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1682 	spin_unlock(&vc->lock);
1683 }
1684 
1685 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1686 				 union kvmppc_one_reg *val)
1687 {
1688 	int r = 0;
1689 	long int i;
1690 
1691 	switch (id) {
1692 	case KVM_REG_PPC_DEBUG_INST:
1693 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1694 		break;
1695 	case KVM_REG_PPC_HIOR:
1696 		*val = get_reg_val(id, 0);
1697 		break;
1698 	case KVM_REG_PPC_DABR:
1699 		*val = get_reg_val(id, vcpu->arch.dabr);
1700 		break;
1701 	case KVM_REG_PPC_DABRX:
1702 		*val = get_reg_val(id, vcpu->arch.dabrx);
1703 		break;
1704 	case KVM_REG_PPC_DSCR:
1705 		*val = get_reg_val(id, vcpu->arch.dscr);
1706 		break;
1707 	case KVM_REG_PPC_PURR:
1708 		*val = get_reg_val(id, vcpu->arch.purr);
1709 		break;
1710 	case KVM_REG_PPC_SPURR:
1711 		*val = get_reg_val(id, vcpu->arch.spurr);
1712 		break;
1713 	case KVM_REG_PPC_AMR:
1714 		*val = get_reg_val(id, vcpu->arch.amr);
1715 		break;
1716 	case KVM_REG_PPC_UAMOR:
1717 		*val = get_reg_val(id, vcpu->arch.uamor);
1718 		break;
1719 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1720 		i = id - KVM_REG_PPC_MMCR0;
1721 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1722 		break;
1723 	case KVM_REG_PPC_MMCR2:
1724 		*val = get_reg_val(id, vcpu->arch.mmcr[2]);
1725 		break;
1726 	case KVM_REG_PPC_MMCRA:
1727 		*val = get_reg_val(id, vcpu->arch.mmcra);
1728 		break;
1729 	case KVM_REG_PPC_MMCRS:
1730 		*val = get_reg_val(id, vcpu->arch.mmcrs);
1731 		break;
1732 	case KVM_REG_PPC_MMCR3:
1733 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
1734 		break;
1735 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1736 		i = id - KVM_REG_PPC_PMC1;
1737 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1738 		break;
1739 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1740 		i = id - KVM_REG_PPC_SPMC1;
1741 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1742 		break;
1743 	case KVM_REG_PPC_SIAR:
1744 		*val = get_reg_val(id, vcpu->arch.siar);
1745 		break;
1746 	case KVM_REG_PPC_SDAR:
1747 		*val = get_reg_val(id, vcpu->arch.sdar);
1748 		break;
1749 	case KVM_REG_PPC_SIER:
1750 		*val = get_reg_val(id, vcpu->arch.sier[0]);
1751 		break;
1752 	case KVM_REG_PPC_SIER2:
1753 		*val = get_reg_val(id, vcpu->arch.sier[1]);
1754 		break;
1755 	case KVM_REG_PPC_SIER3:
1756 		*val = get_reg_val(id, vcpu->arch.sier[2]);
1757 		break;
1758 	case KVM_REG_PPC_IAMR:
1759 		*val = get_reg_val(id, vcpu->arch.iamr);
1760 		break;
1761 	case KVM_REG_PPC_PSPB:
1762 		*val = get_reg_val(id, vcpu->arch.pspb);
1763 		break;
1764 	case KVM_REG_PPC_DPDES:
1765 		/*
1766 		 * On POWER9, where we are emulating msgsndp etc.,
1767 		 * we return 1 bit for each vcpu, which can come from
1768 		 * either vcore->dpdes or doorbell_request.
1769 		 * On POWER8, doorbell_request is 0.
1770 		 */
1771 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1772 				   vcpu->arch.doorbell_request);
1773 		break;
1774 	case KVM_REG_PPC_VTB:
1775 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1776 		break;
1777 	case KVM_REG_PPC_DAWR:
1778 		*val = get_reg_val(id, vcpu->arch.dawr0);
1779 		break;
1780 	case KVM_REG_PPC_DAWRX:
1781 		*val = get_reg_val(id, vcpu->arch.dawrx0);
1782 		break;
1783 	case KVM_REG_PPC_DAWR1:
1784 		*val = get_reg_val(id, vcpu->arch.dawr1);
1785 		break;
1786 	case KVM_REG_PPC_DAWRX1:
1787 		*val = get_reg_val(id, vcpu->arch.dawrx1);
1788 		break;
1789 	case KVM_REG_PPC_CIABR:
1790 		*val = get_reg_val(id, vcpu->arch.ciabr);
1791 		break;
1792 	case KVM_REG_PPC_CSIGR:
1793 		*val = get_reg_val(id, vcpu->arch.csigr);
1794 		break;
1795 	case KVM_REG_PPC_TACR:
1796 		*val = get_reg_val(id, vcpu->arch.tacr);
1797 		break;
1798 	case KVM_REG_PPC_TCSCR:
1799 		*val = get_reg_val(id, vcpu->arch.tcscr);
1800 		break;
1801 	case KVM_REG_PPC_PID:
1802 		*val = get_reg_val(id, vcpu->arch.pid);
1803 		break;
1804 	case KVM_REG_PPC_ACOP:
1805 		*val = get_reg_val(id, vcpu->arch.acop);
1806 		break;
1807 	case KVM_REG_PPC_WORT:
1808 		*val = get_reg_val(id, vcpu->arch.wort);
1809 		break;
1810 	case KVM_REG_PPC_TIDR:
1811 		*val = get_reg_val(id, vcpu->arch.tid);
1812 		break;
1813 	case KVM_REG_PPC_PSSCR:
1814 		*val = get_reg_val(id, vcpu->arch.psscr);
1815 		break;
1816 	case KVM_REG_PPC_VPA_ADDR:
1817 		spin_lock(&vcpu->arch.vpa_update_lock);
1818 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1819 		spin_unlock(&vcpu->arch.vpa_update_lock);
1820 		break;
1821 	case KVM_REG_PPC_VPA_SLB:
1822 		spin_lock(&vcpu->arch.vpa_update_lock);
1823 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1824 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1825 		spin_unlock(&vcpu->arch.vpa_update_lock);
1826 		break;
1827 	case KVM_REG_PPC_VPA_DTL:
1828 		spin_lock(&vcpu->arch.vpa_update_lock);
1829 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1830 		val->vpaval.length = vcpu->arch.dtl.len;
1831 		spin_unlock(&vcpu->arch.vpa_update_lock);
1832 		break;
1833 	case KVM_REG_PPC_TB_OFFSET:
1834 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1835 		break;
1836 	case KVM_REG_PPC_LPCR:
1837 	case KVM_REG_PPC_LPCR_64:
1838 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1839 		break;
1840 	case KVM_REG_PPC_PPR:
1841 		*val = get_reg_val(id, vcpu->arch.ppr);
1842 		break;
1843 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1844 	case KVM_REG_PPC_TFHAR:
1845 		*val = get_reg_val(id, vcpu->arch.tfhar);
1846 		break;
1847 	case KVM_REG_PPC_TFIAR:
1848 		*val = get_reg_val(id, vcpu->arch.tfiar);
1849 		break;
1850 	case KVM_REG_PPC_TEXASR:
1851 		*val = get_reg_val(id, vcpu->arch.texasr);
1852 		break;
1853 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1854 		i = id - KVM_REG_PPC_TM_GPR0;
1855 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1856 		break;
1857 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1858 	{
1859 		int j;
1860 		i = id - KVM_REG_PPC_TM_VSR0;
1861 		if (i < 32)
1862 			for (j = 0; j < TS_FPRWIDTH; j++)
1863 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1864 		else {
1865 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1866 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1867 			else
1868 				r = -ENXIO;
1869 		}
1870 		break;
1871 	}
1872 	case KVM_REG_PPC_TM_CR:
1873 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1874 		break;
1875 	case KVM_REG_PPC_TM_XER:
1876 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1877 		break;
1878 	case KVM_REG_PPC_TM_LR:
1879 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1880 		break;
1881 	case KVM_REG_PPC_TM_CTR:
1882 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1883 		break;
1884 	case KVM_REG_PPC_TM_FPSCR:
1885 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1886 		break;
1887 	case KVM_REG_PPC_TM_AMR:
1888 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1889 		break;
1890 	case KVM_REG_PPC_TM_PPR:
1891 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1892 		break;
1893 	case KVM_REG_PPC_TM_VRSAVE:
1894 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1895 		break;
1896 	case KVM_REG_PPC_TM_VSCR:
1897 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1898 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1899 		else
1900 			r = -ENXIO;
1901 		break;
1902 	case KVM_REG_PPC_TM_DSCR:
1903 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1904 		break;
1905 	case KVM_REG_PPC_TM_TAR:
1906 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1907 		break;
1908 #endif
1909 	case KVM_REG_PPC_ARCH_COMPAT:
1910 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1911 		break;
1912 	case KVM_REG_PPC_DEC_EXPIRY:
1913 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1914 				   vcpu->arch.vcore->tb_offset);
1915 		break;
1916 	case KVM_REG_PPC_ONLINE:
1917 		*val = get_reg_val(id, vcpu->arch.online);
1918 		break;
1919 	case KVM_REG_PPC_PTCR:
1920 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1921 		break;
1922 	default:
1923 		r = -EINVAL;
1924 		break;
1925 	}
1926 
1927 	return r;
1928 }
1929 
1930 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1931 				 union kvmppc_one_reg *val)
1932 {
1933 	int r = 0;
1934 	long int i;
1935 	unsigned long addr, len;
1936 
1937 	switch (id) {
1938 	case KVM_REG_PPC_HIOR:
1939 		/* Only allow this to be set to zero */
1940 		if (set_reg_val(id, *val))
1941 			r = -EINVAL;
1942 		break;
1943 	case KVM_REG_PPC_DABR:
1944 		vcpu->arch.dabr = set_reg_val(id, *val);
1945 		break;
1946 	case KVM_REG_PPC_DABRX:
1947 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1948 		break;
1949 	case KVM_REG_PPC_DSCR:
1950 		vcpu->arch.dscr = set_reg_val(id, *val);
1951 		break;
1952 	case KVM_REG_PPC_PURR:
1953 		vcpu->arch.purr = set_reg_val(id, *val);
1954 		break;
1955 	case KVM_REG_PPC_SPURR:
1956 		vcpu->arch.spurr = set_reg_val(id, *val);
1957 		break;
1958 	case KVM_REG_PPC_AMR:
1959 		vcpu->arch.amr = set_reg_val(id, *val);
1960 		break;
1961 	case KVM_REG_PPC_UAMOR:
1962 		vcpu->arch.uamor = set_reg_val(id, *val);
1963 		break;
1964 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1965 		i = id - KVM_REG_PPC_MMCR0;
1966 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1967 		break;
1968 	case KVM_REG_PPC_MMCR2:
1969 		vcpu->arch.mmcr[2] = set_reg_val(id, *val);
1970 		break;
1971 	case KVM_REG_PPC_MMCRA:
1972 		vcpu->arch.mmcra = set_reg_val(id, *val);
1973 		break;
1974 	case KVM_REG_PPC_MMCRS:
1975 		vcpu->arch.mmcrs = set_reg_val(id, *val);
1976 		break;
1977 	case KVM_REG_PPC_MMCR3:
1978 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
1979 		break;
1980 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1981 		i = id - KVM_REG_PPC_PMC1;
1982 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1983 		break;
1984 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1985 		i = id - KVM_REG_PPC_SPMC1;
1986 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1987 		break;
1988 	case KVM_REG_PPC_SIAR:
1989 		vcpu->arch.siar = set_reg_val(id, *val);
1990 		break;
1991 	case KVM_REG_PPC_SDAR:
1992 		vcpu->arch.sdar = set_reg_val(id, *val);
1993 		break;
1994 	case KVM_REG_PPC_SIER:
1995 		vcpu->arch.sier[0] = set_reg_val(id, *val);
1996 		break;
1997 	case KVM_REG_PPC_SIER2:
1998 		vcpu->arch.sier[1] = set_reg_val(id, *val);
1999 		break;
2000 	case KVM_REG_PPC_SIER3:
2001 		vcpu->arch.sier[2] = set_reg_val(id, *val);
2002 		break;
2003 	case KVM_REG_PPC_IAMR:
2004 		vcpu->arch.iamr = set_reg_val(id, *val);
2005 		break;
2006 	case KVM_REG_PPC_PSPB:
2007 		vcpu->arch.pspb = set_reg_val(id, *val);
2008 		break;
2009 	case KVM_REG_PPC_DPDES:
2010 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2011 		break;
2012 	case KVM_REG_PPC_VTB:
2013 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2014 		break;
2015 	case KVM_REG_PPC_DAWR:
2016 		vcpu->arch.dawr0 = set_reg_val(id, *val);
2017 		break;
2018 	case KVM_REG_PPC_DAWRX:
2019 		vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2020 		break;
2021 	case KVM_REG_PPC_DAWR1:
2022 		vcpu->arch.dawr1 = set_reg_val(id, *val);
2023 		break;
2024 	case KVM_REG_PPC_DAWRX1:
2025 		vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2026 		break;
2027 	case KVM_REG_PPC_CIABR:
2028 		vcpu->arch.ciabr = set_reg_val(id, *val);
2029 		/* Don't allow setting breakpoints in hypervisor code */
2030 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2031 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
2032 		break;
2033 	case KVM_REG_PPC_CSIGR:
2034 		vcpu->arch.csigr = set_reg_val(id, *val);
2035 		break;
2036 	case KVM_REG_PPC_TACR:
2037 		vcpu->arch.tacr = set_reg_val(id, *val);
2038 		break;
2039 	case KVM_REG_PPC_TCSCR:
2040 		vcpu->arch.tcscr = set_reg_val(id, *val);
2041 		break;
2042 	case KVM_REG_PPC_PID:
2043 		vcpu->arch.pid = set_reg_val(id, *val);
2044 		break;
2045 	case KVM_REG_PPC_ACOP:
2046 		vcpu->arch.acop = set_reg_val(id, *val);
2047 		break;
2048 	case KVM_REG_PPC_WORT:
2049 		vcpu->arch.wort = set_reg_val(id, *val);
2050 		break;
2051 	case KVM_REG_PPC_TIDR:
2052 		vcpu->arch.tid = set_reg_val(id, *val);
2053 		break;
2054 	case KVM_REG_PPC_PSSCR:
2055 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2056 		break;
2057 	case KVM_REG_PPC_VPA_ADDR:
2058 		addr = set_reg_val(id, *val);
2059 		r = -EINVAL;
2060 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2061 			      vcpu->arch.dtl.next_gpa))
2062 			break;
2063 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2064 		break;
2065 	case KVM_REG_PPC_VPA_SLB:
2066 		addr = val->vpaval.addr;
2067 		len = val->vpaval.length;
2068 		r = -EINVAL;
2069 		if (addr && !vcpu->arch.vpa.next_gpa)
2070 			break;
2071 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2072 		break;
2073 	case KVM_REG_PPC_VPA_DTL:
2074 		addr = val->vpaval.addr;
2075 		len = val->vpaval.length;
2076 		r = -EINVAL;
2077 		if (addr && (len < sizeof(struct dtl_entry) ||
2078 			     !vcpu->arch.vpa.next_gpa))
2079 			break;
2080 		len -= len % sizeof(struct dtl_entry);
2081 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2082 		break;
2083 	case KVM_REG_PPC_TB_OFFSET:
2084 		/* round up to multiple of 2^24 */
2085 		vcpu->arch.vcore->tb_offset =
2086 			ALIGN(set_reg_val(id, *val), 1UL << 24);
2087 		break;
2088 	case KVM_REG_PPC_LPCR:
2089 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2090 		break;
2091 	case KVM_REG_PPC_LPCR_64:
2092 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2093 		break;
2094 	case KVM_REG_PPC_PPR:
2095 		vcpu->arch.ppr = set_reg_val(id, *val);
2096 		break;
2097 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2098 	case KVM_REG_PPC_TFHAR:
2099 		vcpu->arch.tfhar = set_reg_val(id, *val);
2100 		break;
2101 	case KVM_REG_PPC_TFIAR:
2102 		vcpu->arch.tfiar = set_reg_val(id, *val);
2103 		break;
2104 	case KVM_REG_PPC_TEXASR:
2105 		vcpu->arch.texasr = set_reg_val(id, *val);
2106 		break;
2107 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2108 		i = id - KVM_REG_PPC_TM_GPR0;
2109 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2110 		break;
2111 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2112 	{
2113 		int j;
2114 		i = id - KVM_REG_PPC_TM_VSR0;
2115 		if (i < 32)
2116 			for (j = 0; j < TS_FPRWIDTH; j++)
2117 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2118 		else
2119 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2120 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2121 			else
2122 				r = -ENXIO;
2123 		break;
2124 	}
2125 	case KVM_REG_PPC_TM_CR:
2126 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2127 		break;
2128 	case KVM_REG_PPC_TM_XER:
2129 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2130 		break;
2131 	case KVM_REG_PPC_TM_LR:
2132 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2133 		break;
2134 	case KVM_REG_PPC_TM_CTR:
2135 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2136 		break;
2137 	case KVM_REG_PPC_TM_FPSCR:
2138 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2139 		break;
2140 	case KVM_REG_PPC_TM_AMR:
2141 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2142 		break;
2143 	case KVM_REG_PPC_TM_PPR:
2144 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2145 		break;
2146 	case KVM_REG_PPC_TM_VRSAVE:
2147 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2148 		break;
2149 	case KVM_REG_PPC_TM_VSCR:
2150 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2151 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2152 		else
2153 			r = - ENXIO;
2154 		break;
2155 	case KVM_REG_PPC_TM_DSCR:
2156 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2157 		break;
2158 	case KVM_REG_PPC_TM_TAR:
2159 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2160 		break;
2161 #endif
2162 	case KVM_REG_PPC_ARCH_COMPAT:
2163 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2164 		break;
2165 	case KVM_REG_PPC_DEC_EXPIRY:
2166 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2167 			vcpu->arch.vcore->tb_offset;
2168 		break;
2169 	case KVM_REG_PPC_ONLINE:
2170 		i = set_reg_val(id, *val);
2171 		if (i && !vcpu->arch.online)
2172 			atomic_inc(&vcpu->arch.vcore->online_count);
2173 		else if (!i && vcpu->arch.online)
2174 			atomic_dec(&vcpu->arch.vcore->online_count);
2175 		vcpu->arch.online = i;
2176 		break;
2177 	case KVM_REG_PPC_PTCR:
2178 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2179 		break;
2180 	default:
2181 		r = -EINVAL;
2182 		break;
2183 	}
2184 
2185 	return r;
2186 }
2187 
2188 /*
2189  * On POWER9, threads are independent and can be in different partitions.
2190  * Therefore we consider each thread to be a subcore.
2191  * There is a restriction that all threads have to be in the same
2192  * MMU mode (radix or HPT), unfortunately, but since we only support
2193  * HPT guests on a HPT host so far, that isn't an impediment yet.
2194  */
2195 static int threads_per_vcore(struct kvm *kvm)
2196 {
2197 	if (kvm->arch.threads_indep)
2198 		return 1;
2199 	return threads_per_subcore;
2200 }
2201 
2202 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2203 {
2204 	struct kvmppc_vcore *vcore;
2205 
2206 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2207 
2208 	if (vcore == NULL)
2209 		return NULL;
2210 
2211 	spin_lock_init(&vcore->lock);
2212 	spin_lock_init(&vcore->stoltb_lock);
2213 	rcuwait_init(&vcore->wait);
2214 	vcore->preempt_tb = TB_NIL;
2215 	vcore->lpcr = kvm->arch.lpcr;
2216 	vcore->first_vcpuid = id;
2217 	vcore->kvm = kvm;
2218 	INIT_LIST_HEAD(&vcore->preempt_list);
2219 
2220 	return vcore;
2221 }
2222 
2223 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2224 static struct debugfs_timings_element {
2225 	const char *name;
2226 	size_t offset;
2227 } timings[] = {
2228 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2229 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2230 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2231 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2232 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2233 };
2234 
2235 #define N_TIMINGS	(ARRAY_SIZE(timings))
2236 
2237 struct debugfs_timings_state {
2238 	struct kvm_vcpu	*vcpu;
2239 	unsigned int	buflen;
2240 	char		buf[N_TIMINGS * 100];
2241 };
2242 
2243 static int debugfs_timings_open(struct inode *inode, struct file *file)
2244 {
2245 	struct kvm_vcpu *vcpu = inode->i_private;
2246 	struct debugfs_timings_state *p;
2247 
2248 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2249 	if (!p)
2250 		return -ENOMEM;
2251 
2252 	kvm_get_kvm(vcpu->kvm);
2253 	p->vcpu = vcpu;
2254 	file->private_data = p;
2255 
2256 	return nonseekable_open(inode, file);
2257 }
2258 
2259 static int debugfs_timings_release(struct inode *inode, struct file *file)
2260 {
2261 	struct debugfs_timings_state *p = file->private_data;
2262 
2263 	kvm_put_kvm(p->vcpu->kvm);
2264 	kfree(p);
2265 	return 0;
2266 }
2267 
2268 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2269 				    size_t len, loff_t *ppos)
2270 {
2271 	struct debugfs_timings_state *p = file->private_data;
2272 	struct kvm_vcpu *vcpu = p->vcpu;
2273 	char *s, *buf_end;
2274 	struct kvmhv_tb_accumulator tb;
2275 	u64 count;
2276 	loff_t pos;
2277 	ssize_t n;
2278 	int i, loops;
2279 	bool ok;
2280 
2281 	if (!p->buflen) {
2282 		s = p->buf;
2283 		buf_end = s + sizeof(p->buf);
2284 		for (i = 0; i < N_TIMINGS; ++i) {
2285 			struct kvmhv_tb_accumulator *acc;
2286 
2287 			acc = (struct kvmhv_tb_accumulator *)
2288 				((unsigned long)vcpu + timings[i].offset);
2289 			ok = false;
2290 			for (loops = 0; loops < 1000; ++loops) {
2291 				count = acc->seqcount;
2292 				if (!(count & 1)) {
2293 					smp_rmb();
2294 					tb = *acc;
2295 					smp_rmb();
2296 					if (count == acc->seqcount) {
2297 						ok = true;
2298 						break;
2299 					}
2300 				}
2301 				udelay(1);
2302 			}
2303 			if (!ok)
2304 				snprintf(s, buf_end - s, "%s: stuck\n",
2305 					timings[i].name);
2306 			else
2307 				snprintf(s, buf_end - s,
2308 					"%s: %llu %llu %llu %llu\n",
2309 					timings[i].name, count / 2,
2310 					tb_to_ns(tb.tb_total),
2311 					tb_to_ns(tb.tb_min),
2312 					tb_to_ns(tb.tb_max));
2313 			s += strlen(s);
2314 		}
2315 		p->buflen = s - p->buf;
2316 	}
2317 
2318 	pos = *ppos;
2319 	if (pos >= p->buflen)
2320 		return 0;
2321 	if (len > p->buflen - pos)
2322 		len = p->buflen - pos;
2323 	n = copy_to_user(buf, p->buf + pos, len);
2324 	if (n) {
2325 		if (n == len)
2326 			return -EFAULT;
2327 		len -= n;
2328 	}
2329 	*ppos = pos + len;
2330 	return len;
2331 }
2332 
2333 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2334 				     size_t len, loff_t *ppos)
2335 {
2336 	return -EACCES;
2337 }
2338 
2339 static const struct file_operations debugfs_timings_ops = {
2340 	.owner	 = THIS_MODULE,
2341 	.open	 = debugfs_timings_open,
2342 	.release = debugfs_timings_release,
2343 	.read	 = debugfs_timings_read,
2344 	.write	 = debugfs_timings_write,
2345 	.llseek	 = generic_file_llseek,
2346 };
2347 
2348 /* Create a debugfs directory for the vcpu */
2349 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2350 {
2351 	char buf[16];
2352 	struct kvm *kvm = vcpu->kvm;
2353 
2354 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2355 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2356 	debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2357 			    &debugfs_timings_ops);
2358 }
2359 
2360 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2361 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2362 {
2363 }
2364 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2365 
2366 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2367 {
2368 	int err;
2369 	int core;
2370 	struct kvmppc_vcore *vcore;
2371 	struct kvm *kvm;
2372 	unsigned int id;
2373 
2374 	kvm = vcpu->kvm;
2375 	id = vcpu->vcpu_id;
2376 
2377 	vcpu->arch.shared = &vcpu->arch.shregs;
2378 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2379 	/*
2380 	 * The shared struct is never shared on HV,
2381 	 * so we can always use host endianness
2382 	 */
2383 #ifdef __BIG_ENDIAN__
2384 	vcpu->arch.shared_big_endian = true;
2385 #else
2386 	vcpu->arch.shared_big_endian = false;
2387 #endif
2388 #endif
2389 	vcpu->arch.mmcr[0] = MMCR0_FC;
2390 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2391 	/* default to host PVR, since we can't spoof it */
2392 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2393 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2394 	spin_lock_init(&vcpu->arch.tbacct_lock);
2395 	vcpu->arch.busy_preempt = TB_NIL;
2396 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2397 
2398 	/*
2399 	 * Set the default HFSCR for the guest from the host value.
2400 	 * This value is only used on POWER9.
2401 	 * On POWER9, we want to virtualize the doorbell facility, so we
2402 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2403 	 * to trap and then we emulate them.
2404 	 */
2405 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2406 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2407 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2408 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2409 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2410 			vcpu->arch.hfscr |= HFSCR_TM;
2411 	}
2412 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2413 		vcpu->arch.hfscr |= HFSCR_TM;
2414 
2415 	kvmppc_mmu_book3s_hv_init(vcpu);
2416 
2417 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2418 
2419 	init_waitqueue_head(&vcpu->arch.cpu_run);
2420 
2421 	mutex_lock(&kvm->lock);
2422 	vcore = NULL;
2423 	err = -EINVAL;
2424 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2425 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2426 			pr_devel("KVM: VCPU ID too high\n");
2427 			core = KVM_MAX_VCORES;
2428 		} else {
2429 			BUG_ON(kvm->arch.smt_mode != 1);
2430 			core = kvmppc_pack_vcpu_id(kvm, id);
2431 		}
2432 	} else {
2433 		core = id / kvm->arch.smt_mode;
2434 	}
2435 	if (core < KVM_MAX_VCORES) {
2436 		vcore = kvm->arch.vcores[core];
2437 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2438 			pr_devel("KVM: collision on id %u", id);
2439 			vcore = NULL;
2440 		} else if (!vcore) {
2441 			/*
2442 			 * Take mmu_setup_lock for mutual exclusion
2443 			 * with kvmppc_update_lpcr().
2444 			 */
2445 			err = -ENOMEM;
2446 			vcore = kvmppc_vcore_create(kvm,
2447 					id & ~(kvm->arch.smt_mode - 1));
2448 			mutex_lock(&kvm->arch.mmu_setup_lock);
2449 			kvm->arch.vcores[core] = vcore;
2450 			kvm->arch.online_vcores++;
2451 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2452 		}
2453 	}
2454 	mutex_unlock(&kvm->lock);
2455 
2456 	if (!vcore)
2457 		return err;
2458 
2459 	spin_lock(&vcore->lock);
2460 	++vcore->num_threads;
2461 	spin_unlock(&vcore->lock);
2462 	vcpu->arch.vcore = vcore;
2463 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2464 	vcpu->arch.thread_cpu = -1;
2465 	vcpu->arch.prev_cpu = -1;
2466 
2467 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2468 	kvmppc_sanity_check(vcpu);
2469 
2470 	debugfs_vcpu_init(vcpu, id);
2471 
2472 	return 0;
2473 }
2474 
2475 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2476 			      unsigned long flags)
2477 {
2478 	int err;
2479 	int esmt = 0;
2480 
2481 	if (flags)
2482 		return -EINVAL;
2483 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2484 		return -EINVAL;
2485 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2486 		/*
2487 		 * On POWER8 (or POWER7), the threading mode is "strict",
2488 		 * so we pack smt_mode vcpus per vcore.
2489 		 */
2490 		if (smt_mode > threads_per_subcore)
2491 			return -EINVAL;
2492 	} else {
2493 		/*
2494 		 * On POWER9, the threading mode is "loose",
2495 		 * so each vcpu gets its own vcore.
2496 		 */
2497 		esmt = smt_mode;
2498 		smt_mode = 1;
2499 	}
2500 	mutex_lock(&kvm->lock);
2501 	err = -EBUSY;
2502 	if (!kvm->arch.online_vcores) {
2503 		kvm->arch.smt_mode = smt_mode;
2504 		kvm->arch.emul_smt_mode = esmt;
2505 		err = 0;
2506 	}
2507 	mutex_unlock(&kvm->lock);
2508 
2509 	return err;
2510 }
2511 
2512 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2513 {
2514 	if (vpa->pinned_addr)
2515 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2516 					vpa->dirty);
2517 }
2518 
2519 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2520 {
2521 	spin_lock(&vcpu->arch.vpa_update_lock);
2522 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2523 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2524 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2525 	spin_unlock(&vcpu->arch.vpa_update_lock);
2526 }
2527 
2528 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2529 {
2530 	/* Indicate we want to get back into the guest */
2531 	return 1;
2532 }
2533 
2534 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2535 {
2536 	unsigned long dec_nsec, now;
2537 
2538 	now = get_tb();
2539 	if (now > vcpu->arch.dec_expires) {
2540 		/* decrementer has already gone negative */
2541 		kvmppc_core_queue_dec(vcpu);
2542 		kvmppc_core_prepare_to_enter(vcpu);
2543 		return;
2544 	}
2545 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2546 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2547 	vcpu->arch.timer_running = 1;
2548 }
2549 
2550 extern int __kvmppc_vcore_entry(void);
2551 
2552 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2553 				   struct kvm_vcpu *vcpu)
2554 {
2555 	u64 now;
2556 
2557 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2558 		return;
2559 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2560 	now = mftb();
2561 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2562 		vcpu->arch.stolen_logged;
2563 	vcpu->arch.busy_preempt = now;
2564 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2565 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2566 	--vc->n_runnable;
2567 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2568 }
2569 
2570 static int kvmppc_grab_hwthread(int cpu)
2571 {
2572 	struct paca_struct *tpaca;
2573 	long timeout = 10000;
2574 
2575 	tpaca = paca_ptrs[cpu];
2576 
2577 	/* Ensure the thread won't go into the kernel if it wakes */
2578 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2579 	tpaca->kvm_hstate.kvm_vcore = NULL;
2580 	tpaca->kvm_hstate.napping = 0;
2581 	smp_wmb();
2582 	tpaca->kvm_hstate.hwthread_req = 1;
2583 
2584 	/*
2585 	 * If the thread is already executing in the kernel (e.g. handling
2586 	 * a stray interrupt), wait for it to get back to nap mode.
2587 	 * The smp_mb() is to ensure that our setting of hwthread_req
2588 	 * is visible before we look at hwthread_state, so if this
2589 	 * races with the code at system_reset_pSeries and the thread
2590 	 * misses our setting of hwthread_req, we are sure to see its
2591 	 * setting of hwthread_state, and vice versa.
2592 	 */
2593 	smp_mb();
2594 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2595 		if (--timeout <= 0) {
2596 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2597 			return -EBUSY;
2598 		}
2599 		udelay(1);
2600 	}
2601 	return 0;
2602 }
2603 
2604 static void kvmppc_release_hwthread(int cpu)
2605 {
2606 	struct paca_struct *tpaca;
2607 
2608 	tpaca = paca_ptrs[cpu];
2609 	tpaca->kvm_hstate.hwthread_req = 0;
2610 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2611 	tpaca->kvm_hstate.kvm_vcore = NULL;
2612 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2613 }
2614 
2615 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2616 {
2617 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2618 	cpumask_t *cpu_in_guest;
2619 	int i;
2620 
2621 	cpu = cpu_first_thread_sibling(cpu);
2622 	if (nested) {
2623 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2624 		cpu_in_guest = &nested->cpu_in_guest;
2625 	} else {
2626 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2627 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2628 	}
2629 	/*
2630 	 * Make sure setting of bit in need_tlb_flush precedes
2631 	 * testing of cpu_in_guest bits.  The matching barrier on
2632 	 * the other side is the first smp_mb() in kvmppc_run_core().
2633 	 */
2634 	smp_mb();
2635 	for (i = 0; i < threads_per_core; ++i)
2636 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2637 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2638 }
2639 
2640 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2641 {
2642 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2643 	struct kvm *kvm = vcpu->kvm;
2644 	int prev_cpu;
2645 
2646 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2647 		return;
2648 
2649 	if (nested)
2650 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2651 	else
2652 		prev_cpu = vcpu->arch.prev_cpu;
2653 
2654 	/*
2655 	 * With radix, the guest can do TLB invalidations itself,
2656 	 * and it could choose to use the local form (tlbiel) if
2657 	 * it is invalidating a translation that has only ever been
2658 	 * used on one vcpu.  However, that doesn't mean it has
2659 	 * only ever been used on one physical cpu, since vcpus
2660 	 * can move around between pcpus.  To cope with this, when
2661 	 * a vcpu moves from one pcpu to another, we need to tell
2662 	 * any vcpus running on the same core as this vcpu previously
2663 	 * ran to flush the TLB.  The TLB is shared between threads,
2664 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2665 	 */
2666 	if (prev_cpu != pcpu) {
2667 		if (prev_cpu >= 0 &&
2668 		    cpu_first_thread_sibling(prev_cpu) !=
2669 		    cpu_first_thread_sibling(pcpu))
2670 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2671 		if (nested)
2672 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2673 		else
2674 			vcpu->arch.prev_cpu = pcpu;
2675 	}
2676 }
2677 
2678 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2679 {
2680 	int cpu;
2681 	struct paca_struct *tpaca;
2682 	struct kvm *kvm = vc->kvm;
2683 
2684 	cpu = vc->pcpu;
2685 	if (vcpu) {
2686 		if (vcpu->arch.timer_running) {
2687 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2688 			vcpu->arch.timer_running = 0;
2689 		}
2690 		cpu += vcpu->arch.ptid;
2691 		vcpu->cpu = vc->pcpu;
2692 		vcpu->arch.thread_cpu = cpu;
2693 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2694 	}
2695 	tpaca = paca_ptrs[cpu];
2696 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2697 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2698 	tpaca->kvm_hstate.fake_suspend = 0;
2699 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2700 	smp_wmb();
2701 	tpaca->kvm_hstate.kvm_vcore = vc;
2702 	if (cpu != smp_processor_id())
2703 		kvmppc_ipi_thread(cpu);
2704 }
2705 
2706 static void kvmppc_wait_for_nap(int n_threads)
2707 {
2708 	int cpu = smp_processor_id();
2709 	int i, loops;
2710 
2711 	if (n_threads <= 1)
2712 		return;
2713 	for (loops = 0; loops < 1000000; ++loops) {
2714 		/*
2715 		 * Check if all threads are finished.
2716 		 * We set the vcore pointer when starting a thread
2717 		 * and the thread clears it when finished, so we look
2718 		 * for any threads that still have a non-NULL vcore ptr.
2719 		 */
2720 		for (i = 1; i < n_threads; ++i)
2721 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2722 				break;
2723 		if (i == n_threads) {
2724 			HMT_medium();
2725 			return;
2726 		}
2727 		HMT_low();
2728 	}
2729 	HMT_medium();
2730 	for (i = 1; i < n_threads; ++i)
2731 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2732 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2733 }
2734 
2735 /*
2736  * Check that we are on thread 0 and that any other threads in
2737  * this core are off-line.  Then grab the threads so they can't
2738  * enter the kernel.
2739  */
2740 static int on_primary_thread(void)
2741 {
2742 	int cpu = smp_processor_id();
2743 	int thr;
2744 
2745 	/* Are we on a primary subcore? */
2746 	if (cpu_thread_in_subcore(cpu))
2747 		return 0;
2748 
2749 	thr = 0;
2750 	while (++thr < threads_per_subcore)
2751 		if (cpu_online(cpu + thr))
2752 			return 0;
2753 
2754 	/* Grab all hw threads so they can't go into the kernel */
2755 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2756 		if (kvmppc_grab_hwthread(cpu + thr)) {
2757 			/* Couldn't grab one; let the others go */
2758 			do {
2759 				kvmppc_release_hwthread(cpu + thr);
2760 			} while (--thr > 0);
2761 			return 0;
2762 		}
2763 	}
2764 	return 1;
2765 }
2766 
2767 /*
2768  * A list of virtual cores for each physical CPU.
2769  * These are vcores that could run but their runner VCPU tasks are
2770  * (or may be) preempted.
2771  */
2772 struct preempted_vcore_list {
2773 	struct list_head	list;
2774 	spinlock_t		lock;
2775 };
2776 
2777 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2778 
2779 static void init_vcore_lists(void)
2780 {
2781 	int cpu;
2782 
2783 	for_each_possible_cpu(cpu) {
2784 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2785 		spin_lock_init(&lp->lock);
2786 		INIT_LIST_HEAD(&lp->list);
2787 	}
2788 }
2789 
2790 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2791 {
2792 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2793 
2794 	vc->vcore_state = VCORE_PREEMPT;
2795 	vc->pcpu = smp_processor_id();
2796 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2797 		spin_lock(&lp->lock);
2798 		list_add_tail(&vc->preempt_list, &lp->list);
2799 		spin_unlock(&lp->lock);
2800 	}
2801 
2802 	/* Start accumulating stolen time */
2803 	kvmppc_core_start_stolen(vc);
2804 }
2805 
2806 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2807 {
2808 	struct preempted_vcore_list *lp;
2809 
2810 	kvmppc_core_end_stolen(vc);
2811 	if (!list_empty(&vc->preempt_list)) {
2812 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2813 		spin_lock(&lp->lock);
2814 		list_del_init(&vc->preempt_list);
2815 		spin_unlock(&lp->lock);
2816 	}
2817 	vc->vcore_state = VCORE_INACTIVE;
2818 }
2819 
2820 /*
2821  * This stores information about the virtual cores currently
2822  * assigned to a physical core.
2823  */
2824 struct core_info {
2825 	int		n_subcores;
2826 	int		max_subcore_threads;
2827 	int		total_threads;
2828 	int		subcore_threads[MAX_SUBCORES];
2829 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2830 };
2831 
2832 /*
2833  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2834  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2835  */
2836 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2837 
2838 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2839 {
2840 	memset(cip, 0, sizeof(*cip));
2841 	cip->n_subcores = 1;
2842 	cip->max_subcore_threads = vc->num_threads;
2843 	cip->total_threads = vc->num_threads;
2844 	cip->subcore_threads[0] = vc->num_threads;
2845 	cip->vc[0] = vc;
2846 }
2847 
2848 static bool subcore_config_ok(int n_subcores, int n_threads)
2849 {
2850 	/*
2851 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2852 	 * split-core mode, with one thread per subcore.
2853 	 */
2854 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2855 		return n_subcores <= 4 && n_threads == 1;
2856 
2857 	/* On POWER8, can only dynamically split if unsplit to begin with */
2858 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2859 		return false;
2860 	if (n_subcores > MAX_SUBCORES)
2861 		return false;
2862 	if (n_subcores > 1) {
2863 		if (!(dynamic_mt_modes & 2))
2864 			n_subcores = 4;
2865 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2866 			return false;
2867 	}
2868 
2869 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2870 }
2871 
2872 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2873 {
2874 	vc->entry_exit_map = 0;
2875 	vc->in_guest = 0;
2876 	vc->napping_threads = 0;
2877 	vc->conferring_threads = 0;
2878 	vc->tb_offset_applied = 0;
2879 }
2880 
2881 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2882 {
2883 	int n_threads = vc->num_threads;
2884 	int sub;
2885 
2886 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2887 		return false;
2888 
2889 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2890 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2891 		return false;
2892 
2893 	if (n_threads < cip->max_subcore_threads)
2894 		n_threads = cip->max_subcore_threads;
2895 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2896 		return false;
2897 	cip->max_subcore_threads = n_threads;
2898 
2899 	sub = cip->n_subcores;
2900 	++cip->n_subcores;
2901 	cip->total_threads += vc->num_threads;
2902 	cip->subcore_threads[sub] = vc->num_threads;
2903 	cip->vc[sub] = vc;
2904 	init_vcore_to_run(vc);
2905 	list_del_init(&vc->preempt_list);
2906 
2907 	return true;
2908 }
2909 
2910 /*
2911  * Work out whether it is possible to piggyback the execution of
2912  * vcore *pvc onto the execution of the other vcores described in *cip.
2913  */
2914 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2915 			  int target_threads)
2916 {
2917 	if (cip->total_threads + pvc->num_threads > target_threads)
2918 		return false;
2919 
2920 	return can_dynamic_split(pvc, cip);
2921 }
2922 
2923 static void prepare_threads(struct kvmppc_vcore *vc)
2924 {
2925 	int i;
2926 	struct kvm_vcpu *vcpu;
2927 
2928 	for_each_runnable_thread(i, vcpu, vc) {
2929 		if (signal_pending(vcpu->arch.run_task))
2930 			vcpu->arch.ret = -EINTR;
2931 		else if (no_mixing_hpt_and_radix &&
2932 			 kvm_is_radix(vc->kvm) != radix_enabled())
2933 			vcpu->arch.ret = -EINVAL;
2934 		else if (vcpu->arch.vpa.update_pending ||
2935 			 vcpu->arch.slb_shadow.update_pending ||
2936 			 vcpu->arch.dtl.update_pending)
2937 			vcpu->arch.ret = RESUME_GUEST;
2938 		else
2939 			continue;
2940 		kvmppc_remove_runnable(vc, vcpu);
2941 		wake_up(&vcpu->arch.cpu_run);
2942 	}
2943 }
2944 
2945 static void collect_piggybacks(struct core_info *cip, int target_threads)
2946 {
2947 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2948 	struct kvmppc_vcore *pvc, *vcnext;
2949 
2950 	spin_lock(&lp->lock);
2951 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2952 		if (!spin_trylock(&pvc->lock))
2953 			continue;
2954 		prepare_threads(pvc);
2955 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2956 			list_del_init(&pvc->preempt_list);
2957 			if (pvc->runner == NULL) {
2958 				pvc->vcore_state = VCORE_INACTIVE;
2959 				kvmppc_core_end_stolen(pvc);
2960 			}
2961 			spin_unlock(&pvc->lock);
2962 			continue;
2963 		}
2964 		if (!can_piggyback(pvc, cip, target_threads)) {
2965 			spin_unlock(&pvc->lock);
2966 			continue;
2967 		}
2968 		kvmppc_core_end_stolen(pvc);
2969 		pvc->vcore_state = VCORE_PIGGYBACK;
2970 		if (cip->total_threads >= target_threads)
2971 			break;
2972 	}
2973 	spin_unlock(&lp->lock);
2974 }
2975 
2976 static bool recheck_signals_and_mmu(struct core_info *cip)
2977 {
2978 	int sub, i;
2979 	struct kvm_vcpu *vcpu;
2980 	struct kvmppc_vcore *vc;
2981 
2982 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2983 		vc = cip->vc[sub];
2984 		if (!vc->kvm->arch.mmu_ready)
2985 			return true;
2986 		for_each_runnable_thread(i, vcpu, vc)
2987 			if (signal_pending(vcpu->arch.run_task))
2988 				return true;
2989 	}
2990 	return false;
2991 }
2992 
2993 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2994 {
2995 	int still_running = 0, i;
2996 	u64 now;
2997 	long ret;
2998 	struct kvm_vcpu *vcpu;
2999 
3000 	spin_lock(&vc->lock);
3001 	now = get_tb();
3002 	for_each_runnable_thread(i, vcpu, vc) {
3003 		/*
3004 		 * It's safe to unlock the vcore in the loop here, because
3005 		 * for_each_runnable_thread() is safe against removal of
3006 		 * the vcpu, and the vcore state is VCORE_EXITING here,
3007 		 * so any vcpus becoming runnable will have their arch.trap
3008 		 * set to zero and can't actually run in the guest.
3009 		 */
3010 		spin_unlock(&vc->lock);
3011 		/* cancel pending dec exception if dec is positive */
3012 		if (now < vcpu->arch.dec_expires &&
3013 		    kvmppc_core_pending_dec(vcpu))
3014 			kvmppc_core_dequeue_dec(vcpu);
3015 
3016 		trace_kvm_guest_exit(vcpu);
3017 
3018 		ret = RESUME_GUEST;
3019 		if (vcpu->arch.trap)
3020 			ret = kvmppc_handle_exit_hv(vcpu,
3021 						    vcpu->arch.run_task);
3022 
3023 		vcpu->arch.ret = ret;
3024 		vcpu->arch.trap = 0;
3025 
3026 		spin_lock(&vc->lock);
3027 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3028 			if (vcpu->arch.pending_exceptions)
3029 				kvmppc_core_prepare_to_enter(vcpu);
3030 			if (vcpu->arch.ceded)
3031 				kvmppc_set_timer(vcpu);
3032 			else
3033 				++still_running;
3034 		} else {
3035 			kvmppc_remove_runnable(vc, vcpu);
3036 			wake_up(&vcpu->arch.cpu_run);
3037 		}
3038 	}
3039 	if (!is_master) {
3040 		if (still_running > 0) {
3041 			kvmppc_vcore_preempt(vc);
3042 		} else if (vc->runner) {
3043 			vc->vcore_state = VCORE_PREEMPT;
3044 			kvmppc_core_start_stolen(vc);
3045 		} else {
3046 			vc->vcore_state = VCORE_INACTIVE;
3047 		}
3048 		if (vc->n_runnable > 0 && vc->runner == NULL) {
3049 			/* make sure there's a candidate runner awake */
3050 			i = -1;
3051 			vcpu = next_runnable_thread(vc, &i);
3052 			wake_up(&vcpu->arch.cpu_run);
3053 		}
3054 	}
3055 	spin_unlock(&vc->lock);
3056 }
3057 
3058 /*
3059  * Clear core from the list of active host cores as we are about to
3060  * enter the guest. Only do this if it is the primary thread of the
3061  * core (not if a subcore) that is entering the guest.
3062  */
3063 static inline int kvmppc_clear_host_core(unsigned int cpu)
3064 {
3065 	int core;
3066 
3067 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3068 		return 0;
3069 	/*
3070 	 * Memory barrier can be omitted here as we will do a smp_wmb()
3071 	 * later in kvmppc_start_thread and we need ensure that state is
3072 	 * visible to other CPUs only after we enter guest.
3073 	 */
3074 	core = cpu >> threads_shift;
3075 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3076 	return 0;
3077 }
3078 
3079 /*
3080  * Advertise this core as an active host core since we exited the guest
3081  * Only need to do this if it is the primary thread of the core that is
3082  * exiting.
3083  */
3084 static inline int kvmppc_set_host_core(unsigned int cpu)
3085 {
3086 	int core;
3087 
3088 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3089 		return 0;
3090 
3091 	/*
3092 	 * Memory barrier can be omitted here because we do a spin_unlock
3093 	 * immediately after this which provides the memory barrier.
3094 	 */
3095 	core = cpu >> threads_shift;
3096 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3097 	return 0;
3098 }
3099 
3100 static void set_irq_happened(int trap)
3101 {
3102 	switch (trap) {
3103 	case BOOK3S_INTERRUPT_EXTERNAL:
3104 		local_paca->irq_happened |= PACA_IRQ_EE;
3105 		break;
3106 	case BOOK3S_INTERRUPT_H_DOORBELL:
3107 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3108 		break;
3109 	case BOOK3S_INTERRUPT_HMI:
3110 		local_paca->irq_happened |= PACA_IRQ_HMI;
3111 		break;
3112 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3113 		replay_system_reset();
3114 		break;
3115 	}
3116 }
3117 
3118 /*
3119  * Run a set of guest threads on a physical core.
3120  * Called with vc->lock held.
3121  */
3122 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3123 {
3124 	struct kvm_vcpu *vcpu;
3125 	int i;
3126 	int srcu_idx;
3127 	struct core_info core_info;
3128 	struct kvmppc_vcore *pvc;
3129 	struct kvm_split_mode split_info, *sip;
3130 	int split, subcore_size, active;
3131 	int sub;
3132 	bool thr0_done;
3133 	unsigned long cmd_bit, stat_bit;
3134 	int pcpu, thr;
3135 	int target_threads;
3136 	int controlled_threads;
3137 	int trap;
3138 	bool is_power8;
3139 
3140 	/*
3141 	 * Remove from the list any threads that have a signal pending
3142 	 * or need a VPA update done
3143 	 */
3144 	prepare_threads(vc);
3145 
3146 	/* if the runner is no longer runnable, let the caller pick a new one */
3147 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3148 		return;
3149 
3150 	/*
3151 	 * Initialize *vc.
3152 	 */
3153 	init_vcore_to_run(vc);
3154 	vc->preempt_tb = TB_NIL;
3155 
3156 	/*
3157 	 * Number of threads that we will be controlling: the same as
3158 	 * the number of threads per subcore, except on POWER9,
3159 	 * where it's 1 because the threads are (mostly) independent.
3160 	 */
3161 	controlled_threads = threads_per_vcore(vc->kvm);
3162 
3163 	/*
3164 	 * Make sure we are running on primary threads, and that secondary
3165 	 * threads are offline.  Also check if the number of threads in this
3166 	 * guest are greater than the current system threads per guest.
3167 	 * On POWER9, we need to be not in independent-threads mode if
3168 	 * this is a HPT guest on a radix host machine where the
3169 	 * CPU threads may not be in different MMU modes.
3170 	 */
3171 	if ((controlled_threads > 1) &&
3172 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3173 		for_each_runnable_thread(i, vcpu, vc) {
3174 			vcpu->arch.ret = -EBUSY;
3175 			kvmppc_remove_runnable(vc, vcpu);
3176 			wake_up(&vcpu->arch.cpu_run);
3177 		}
3178 		goto out;
3179 	}
3180 
3181 	/*
3182 	 * See if we could run any other vcores on the physical core
3183 	 * along with this one.
3184 	 */
3185 	init_core_info(&core_info, vc);
3186 	pcpu = smp_processor_id();
3187 	target_threads = controlled_threads;
3188 	if (target_smt_mode && target_smt_mode < target_threads)
3189 		target_threads = target_smt_mode;
3190 	if (vc->num_threads < target_threads)
3191 		collect_piggybacks(&core_info, target_threads);
3192 
3193 	/*
3194 	 * On radix, arrange for TLB flushing if necessary.
3195 	 * This has to be done before disabling interrupts since
3196 	 * it uses smp_call_function().
3197 	 */
3198 	pcpu = smp_processor_id();
3199 	if (kvm_is_radix(vc->kvm)) {
3200 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3201 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3202 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3203 	}
3204 
3205 	/*
3206 	 * Hard-disable interrupts, and check resched flag and signals.
3207 	 * If we need to reschedule or deliver a signal, clean up
3208 	 * and return without going into the guest(s).
3209 	 * If the mmu_ready flag has been cleared, don't go into the
3210 	 * guest because that means a HPT resize operation is in progress.
3211 	 */
3212 	local_irq_disable();
3213 	hard_irq_disable();
3214 	if (lazy_irq_pending() || need_resched() ||
3215 	    recheck_signals_and_mmu(&core_info)) {
3216 		local_irq_enable();
3217 		vc->vcore_state = VCORE_INACTIVE;
3218 		/* Unlock all except the primary vcore */
3219 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3220 			pvc = core_info.vc[sub];
3221 			/* Put back on to the preempted vcores list */
3222 			kvmppc_vcore_preempt(pvc);
3223 			spin_unlock(&pvc->lock);
3224 		}
3225 		for (i = 0; i < controlled_threads; ++i)
3226 			kvmppc_release_hwthread(pcpu + i);
3227 		return;
3228 	}
3229 
3230 	kvmppc_clear_host_core(pcpu);
3231 
3232 	/* Decide on micro-threading (split-core) mode */
3233 	subcore_size = threads_per_subcore;
3234 	cmd_bit = stat_bit = 0;
3235 	split = core_info.n_subcores;
3236 	sip = NULL;
3237 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3238 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3239 
3240 	if (split > 1) {
3241 		sip = &split_info;
3242 		memset(&split_info, 0, sizeof(split_info));
3243 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3244 			split_info.vc[sub] = core_info.vc[sub];
3245 
3246 		if (is_power8) {
3247 			if (split == 2 && (dynamic_mt_modes & 2)) {
3248 				cmd_bit = HID0_POWER8_1TO2LPAR;
3249 				stat_bit = HID0_POWER8_2LPARMODE;
3250 			} else {
3251 				split = 4;
3252 				cmd_bit = HID0_POWER8_1TO4LPAR;
3253 				stat_bit = HID0_POWER8_4LPARMODE;
3254 			}
3255 			subcore_size = MAX_SMT_THREADS / split;
3256 			split_info.rpr = mfspr(SPRN_RPR);
3257 			split_info.pmmar = mfspr(SPRN_PMMAR);
3258 			split_info.ldbar = mfspr(SPRN_LDBAR);
3259 			split_info.subcore_size = subcore_size;
3260 		} else {
3261 			split_info.subcore_size = 1;
3262 		}
3263 
3264 		/* order writes to split_info before kvm_split_mode pointer */
3265 		smp_wmb();
3266 	}
3267 
3268 	for (thr = 0; thr < controlled_threads; ++thr) {
3269 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3270 
3271 		paca->kvm_hstate.napping = 0;
3272 		paca->kvm_hstate.kvm_split_mode = sip;
3273 	}
3274 
3275 	/* Initiate micro-threading (split-core) on POWER8 if required */
3276 	if (cmd_bit) {
3277 		unsigned long hid0 = mfspr(SPRN_HID0);
3278 
3279 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3280 		mb();
3281 		mtspr(SPRN_HID0, hid0);
3282 		isync();
3283 		for (;;) {
3284 			hid0 = mfspr(SPRN_HID0);
3285 			if (hid0 & stat_bit)
3286 				break;
3287 			cpu_relax();
3288 		}
3289 	}
3290 
3291 	/*
3292 	 * On POWER8, set RWMR register.
3293 	 * Since it only affects PURR and SPURR, it doesn't affect
3294 	 * the host, so we don't save/restore the host value.
3295 	 */
3296 	if (is_power8) {
3297 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3298 		int n_online = atomic_read(&vc->online_count);
3299 
3300 		/*
3301 		 * Use the 8-thread value if we're doing split-core
3302 		 * or if the vcore's online count looks bogus.
3303 		 */
3304 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3305 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3306 			rwmr_val = p8_rwmr_values[n_online];
3307 		mtspr(SPRN_RWMR, rwmr_val);
3308 	}
3309 
3310 	/* Start all the threads */
3311 	active = 0;
3312 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3313 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3314 		thr0_done = false;
3315 		active |= 1 << thr;
3316 		pvc = core_info.vc[sub];
3317 		pvc->pcpu = pcpu + thr;
3318 		for_each_runnable_thread(i, vcpu, pvc) {
3319 			kvmppc_start_thread(vcpu, pvc);
3320 			kvmppc_create_dtl_entry(vcpu, pvc);
3321 			trace_kvm_guest_enter(vcpu);
3322 			if (!vcpu->arch.ptid)
3323 				thr0_done = true;
3324 			active |= 1 << (thr + vcpu->arch.ptid);
3325 		}
3326 		/*
3327 		 * We need to start the first thread of each subcore
3328 		 * even if it doesn't have a vcpu.
3329 		 */
3330 		if (!thr0_done)
3331 			kvmppc_start_thread(NULL, pvc);
3332 	}
3333 
3334 	/*
3335 	 * Ensure that split_info.do_nap is set after setting
3336 	 * the vcore pointer in the PACA of the secondaries.
3337 	 */
3338 	smp_mb();
3339 
3340 	/*
3341 	 * When doing micro-threading, poke the inactive threads as well.
3342 	 * This gets them to the nap instruction after kvm_do_nap,
3343 	 * which reduces the time taken to unsplit later.
3344 	 */
3345 	if (cmd_bit) {
3346 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3347 		for (thr = 1; thr < threads_per_subcore; ++thr)
3348 			if (!(active & (1 << thr)))
3349 				kvmppc_ipi_thread(pcpu + thr);
3350 	}
3351 
3352 	vc->vcore_state = VCORE_RUNNING;
3353 	preempt_disable();
3354 
3355 	trace_kvmppc_run_core(vc, 0);
3356 
3357 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3358 		spin_unlock(&core_info.vc[sub]->lock);
3359 
3360 	guest_enter_irqoff();
3361 
3362 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3363 
3364 	this_cpu_disable_ftrace();
3365 
3366 	/*
3367 	 * Interrupts will be enabled once we get into the guest,
3368 	 * so tell lockdep that we're about to enable interrupts.
3369 	 */
3370 	trace_hardirqs_on();
3371 
3372 	trap = __kvmppc_vcore_entry();
3373 
3374 	trace_hardirqs_off();
3375 
3376 	this_cpu_enable_ftrace();
3377 
3378 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3379 
3380 	set_irq_happened(trap);
3381 
3382 	spin_lock(&vc->lock);
3383 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3384 	vc->vcore_state = VCORE_EXITING;
3385 
3386 	/* wait for secondary threads to finish writing their state to memory */
3387 	kvmppc_wait_for_nap(controlled_threads);
3388 
3389 	/* Return to whole-core mode if we split the core earlier */
3390 	if (cmd_bit) {
3391 		unsigned long hid0 = mfspr(SPRN_HID0);
3392 		unsigned long loops = 0;
3393 
3394 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3395 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3396 		mb();
3397 		mtspr(SPRN_HID0, hid0);
3398 		isync();
3399 		for (;;) {
3400 			hid0 = mfspr(SPRN_HID0);
3401 			if (!(hid0 & stat_bit))
3402 				break;
3403 			cpu_relax();
3404 			++loops;
3405 		}
3406 		split_info.do_nap = 0;
3407 	}
3408 
3409 	kvmppc_set_host_core(pcpu);
3410 
3411 	local_irq_enable();
3412 	guest_exit();
3413 
3414 	/* Let secondaries go back to the offline loop */
3415 	for (i = 0; i < controlled_threads; ++i) {
3416 		kvmppc_release_hwthread(pcpu + i);
3417 		if (sip && sip->napped[i])
3418 			kvmppc_ipi_thread(pcpu + i);
3419 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3420 	}
3421 
3422 	spin_unlock(&vc->lock);
3423 
3424 	/* make sure updates to secondary vcpu structs are visible now */
3425 	smp_mb();
3426 
3427 	preempt_enable();
3428 
3429 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3430 		pvc = core_info.vc[sub];
3431 		post_guest_process(pvc, pvc == vc);
3432 	}
3433 
3434 	spin_lock(&vc->lock);
3435 
3436  out:
3437 	vc->vcore_state = VCORE_INACTIVE;
3438 	trace_kvmppc_run_core(vc, 1);
3439 }
3440 
3441 /*
3442  * Load up hypervisor-mode registers on P9.
3443  */
3444 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3445 				     unsigned long lpcr)
3446 {
3447 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3448 	s64 hdec;
3449 	u64 tb, purr, spurr;
3450 	int trap;
3451 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3452 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3453 	unsigned long host_dawr0 = mfspr(SPRN_DAWR0);
3454 	unsigned long host_dawrx0 = mfspr(SPRN_DAWRX0);
3455 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3456 	unsigned long host_pidr = mfspr(SPRN_PID);
3457 	unsigned long host_dawr1 = 0;
3458 	unsigned long host_dawrx1 = 0;
3459 
3460 	if (cpu_has_feature(CPU_FTR_DAWR1)) {
3461 		host_dawr1 = mfspr(SPRN_DAWR1);
3462 		host_dawrx1 = mfspr(SPRN_DAWRX1);
3463 	}
3464 
3465 	/*
3466 	 * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0,
3467 	 * so set HDICE before writing HDEC.
3468 	 */
3469 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE);
3470 	isync();
3471 
3472 	hdec = time_limit - mftb();
3473 	if (hdec < 0) {
3474 		mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3475 		isync();
3476 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3477 	}
3478 	mtspr(SPRN_HDEC, hdec);
3479 
3480 	if (vc->tb_offset) {
3481 		u64 new_tb = mftb() + vc->tb_offset;
3482 		mtspr(SPRN_TBU40, new_tb);
3483 		tb = mftb();
3484 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3485 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3486 		vc->tb_offset_applied = vc->tb_offset;
3487 	}
3488 
3489 	if (vc->pcr)
3490 		mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3491 	mtspr(SPRN_DPDES, vc->dpdes);
3492 	mtspr(SPRN_VTB, vc->vtb);
3493 
3494 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3495 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3496 	mtspr(SPRN_PURR, vcpu->arch.purr);
3497 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3498 
3499 	if (dawr_enabled()) {
3500 		mtspr(SPRN_DAWR0, vcpu->arch.dawr0);
3501 		mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0);
3502 		if (cpu_has_feature(CPU_FTR_DAWR1)) {
3503 			mtspr(SPRN_DAWR1, vcpu->arch.dawr1);
3504 			mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1);
3505 		}
3506 	}
3507 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3508 	mtspr(SPRN_IC, vcpu->arch.ic);
3509 	mtspr(SPRN_PID, vcpu->arch.pid);
3510 
3511 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3512 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3513 
3514 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3515 
3516 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3517 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3518 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3519 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3520 
3521 	mtspr(SPRN_AMOR, ~0UL);
3522 
3523 	mtspr(SPRN_LPCR, lpcr);
3524 	isync();
3525 
3526 	kvmppc_xive_push_vcpu(vcpu);
3527 
3528 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3529 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3530 
3531 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3532 
3533 	/* Advance host PURR/SPURR by the amount used by guest */
3534 	purr = mfspr(SPRN_PURR);
3535 	spurr = mfspr(SPRN_SPURR);
3536 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3537 	      purr - vcpu->arch.purr);
3538 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3539 	      spurr - vcpu->arch.spurr);
3540 	vcpu->arch.purr = purr;
3541 	vcpu->arch.spurr = spurr;
3542 
3543 	vcpu->arch.ic = mfspr(SPRN_IC);
3544 	vcpu->arch.pid = mfspr(SPRN_PID);
3545 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3546 
3547 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3548 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3549 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3550 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3551 
3552 	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3553 	mtspr(SPRN_PSSCR, host_psscr |
3554 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3555 	mtspr(SPRN_HFSCR, host_hfscr);
3556 	mtspr(SPRN_CIABR, host_ciabr);
3557 	mtspr(SPRN_DAWR0, host_dawr0);
3558 	mtspr(SPRN_DAWRX0, host_dawrx0);
3559 	if (cpu_has_feature(CPU_FTR_DAWR1)) {
3560 		mtspr(SPRN_DAWR1, host_dawr1);
3561 		mtspr(SPRN_DAWRX1, host_dawrx1);
3562 	}
3563 	mtspr(SPRN_PID, host_pidr);
3564 
3565 	/*
3566 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3567 	 * case we interrupted the guest between a tlbie and a ptesync.
3568 	 */
3569 	asm volatile("eieio; tlbsync; ptesync");
3570 
3571 	/*
3572 	 * cp_abort is required if the processor supports local copy-paste
3573 	 * to clear the copy buffer that was under control of the guest.
3574 	 */
3575 	if (cpu_has_feature(CPU_FTR_ARCH_31))
3576 		asm volatile(PPC_CP_ABORT);
3577 
3578 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3579 	isync();
3580 
3581 	vc->dpdes = mfspr(SPRN_DPDES);
3582 	vc->vtb = mfspr(SPRN_VTB);
3583 	mtspr(SPRN_DPDES, 0);
3584 	if (vc->pcr)
3585 		mtspr(SPRN_PCR, PCR_MASK);
3586 
3587 	if (vc->tb_offset_applied) {
3588 		u64 new_tb = mftb() - vc->tb_offset_applied;
3589 		mtspr(SPRN_TBU40, new_tb);
3590 		tb = mftb();
3591 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3592 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3593 		vc->tb_offset_applied = 0;
3594 	}
3595 
3596 	mtspr(SPRN_HDEC, 0x7fffffff);
3597 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3598 
3599 	return trap;
3600 }
3601 
3602 /*
3603  * Virtual-mode guest entry for POWER9 and later when the host and
3604  * guest are both using the radix MMU.  The LPIDR has already been set.
3605  */
3606 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3607 			 unsigned long lpcr)
3608 {
3609 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3610 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3611 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3612 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3613 	unsigned long host_amr = mfspr(SPRN_AMR);
3614 	unsigned long host_fscr = mfspr(SPRN_FSCR);
3615 	s64 dec;
3616 	u64 tb;
3617 	int trap, save_pmu;
3618 
3619 	dec = mfspr(SPRN_DEC);
3620 	tb = mftb();
3621 	if (dec < 0)
3622 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3623 	local_paca->kvm_hstate.dec_expires = dec + tb;
3624 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3625 		time_limit = local_paca->kvm_hstate.dec_expires;
3626 
3627 	vcpu->arch.ceded = 0;
3628 
3629 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3630 
3631 	kvmppc_subcore_enter_guest();
3632 
3633 	vc->entry_exit_map = 1;
3634 	vc->in_guest = 1;
3635 
3636 	if (vcpu->arch.vpa.pinned_addr) {
3637 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3638 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3639 		lp->yield_count = cpu_to_be32(yield_count);
3640 		vcpu->arch.vpa.dirty = 1;
3641 	}
3642 
3643 	if (cpu_has_feature(CPU_FTR_TM) ||
3644 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3645 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3646 
3647 	kvmhv_load_guest_pmu(vcpu);
3648 
3649 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3650 	load_fp_state(&vcpu->arch.fp);
3651 #ifdef CONFIG_ALTIVEC
3652 	load_vr_state(&vcpu->arch.vr);
3653 #endif
3654 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3655 
3656 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3657 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3658 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3659 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3660 	mtspr(SPRN_TAR, vcpu->arch.tar);
3661 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3662 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3663 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3664 	mtspr(SPRN_WORT, vcpu->arch.wort);
3665 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3666 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3667 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3668 	mtspr(SPRN_AMR, vcpu->arch.amr);
3669 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3670 
3671 	if (!(vcpu->arch.ctrl & 1))
3672 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3673 
3674 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3675 
3676 	if (kvmhv_on_pseries()) {
3677 		/*
3678 		 * We need to save and restore the guest visible part of the
3679 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3680 		 * doesn't do this for us. Note only required if pseries since
3681 		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3682 		 */
3683 		unsigned long host_psscr;
3684 		/* call our hypervisor to load up HV regs and go */
3685 		struct hv_guest_state hvregs;
3686 
3687 		host_psscr = mfspr(SPRN_PSSCR_PR);
3688 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3689 		kvmhv_save_hv_regs(vcpu, &hvregs);
3690 		hvregs.lpcr = lpcr;
3691 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3692 		hvregs.version = HV_GUEST_STATE_VERSION;
3693 		if (vcpu->arch.nested) {
3694 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3695 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3696 		} else {
3697 			hvregs.lpid = vcpu->kvm->arch.lpid;
3698 			hvregs.vcpu_token = vcpu->vcpu_id;
3699 		}
3700 		hvregs.hdec_expiry = time_limit;
3701 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3702 					  __pa(&vcpu->arch.regs));
3703 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3704 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3705 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3706 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3707 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3708 		mtspr(SPRN_PSSCR_PR, host_psscr);
3709 
3710 		/* H_CEDE has to be handled now, not later */
3711 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3712 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3713 			kvmppc_nested_cede(vcpu);
3714 			kvmppc_set_gpr(vcpu, 3, 0);
3715 			trap = 0;
3716 		}
3717 	} else {
3718 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3719 	}
3720 
3721 	vcpu->arch.slb_max = 0;
3722 	dec = mfspr(SPRN_DEC);
3723 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3724 		dec = (s32) dec;
3725 	tb = mftb();
3726 	vcpu->arch.dec_expires = dec + tb;
3727 	vcpu->cpu = -1;
3728 	vcpu->arch.thread_cpu = -1;
3729 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3730 
3731 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3732 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3733 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3734 	vcpu->arch.tar = mfspr(SPRN_TAR);
3735 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3736 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3737 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3738 	vcpu->arch.wort = mfspr(SPRN_WORT);
3739 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3740 	vcpu->arch.amr = mfspr(SPRN_AMR);
3741 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3742 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3743 
3744 	mtspr(SPRN_PSPB, 0);
3745 	mtspr(SPRN_WORT, 0);
3746 	mtspr(SPRN_UAMOR, 0);
3747 	mtspr(SPRN_DSCR, host_dscr);
3748 	mtspr(SPRN_TIDR, host_tidr);
3749 	mtspr(SPRN_IAMR, host_iamr);
3750 	mtspr(SPRN_PSPB, 0);
3751 
3752 	if (host_amr != vcpu->arch.amr)
3753 		mtspr(SPRN_AMR, host_amr);
3754 
3755 	if (host_fscr != vcpu->arch.fscr)
3756 		mtspr(SPRN_FSCR, host_fscr);
3757 
3758 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3759 	store_fp_state(&vcpu->arch.fp);
3760 #ifdef CONFIG_ALTIVEC
3761 	store_vr_state(&vcpu->arch.vr);
3762 #endif
3763 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3764 
3765 	if (cpu_has_feature(CPU_FTR_TM) ||
3766 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3767 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3768 
3769 	save_pmu = 1;
3770 	if (vcpu->arch.vpa.pinned_addr) {
3771 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3772 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3773 		lp->yield_count = cpu_to_be32(yield_count);
3774 		vcpu->arch.vpa.dirty = 1;
3775 		save_pmu = lp->pmcregs_in_use;
3776 	}
3777 	/* Must save pmu if this guest is capable of running nested guests */
3778 	save_pmu |= nesting_enabled(vcpu->kvm);
3779 
3780 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3781 
3782 	vc->entry_exit_map = 0x101;
3783 	vc->in_guest = 0;
3784 
3785 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3786 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3787 
3788 	kvmhv_load_host_pmu();
3789 
3790 	kvmppc_subcore_exit_guest();
3791 
3792 	return trap;
3793 }
3794 
3795 /*
3796  * Wait for some other vcpu thread to execute us, and
3797  * wake us up when we need to handle something in the host.
3798  */
3799 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3800 				 struct kvm_vcpu *vcpu, int wait_state)
3801 {
3802 	DEFINE_WAIT(wait);
3803 
3804 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3805 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3806 		spin_unlock(&vc->lock);
3807 		schedule();
3808 		spin_lock(&vc->lock);
3809 	}
3810 	finish_wait(&vcpu->arch.cpu_run, &wait);
3811 }
3812 
3813 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3814 {
3815 	if (!halt_poll_ns_grow)
3816 		return;
3817 
3818 	vc->halt_poll_ns *= halt_poll_ns_grow;
3819 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3820 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3821 }
3822 
3823 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3824 {
3825 	if (halt_poll_ns_shrink == 0)
3826 		vc->halt_poll_ns = 0;
3827 	else
3828 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3829 }
3830 
3831 #ifdef CONFIG_KVM_XICS
3832 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3833 {
3834 	if (!xics_on_xive())
3835 		return false;
3836 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3837 		vcpu->arch.xive_saved_state.cppr;
3838 }
3839 #else
3840 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3841 {
3842 	return false;
3843 }
3844 #endif /* CONFIG_KVM_XICS */
3845 
3846 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3847 {
3848 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3849 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3850 		return true;
3851 
3852 	return false;
3853 }
3854 
3855 /*
3856  * Check to see if any of the runnable vcpus on the vcore have pending
3857  * exceptions or are no longer ceded
3858  */
3859 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3860 {
3861 	struct kvm_vcpu *vcpu;
3862 	int i;
3863 
3864 	for_each_runnable_thread(i, vcpu, vc) {
3865 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3866 			return 1;
3867 	}
3868 
3869 	return 0;
3870 }
3871 
3872 /*
3873  * All the vcpus in this vcore are idle, so wait for a decrementer
3874  * or external interrupt to one of the vcpus.  vc->lock is held.
3875  */
3876 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3877 {
3878 	ktime_t cur, start_poll, start_wait;
3879 	int do_sleep = 1;
3880 	u64 block_ns;
3881 
3882 	/* Poll for pending exceptions and ceded state */
3883 	cur = start_poll = ktime_get();
3884 	if (vc->halt_poll_ns) {
3885 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3886 		++vc->runner->stat.halt_attempted_poll;
3887 
3888 		vc->vcore_state = VCORE_POLLING;
3889 		spin_unlock(&vc->lock);
3890 
3891 		do {
3892 			if (kvmppc_vcore_check_block(vc)) {
3893 				do_sleep = 0;
3894 				break;
3895 			}
3896 			cur = ktime_get();
3897 		} while (single_task_running() && ktime_before(cur, stop));
3898 
3899 		spin_lock(&vc->lock);
3900 		vc->vcore_state = VCORE_INACTIVE;
3901 
3902 		if (!do_sleep) {
3903 			++vc->runner->stat.halt_successful_poll;
3904 			goto out;
3905 		}
3906 	}
3907 
3908 	prepare_to_rcuwait(&vc->wait);
3909 	set_current_state(TASK_INTERRUPTIBLE);
3910 	if (kvmppc_vcore_check_block(vc)) {
3911 		finish_rcuwait(&vc->wait);
3912 		do_sleep = 0;
3913 		/* If we polled, count this as a successful poll */
3914 		if (vc->halt_poll_ns)
3915 			++vc->runner->stat.halt_successful_poll;
3916 		goto out;
3917 	}
3918 
3919 	start_wait = ktime_get();
3920 
3921 	vc->vcore_state = VCORE_SLEEPING;
3922 	trace_kvmppc_vcore_blocked(vc, 0);
3923 	spin_unlock(&vc->lock);
3924 	schedule();
3925 	finish_rcuwait(&vc->wait);
3926 	spin_lock(&vc->lock);
3927 	vc->vcore_state = VCORE_INACTIVE;
3928 	trace_kvmppc_vcore_blocked(vc, 1);
3929 	++vc->runner->stat.halt_successful_wait;
3930 
3931 	cur = ktime_get();
3932 
3933 out:
3934 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3935 
3936 	/* Attribute wait time */
3937 	if (do_sleep) {
3938 		vc->runner->stat.halt_wait_ns +=
3939 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3940 		/* Attribute failed poll time */
3941 		if (vc->halt_poll_ns)
3942 			vc->runner->stat.halt_poll_fail_ns +=
3943 				ktime_to_ns(start_wait) -
3944 				ktime_to_ns(start_poll);
3945 	} else {
3946 		/* Attribute successful poll time */
3947 		if (vc->halt_poll_ns)
3948 			vc->runner->stat.halt_poll_success_ns +=
3949 				ktime_to_ns(cur) -
3950 				ktime_to_ns(start_poll);
3951 	}
3952 
3953 	/* Adjust poll time */
3954 	if (halt_poll_ns) {
3955 		if (block_ns <= vc->halt_poll_ns)
3956 			;
3957 		/* We slept and blocked for longer than the max halt time */
3958 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3959 			shrink_halt_poll_ns(vc);
3960 		/* We slept and our poll time is too small */
3961 		else if (vc->halt_poll_ns < halt_poll_ns &&
3962 				block_ns < halt_poll_ns)
3963 			grow_halt_poll_ns(vc);
3964 		if (vc->halt_poll_ns > halt_poll_ns)
3965 			vc->halt_poll_ns = halt_poll_ns;
3966 	} else
3967 		vc->halt_poll_ns = 0;
3968 
3969 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3970 }
3971 
3972 /*
3973  * This never fails for a radix guest, as none of the operations it does
3974  * for a radix guest can fail or have a way to report failure.
3975  * kvmhv_run_single_vcpu() relies on this fact.
3976  */
3977 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3978 {
3979 	int r = 0;
3980 	struct kvm *kvm = vcpu->kvm;
3981 
3982 	mutex_lock(&kvm->arch.mmu_setup_lock);
3983 	if (!kvm->arch.mmu_ready) {
3984 		if (!kvm_is_radix(kvm))
3985 			r = kvmppc_hv_setup_htab_rma(vcpu);
3986 		if (!r) {
3987 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3988 				kvmppc_setup_partition_table(kvm);
3989 			kvm->arch.mmu_ready = 1;
3990 		}
3991 	}
3992 	mutex_unlock(&kvm->arch.mmu_setup_lock);
3993 	return r;
3994 }
3995 
3996 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
3997 {
3998 	struct kvm_run *run = vcpu->run;
3999 	int n_ceded, i, r;
4000 	struct kvmppc_vcore *vc;
4001 	struct kvm_vcpu *v;
4002 
4003 	trace_kvmppc_run_vcpu_enter(vcpu);
4004 
4005 	run->exit_reason = 0;
4006 	vcpu->arch.ret = RESUME_GUEST;
4007 	vcpu->arch.trap = 0;
4008 	kvmppc_update_vpas(vcpu);
4009 
4010 	/*
4011 	 * Synchronize with other threads in this virtual core
4012 	 */
4013 	vc = vcpu->arch.vcore;
4014 	spin_lock(&vc->lock);
4015 	vcpu->arch.ceded = 0;
4016 	vcpu->arch.run_task = current;
4017 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4018 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4019 	vcpu->arch.busy_preempt = TB_NIL;
4020 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4021 	++vc->n_runnable;
4022 
4023 	/*
4024 	 * This happens the first time this is called for a vcpu.
4025 	 * If the vcore is already running, we may be able to start
4026 	 * this thread straight away and have it join in.
4027 	 */
4028 	if (!signal_pending(current)) {
4029 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4030 		     vc->vcore_state == VCORE_RUNNING) &&
4031 			   !VCORE_IS_EXITING(vc)) {
4032 			kvmppc_create_dtl_entry(vcpu, vc);
4033 			kvmppc_start_thread(vcpu, vc);
4034 			trace_kvm_guest_enter(vcpu);
4035 		} else if (vc->vcore_state == VCORE_SLEEPING) {
4036 		        rcuwait_wake_up(&vc->wait);
4037 		}
4038 
4039 	}
4040 
4041 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4042 	       !signal_pending(current)) {
4043 		/* See if the MMU is ready to go */
4044 		if (!vcpu->kvm->arch.mmu_ready) {
4045 			spin_unlock(&vc->lock);
4046 			r = kvmhv_setup_mmu(vcpu);
4047 			spin_lock(&vc->lock);
4048 			if (r) {
4049 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4050 				run->fail_entry.
4051 					hardware_entry_failure_reason = 0;
4052 				vcpu->arch.ret = r;
4053 				break;
4054 			}
4055 		}
4056 
4057 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4058 			kvmppc_vcore_end_preempt(vc);
4059 
4060 		if (vc->vcore_state != VCORE_INACTIVE) {
4061 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4062 			continue;
4063 		}
4064 		for_each_runnable_thread(i, v, vc) {
4065 			kvmppc_core_prepare_to_enter(v);
4066 			if (signal_pending(v->arch.run_task)) {
4067 				kvmppc_remove_runnable(vc, v);
4068 				v->stat.signal_exits++;
4069 				v->run->exit_reason = KVM_EXIT_INTR;
4070 				v->arch.ret = -EINTR;
4071 				wake_up(&v->arch.cpu_run);
4072 			}
4073 		}
4074 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4075 			break;
4076 		n_ceded = 0;
4077 		for_each_runnable_thread(i, v, vc) {
4078 			if (!kvmppc_vcpu_woken(v))
4079 				n_ceded += v->arch.ceded;
4080 			else
4081 				v->arch.ceded = 0;
4082 		}
4083 		vc->runner = vcpu;
4084 		if (n_ceded == vc->n_runnable) {
4085 			kvmppc_vcore_blocked(vc);
4086 		} else if (need_resched()) {
4087 			kvmppc_vcore_preempt(vc);
4088 			/* Let something else run */
4089 			cond_resched_lock(&vc->lock);
4090 			if (vc->vcore_state == VCORE_PREEMPT)
4091 				kvmppc_vcore_end_preempt(vc);
4092 		} else {
4093 			kvmppc_run_core(vc);
4094 		}
4095 		vc->runner = NULL;
4096 	}
4097 
4098 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4099 	       (vc->vcore_state == VCORE_RUNNING ||
4100 		vc->vcore_state == VCORE_EXITING ||
4101 		vc->vcore_state == VCORE_PIGGYBACK))
4102 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4103 
4104 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4105 		kvmppc_vcore_end_preempt(vc);
4106 
4107 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4108 		kvmppc_remove_runnable(vc, vcpu);
4109 		vcpu->stat.signal_exits++;
4110 		run->exit_reason = KVM_EXIT_INTR;
4111 		vcpu->arch.ret = -EINTR;
4112 	}
4113 
4114 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4115 		/* Wake up some vcpu to run the core */
4116 		i = -1;
4117 		v = next_runnable_thread(vc, &i);
4118 		wake_up(&v->arch.cpu_run);
4119 	}
4120 
4121 	trace_kvmppc_run_vcpu_exit(vcpu);
4122 	spin_unlock(&vc->lock);
4123 	return vcpu->arch.ret;
4124 }
4125 
4126 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4127 			  unsigned long lpcr)
4128 {
4129 	struct kvm_run *run = vcpu->run;
4130 	int trap, r, pcpu;
4131 	int srcu_idx, lpid;
4132 	struct kvmppc_vcore *vc;
4133 	struct kvm *kvm = vcpu->kvm;
4134 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4135 
4136 	trace_kvmppc_run_vcpu_enter(vcpu);
4137 
4138 	run->exit_reason = 0;
4139 	vcpu->arch.ret = RESUME_GUEST;
4140 	vcpu->arch.trap = 0;
4141 
4142 	vc = vcpu->arch.vcore;
4143 	vcpu->arch.ceded = 0;
4144 	vcpu->arch.run_task = current;
4145 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4146 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4147 	vcpu->arch.busy_preempt = TB_NIL;
4148 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4149 	vc->runnable_threads[0] = vcpu;
4150 	vc->n_runnable = 1;
4151 	vc->runner = vcpu;
4152 
4153 	/* See if the MMU is ready to go */
4154 	if (!kvm->arch.mmu_ready)
4155 		kvmhv_setup_mmu(vcpu);
4156 
4157 	if (need_resched())
4158 		cond_resched();
4159 
4160 	kvmppc_update_vpas(vcpu);
4161 
4162 	init_vcore_to_run(vc);
4163 	vc->preempt_tb = TB_NIL;
4164 
4165 	preempt_disable();
4166 	pcpu = smp_processor_id();
4167 	vc->pcpu = pcpu;
4168 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4169 
4170 	local_irq_disable();
4171 	hard_irq_disable();
4172 	if (signal_pending(current))
4173 		goto sigpend;
4174 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4175 		goto out;
4176 
4177 	if (!nested) {
4178 		kvmppc_core_prepare_to_enter(vcpu);
4179 		if (vcpu->arch.doorbell_request) {
4180 			vc->dpdes = 1;
4181 			smp_wmb();
4182 			vcpu->arch.doorbell_request = 0;
4183 		}
4184 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4185 			     &vcpu->arch.pending_exceptions))
4186 			lpcr |= LPCR_MER;
4187 	} else if (vcpu->arch.pending_exceptions ||
4188 		   vcpu->arch.doorbell_request ||
4189 		   xive_interrupt_pending(vcpu)) {
4190 		vcpu->arch.ret = RESUME_HOST;
4191 		goto out;
4192 	}
4193 
4194 	kvmppc_clear_host_core(pcpu);
4195 
4196 	local_paca->kvm_hstate.napping = 0;
4197 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4198 	kvmppc_start_thread(vcpu, vc);
4199 	kvmppc_create_dtl_entry(vcpu, vc);
4200 	trace_kvm_guest_enter(vcpu);
4201 
4202 	vc->vcore_state = VCORE_RUNNING;
4203 	trace_kvmppc_run_core(vc, 0);
4204 
4205 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4206 		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4207 		mtspr(SPRN_LPID, lpid);
4208 		isync();
4209 		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4210 	}
4211 
4212 	guest_enter_irqoff();
4213 
4214 	srcu_idx = srcu_read_lock(&kvm->srcu);
4215 
4216 	this_cpu_disable_ftrace();
4217 
4218 	/* Tell lockdep that we're about to enable interrupts */
4219 	trace_hardirqs_on();
4220 
4221 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4222 	vcpu->arch.trap = trap;
4223 
4224 	trace_hardirqs_off();
4225 
4226 	this_cpu_enable_ftrace();
4227 
4228 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4229 
4230 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4231 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4232 		isync();
4233 	}
4234 
4235 	set_irq_happened(trap);
4236 
4237 	kvmppc_set_host_core(pcpu);
4238 
4239 	local_irq_enable();
4240 	guest_exit();
4241 
4242 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4243 
4244 	preempt_enable();
4245 
4246 	/*
4247 	 * cancel pending decrementer exception if DEC is now positive, or if
4248 	 * entering a nested guest in which case the decrementer is now owned
4249 	 * by L2 and the L1 decrementer is provided in hdec_expires
4250 	 */
4251 	if (kvmppc_core_pending_dec(vcpu) &&
4252 			((get_tb() < vcpu->arch.dec_expires) ||
4253 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4254 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4255 		kvmppc_core_dequeue_dec(vcpu);
4256 
4257 	trace_kvm_guest_exit(vcpu);
4258 	r = RESUME_GUEST;
4259 	if (trap) {
4260 		if (!nested)
4261 			r = kvmppc_handle_exit_hv(vcpu, current);
4262 		else
4263 			r = kvmppc_handle_nested_exit(vcpu);
4264 	}
4265 	vcpu->arch.ret = r;
4266 
4267 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4268 	    !kvmppc_vcpu_woken(vcpu)) {
4269 		kvmppc_set_timer(vcpu);
4270 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4271 			if (signal_pending(current)) {
4272 				vcpu->stat.signal_exits++;
4273 				run->exit_reason = KVM_EXIT_INTR;
4274 				vcpu->arch.ret = -EINTR;
4275 				break;
4276 			}
4277 			spin_lock(&vc->lock);
4278 			kvmppc_vcore_blocked(vc);
4279 			spin_unlock(&vc->lock);
4280 		}
4281 	}
4282 	vcpu->arch.ceded = 0;
4283 
4284 	vc->vcore_state = VCORE_INACTIVE;
4285 	trace_kvmppc_run_core(vc, 1);
4286 
4287  done:
4288 	kvmppc_remove_runnable(vc, vcpu);
4289 	trace_kvmppc_run_vcpu_exit(vcpu);
4290 
4291 	return vcpu->arch.ret;
4292 
4293  sigpend:
4294 	vcpu->stat.signal_exits++;
4295 	run->exit_reason = KVM_EXIT_INTR;
4296 	vcpu->arch.ret = -EINTR;
4297  out:
4298 	local_irq_enable();
4299 	preempt_enable();
4300 	goto done;
4301 }
4302 
4303 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4304 {
4305 	struct kvm_run *run = vcpu->run;
4306 	int r;
4307 	int srcu_idx;
4308 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4309 	unsigned long user_tar = 0;
4310 	unsigned int user_vrsave;
4311 	struct kvm *kvm;
4312 
4313 	if (!vcpu->arch.sane) {
4314 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4315 		return -EINVAL;
4316 	}
4317 
4318 	/*
4319 	 * Don't allow entry with a suspended transaction, because
4320 	 * the guest entry/exit code will lose it.
4321 	 * If the guest has TM enabled, save away their TM-related SPRs
4322 	 * (they will get restored by the TM unavailable interrupt).
4323 	 */
4324 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4325 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4326 	    (current->thread.regs->msr & MSR_TM)) {
4327 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4328 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4329 			run->fail_entry.hardware_entry_failure_reason = 0;
4330 			return -EINVAL;
4331 		}
4332 		/* Enable TM so we can read the TM SPRs */
4333 		mtmsr(mfmsr() | MSR_TM);
4334 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4335 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4336 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4337 		current->thread.regs->msr &= ~MSR_TM;
4338 	}
4339 #endif
4340 
4341 	/*
4342 	 * Force online to 1 for the sake of old userspace which doesn't
4343 	 * set it.
4344 	 */
4345 	if (!vcpu->arch.online) {
4346 		atomic_inc(&vcpu->arch.vcore->online_count);
4347 		vcpu->arch.online = 1;
4348 	}
4349 
4350 	kvmppc_core_prepare_to_enter(vcpu);
4351 
4352 	/* No need to go into the guest when all we'll do is come back out */
4353 	if (signal_pending(current)) {
4354 		run->exit_reason = KVM_EXIT_INTR;
4355 		return -EINTR;
4356 	}
4357 
4358 	kvm = vcpu->kvm;
4359 	atomic_inc(&kvm->arch.vcpus_running);
4360 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4361 	smp_mb();
4362 
4363 	flush_all_to_thread(current);
4364 
4365 	/* Save userspace EBB and other register values */
4366 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4367 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4368 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4369 		ebb_regs[2] = mfspr(SPRN_BESCR);
4370 		user_tar = mfspr(SPRN_TAR);
4371 	}
4372 	user_vrsave = mfspr(SPRN_VRSAVE);
4373 
4374 	vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4375 	vcpu->arch.pgdir = kvm->mm->pgd;
4376 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4377 
4378 	do {
4379 		/*
4380 		 * The TLB prefetch bug fixup is only in the kvmppc_run_vcpu
4381 		 * path, which also handles hash and dependent threads mode.
4382 		 */
4383 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4384 		    !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
4385 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4386 						  vcpu->arch.vcore->lpcr);
4387 		else
4388 			r = kvmppc_run_vcpu(vcpu);
4389 
4390 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4391 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4392 			trace_kvm_hcall_enter(vcpu);
4393 			r = kvmppc_pseries_do_hcall(vcpu);
4394 			trace_kvm_hcall_exit(vcpu, r);
4395 			kvmppc_core_prepare_to_enter(vcpu);
4396 		} else if (r == RESUME_PAGE_FAULT) {
4397 			srcu_idx = srcu_read_lock(&kvm->srcu);
4398 			r = kvmppc_book3s_hv_page_fault(vcpu,
4399 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4400 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4401 		} else if (r == RESUME_PASSTHROUGH) {
4402 			if (WARN_ON(xics_on_xive()))
4403 				r = H_SUCCESS;
4404 			else
4405 				r = kvmppc_xics_rm_complete(vcpu, 0);
4406 		}
4407 	} while (is_kvmppc_resume_guest(r));
4408 
4409 	/* Restore userspace EBB and other register values */
4410 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4411 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4412 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4413 		mtspr(SPRN_BESCR, ebb_regs[2]);
4414 		mtspr(SPRN_TAR, user_tar);
4415 		mtspr(SPRN_FSCR, current->thread.fscr);
4416 	}
4417 	mtspr(SPRN_VRSAVE, user_vrsave);
4418 
4419 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4420 	atomic_dec(&kvm->arch.vcpus_running);
4421 	return r;
4422 }
4423 
4424 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4425 				     int shift, int sllp)
4426 {
4427 	(*sps)->page_shift = shift;
4428 	(*sps)->slb_enc = sllp;
4429 	(*sps)->enc[0].page_shift = shift;
4430 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4431 	/*
4432 	 * Add 16MB MPSS support (may get filtered out by userspace)
4433 	 */
4434 	if (shift != 24) {
4435 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4436 		if (penc != -1) {
4437 			(*sps)->enc[1].page_shift = 24;
4438 			(*sps)->enc[1].pte_enc = penc;
4439 		}
4440 	}
4441 	(*sps)++;
4442 }
4443 
4444 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4445 					 struct kvm_ppc_smmu_info *info)
4446 {
4447 	struct kvm_ppc_one_seg_page_size *sps;
4448 
4449 	/*
4450 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4451 	 * POWER7 doesn't support keys for instruction accesses,
4452 	 * POWER8 and POWER9 do.
4453 	 */
4454 	info->data_keys = 32;
4455 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4456 
4457 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4458 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4459 	info->slb_size = 32;
4460 
4461 	/* We only support these sizes for now, and no muti-size segments */
4462 	sps = &info->sps[0];
4463 	kvmppc_add_seg_page_size(&sps, 12, 0);
4464 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4465 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4466 
4467 	/* If running as a nested hypervisor, we don't support HPT guests */
4468 	if (kvmhv_on_pseries())
4469 		info->flags |= KVM_PPC_NO_HASH;
4470 
4471 	return 0;
4472 }
4473 
4474 /*
4475  * Get (and clear) the dirty memory log for a memory slot.
4476  */
4477 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4478 					 struct kvm_dirty_log *log)
4479 {
4480 	struct kvm_memslots *slots;
4481 	struct kvm_memory_slot *memslot;
4482 	int i, r;
4483 	unsigned long n;
4484 	unsigned long *buf, *p;
4485 	struct kvm_vcpu *vcpu;
4486 
4487 	mutex_lock(&kvm->slots_lock);
4488 
4489 	r = -EINVAL;
4490 	if (log->slot >= KVM_USER_MEM_SLOTS)
4491 		goto out;
4492 
4493 	slots = kvm_memslots(kvm);
4494 	memslot = id_to_memslot(slots, log->slot);
4495 	r = -ENOENT;
4496 	if (!memslot || !memslot->dirty_bitmap)
4497 		goto out;
4498 
4499 	/*
4500 	 * Use second half of bitmap area because both HPT and radix
4501 	 * accumulate bits in the first half.
4502 	 */
4503 	n = kvm_dirty_bitmap_bytes(memslot);
4504 	buf = memslot->dirty_bitmap + n / sizeof(long);
4505 	memset(buf, 0, n);
4506 
4507 	if (kvm_is_radix(kvm))
4508 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4509 	else
4510 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4511 	if (r)
4512 		goto out;
4513 
4514 	/*
4515 	 * We accumulate dirty bits in the first half of the
4516 	 * memslot's dirty_bitmap area, for when pages are paged
4517 	 * out or modified by the host directly.  Pick up these
4518 	 * bits and add them to the map.
4519 	 */
4520 	p = memslot->dirty_bitmap;
4521 	for (i = 0; i < n / sizeof(long); ++i)
4522 		buf[i] |= xchg(&p[i], 0);
4523 
4524 	/* Harvest dirty bits from VPA and DTL updates */
4525 	/* Note: we never modify the SLB shadow buffer areas */
4526 	kvm_for_each_vcpu(i, vcpu, kvm) {
4527 		spin_lock(&vcpu->arch.vpa_update_lock);
4528 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4529 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4530 		spin_unlock(&vcpu->arch.vpa_update_lock);
4531 	}
4532 
4533 	r = -EFAULT;
4534 	if (copy_to_user(log->dirty_bitmap, buf, n))
4535 		goto out;
4536 
4537 	r = 0;
4538 out:
4539 	mutex_unlock(&kvm->slots_lock);
4540 	return r;
4541 }
4542 
4543 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4544 {
4545 	vfree(slot->arch.rmap);
4546 	slot->arch.rmap = NULL;
4547 }
4548 
4549 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4550 					struct kvm_memory_slot *slot,
4551 					const struct kvm_userspace_memory_region *mem,
4552 					enum kvm_mr_change change)
4553 {
4554 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4555 
4556 	if (change == KVM_MR_CREATE) {
4557 		slot->arch.rmap = vzalloc(array_size(npages,
4558 					  sizeof(*slot->arch.rmap)));
4559 		if (!slot->arch.rmap)
4560 			return -ENOMEM;
4561 	}
4562 
4563 	return 0;
4564 }
4565 
4566 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4567 				const struct kvm_userspace_memory_region *mem,
4568 				const struct kvm_memory_slot *old,
4569 				const struct kvm_memory_slot *new,
4570 				enum kvm_mr_change change)
4571 {
4572 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4573 
4574 	/*
4575 	 * If we are making a new memslot, it might make
4576 	 * some address that was previously cached as emulated
4577 	 * MMIO be no longer emulated MMIO, so invalidate
4578 	 * all the caches of emulated MMIO translations.
4579 	 */
4580 	if (npages)
4581 		atomic64_inc(&kvm->arch.mmio_update);
4582 
4583 	/*
4584 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4585 	 * have already called kvm_arch_flush_shadow_memslot() to
4586 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4587 	 * previous mappings.  So the only case to handle is
4588 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4589 	 * has been changed.
4590 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4591 	 * to get rid of any THP PTEs in the partition-scoped page tables
4592 	 * so we can track dirtiness at the page level; we flush when
4593 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4594 	 * using THP PTEs.
4595 	 */
4596 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4597 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4598 		kvmppc_radix_flush_memslot(kvm, old);
4599 	/*
4600 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4601 	 */
4602 	if (!kvm->arch.secure_guest)
4603 		return;
4604 
4605 	switch (change) {
4606 	case KVM_MR_CREATE:
4607 		/*
4608 		 * @TODO kvmppc_uvmem_memslot_create() can fail and
4609 		 * return error. Fix this.
4610 		 */
4611 		kvmppc_uvmem_memslot_create(kvm, new);
4612 		break;
4613 	case KVM_MR_DELETE:
4614 		kvmppc_uvmem_memslot_delete(kvm, old);
4615 		break;
4616 	default:
4617 		/* TODO: Handle KVM_MR_MOVE */
4618 		break;
4619 	}
4620 }
4621 
4622 /*
4623  * Update LPCR values in kvm->arch and in vcores.
4624  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4625  * of kvm->arch.lpcr update).
4626  */
4627 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4628 {
4629 	long int i;
4630 	u32 cores_done = 0;
4631 
4632 	if ((kvm->arch.lpcr & mask) == lpcr)
4633 		return;
4634 
4635 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4636 
4637 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4638 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4639 		if (!vc)
4640 			continue;
4641 		spin_lock(&vc->lock);
4642 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4643 		spin_unlock(&vc->lock);
4644 		if (++cores_done >= kvm->arch.online_vcores)
4645 			break;
4646 	}
4647 }
4648 
4649 void kvmppc_setup_partition_table(struct kvm *kvm)
4650 {
4651 	unsigned long dw0, dw1;
4652 
4653 	if (!kvm_is_radix(kvm)) {
4654 		/* PS field - page size for VRMA */
4655 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4656 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4657 		/* HTABSIZE and HTABORG fields */
4658 		dw0 |= kvm->arch.sdr1;
4659 
4660 		/* Second dword as set by userspace */
4661 		dw1 = kvm->arch.process_table;
4662 	} else {
4663 		dw0 = PATB_HR | radix__get_tree_size() |
4664 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4665 		dw1 = PATB_GR | kvm->arch.process_table;
4666 	}
4667 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4668 }
4669 
4670 /*
4671  * Set up HPT (hashed page table) and RMA (real-mode area).
4672  * Must be called with kvm->arch.mmu_setup_lock held.
4673  */
4674 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4675 {
4676 	int err = 0;
4677 	struct kvm *kvm = vcpu->kvm;
4678 	unsigned long hva;
4679 	struct kvm_memory_slot *memslot;
4680 	struct vm_area_struct *vma;
4681 	unsigned long lpcr = 0, senc;
4682 	unsigned long psize, porder;
4683 	int srcu_idx;
4684 
4685 	/* Allocate hashed page table (if not done already) and reset it */
4686 	if (!kvm->arch.hpt.virt) {
4687 		int order = KVM_DEFAULT_HPT_ORDER;
4688 		struct kvm_hpt_info info;
4689 
4690 		err = kvmppc_allocate_hpt(&info, order);
4691 		/* If we get here, it means userspace didn't specify a
4692 		 * size explicitly.  So, try successively smaller
4693 		 * sizes if the default failed. */
4694 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4695 			err  = kvmppc_allocate_hpt(&info, order);
4696 
4697 		if (err < 0) {
4698 			pr_err("KVM: Couldn't alloc HPT\n");
4699 			goto out;
4700 		}
4701 
4702 		kvmppc_set_hpt(kvm, &info);
4703 	}
4704 
4705 	/* Look up the memslot for guest physical address 0 */
4706 	srcu_idx = srcu_read_lock(&kvm->srcu);
4707 	memslot = gfn_to_memslot(kvm, 0);
4708 
4709 	/* We must have some memory at 0 by now */
4710 	err = -EINVAL;
4711 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4712 		goto out_srcu;
4713 
4714 	/* Look up the VMA for the start of this memory slot */
4715 	hva = memslot->userspace_addr;
4716 	mmap_read_lock(kvm->mm);
4717 	vma = find_vma(kvm->mm, hva);
4718 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4719 		goto up_out;
4720 
4721 	psize = vma_kernel_pagesize(vma);
4722 
4723 	mmap_read_unlock(kvm->mm);
4724 
4725 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4726 	if (psize >= 0x1000000)
4727 		psize = 0x1000000;
4728 	else if (psize >= 0x10000)
4729 		psize = 0x10000;
4730 	else
4731 		psize = 0x1000;
4732 	porder = __ilog2(psize);
4733 
4734 	senc = slb_pgsize_encoding(psize);
4735 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4736 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4737 	/* Create HPTEs in the hash page table for the VRMA */
4738 	kvmppc_map_vrma(vcpu, memslot, porder);
4739 
4740 	/* Update VRMASD field in the LPCR */
4741 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4742 		/* the -4 is to account for senc values starting at 0x10 */
4743 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4744 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4745 	}
4746 
4747 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4748 	smp_wmb();
4749 	err = 0;
4750  out_srcu:
4751 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4752  out:
4753 	return err;
4754 
4755  up_out:
4756 	mmap_read_unlock(kvm->mm);
4757 	goto out_srcu;
4758 }
4759 
4760 /*
4761  * Must be called with kvm->arch.mmu_setup_lock held and
4762  * mmu_ready = 0 and no vcpus running.
4763  */
4764 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4765 {
4766 	if (nesting_enabled(kvm))
4767 		kvmhv_release_all_nested(kvm);
4768 	kvmppc_rmap_reset(kvm);
4769 	kvm->arch.process_table = 0;
4770 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4771 	spin_lock(&kvm->mmu_lock);
4772 	kvm->arch.radix = 0;
4773 	spin_unlock(&kvm->mmu_lock);
4774 	kvmppc_free_radix(kvm);
4775 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4776 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4777 	return 0;
4778 }
4779 
4780 /*
4781  * Must be called with kvm->arch.mmu_setup_lock held and
4782  * mmu_ready = 0 and no vcpus running.
4783  */
4784 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4785 {
4786 	int err;
4787 
4788 	err = kvmppc_init_vm_radix(kvm);
4789 	if (err)
4790 		return err;
4791 	kvmppc_rmap_reset(kvm);
4792 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4793 	spin_lock(&kvm->mmu_lock);
4794 	kvm->arch.radix = 1;
4795 	spin_unlock(&kvm->mmu_lock);
4796 	kvmppc_free_hpt(&kvm->arch.hpt);
4797 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4798 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4799 	return 0;
4800 }
4801 
4802 #ifdef CONFIG_KVM_XICS
4803 /*
4804  * Allocate a per-core structure for managing state about which cores are
4805  * running in the host versus the guest and for exchanging data between
4806  * real mode KVM and CPU running in the host.
4807  * This is only done for the first VM.
4808  * The allocated structure stays even if all VMs have stopped.
4809  * It is only freed when the kvm-hv module is unloaded.
4810  * It's OK for this routine to fail, we just don't support host
4811  * core operations like redirecting H_IPI wakeups.
4812  */
4813 void kvmppc_alloc_host_rm_ops(void)
4814 {
4815 	struct kvmppc_host_rm_ops *ops;
4816 	unsigned long l_ops;
4817 	int cpu, core;
4818 	int size;
4819 
4820 	/* Not the first time here ? */
4821 	if (kvmppc_host_rm_ops_hv != NULL)
4822 		return;
4823 
4824 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4825 	if (!ops)
4826 		return;
4827 
4828 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4829 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4830 
4831 	if (!ops->rm_core) {
4832 		kfree(ops);
4833 		return;
4834 	}
4835 
4836 	cpus_read_lock();
4837 
4838 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4839 		if (!cpu_online(cpu))
4840 			continue;
4841 
4842 		core = cpu >> threads_shift;
4843 		ops->rm_core[core].rm_state.in_host = 1;
4844 	}
4845 
4846 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4847 
4848 	/*
4849 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4850 	 * to other CPUs before we assign it to the global variable.
4851 	 * Do an atomic assignment (no locks used here), but if someone
4852 	 * beats us to it, just free our copy and return.
4853 	 */
4854 	smp_wmb();
4855 	l_ops = (unsigned long) ops;
4856 
4857 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4858 		cpus_read_unlock();
4859 		kfree(ops->rm_core);
4860 		kfree(ops);
4861 		return;
4862 	}
4863 
4864 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4865 					     "ppc/kvm_book3s:prepare",
4866 					     kvmppc_set_host_core,
4867 					     kvmppc_clear_host_core);
4868 	cpus_read_unlock();
4869 }
4870 
4871 void kvmppc_free_host_rm_ops(void)
4872 {
4873 	if (kvmppc_host_rm_ops_hv) {
4874 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4875 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4876 		kfree(kvmppc_host_rm_ops_hv);
4877 		kvmppc_host_rm_ops_hv = NULL;
4878 	}
4879 }
4880 #endif
4881 
4882 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4883 {
4884 	unsigned long lpcr, lpid;
4885 	char buf[32];
4886 	int ret;
4887 
4888 	mutex_init(&kvm->arch.uvmem_lock);
4889 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4890 	mutex_init(&kvm->arch.mmu_setup_lock);
4891 
4892 	/* Allocate the guest's logical partition ID */
4893 
4894 	lpid = kvmppc_alloc_lpid();
4895 	if ((long)lpid < 0)
4896 		return -ENOMEM;
4897 	kvm->arch.lpid = lpid;
4898 
4899 	kvmppc_alloc_host_rm_ops();
4900 
4901 	kvmhv_vm_nested_init(kvm);
4902 
4903 	/*
4904 	 * Since we don't flush the TLB when tearing down a VM,
4905 	 * and this lpid might have previously been used,
4906 	 * make sure we flush on each core before running the new VM.
4907 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4908 	 * does this flush for us.
4909 	 */
4910 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4911 		cpumask_setall(&kvm->arch.need_tlb_flush);
4912 
4913 	/* Start out with the default set of hcalls enabled */
4914 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4915 	       sizeof(kvm->arch.enabled_hcalls));
4916 
4917 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4918 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4919 
4920 	/* Init LPCR for virtual RMA mode */
4921 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4922 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4923 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4924 		lpcr &= LPCR_PECE | LPCR_LPES;
4925 	} else {
4926 		lpcr = 0;
4927 	}
4928 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4929 		LPCR_VPM0 | LPCR_VPM1;
4930 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4931 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4932 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4933 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4934 		lpcr |= LPCR_ONL;
4935 	/*
4936 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4937 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4938 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4939 	 * be unnecessary but better safe than sorry in case we re-enable
4940 	 * EE in HV mode with this LPCR still set)
4941 	 */
4942 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4943 		lpcr &= ~LPCR_VPM0;
4944 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4945 
4946 		/*
4947 		 * If xive is enabled, we route 0x500 interrupts directly
4948 		 * to the guest.
4949 		 */
4950 		if (xics_on_xive())
4951 			lpcr |= LPCR_LPES;
4952 	}
4953 
4954 	/*
4955 	 * If the host uses radix, the guest starts out as radix.
4956 	 */
4957 	if (radix_enabled()) {
4958 		kvm->arch.radix = 1;
4959 		kvm->arch.mmu_ready = 1;
4960 		lpcr &= ~LPCR_VPM1;
4961 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4962 		ret = kvmppc_init_vm_radix(kvm);
4963 		if (ret) {
4964 			kvmppc_free_lpid(kvm->arch.lpid);
4965 			return ret;
4966 		}
4967 		kvmppc_setup_partition_table(kvm);
4968 	}
4969 
4970 	kvm->arch.lpcr = lpcr;
4971 
4972 	/* Initialization for future HPT resizes */
4973 	kvm->arch.resize_hpt = NULL;
4974 
4975 	/*
4976 	 * Work out how many sets the TLB has, for the use of
4977 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4978 	 */
4979 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
4980 		/*
4981 		 * P10 will flush all the congruence class with a single tlbiel
4982 		 */
4983 		kvm->arch.tlb_sets = 1;
4984 	} else if (radix_enabled())
4985 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4986 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4987 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4988 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4989 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4990 	else
4991 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4992 
4993 	/*
4994 	 * Track that we now have a HV mode VM active. This blocks secondary
4995 	 * CPU threads from coming online.
4996 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4997 	 * module parameter has been set to N.
4998 	 */
4999 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5000 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
5001 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
5002 			kvm->arch.threads_indep = true;
5003 		} else {
5004 			kvm->arch.threads_indep = indep_threads_mode;
5005 		}
5006 	}
5007 	if (!kvm->arch.threads_indep)
5008 		kvm_hv_vm_activated();
5009 
5010 	/*
5011 	 * Initialize smt_mode depending on processor.
5012 	 * POWER8 and earlier have to use "strict" threading, where
5013 	 * all vCPUs in a vcore have to run on the same (sub)core,
5014 	 * whereas on POWER9 the threads can each run a different
5015 	 * guest.
5016 	 */
5017 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5018 		kvm->arch.smt_mode = threads_per_subcore;
5019 	else
5020 		kvm->arch.smt_mode = 1;
5021 	kvm->arch.emul_smt_mode = 1;
5022 
5023 	/*
5024 	 * Create a debugfs directory for the VM
5025 	 */
5026 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
5027 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5028 	kvmppc_mmu_debugfs_init(kvm);
5029 	if (radix_enabled())
5030 		kvmhv_radix_debugfs_init(kvm);
5031 
5032 	return 0;
5033 }
5034 
5035 static void kvmppc_free_vcores(struct kvm *kvm)
5036 {
5037 	long int i;
5038 
5039 	for (i = 0; i < KVM_MAX_VCORES; ++i)
5040 		kfree(kvm->arch.vcores[i]);
5041 	kvm->arch.online_vcores = 0;
5042 }
5043 
5044 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5045 {
5046 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
5047 
5048 	if (!kvm->arch.threads_indep)
5049 		kvm_hv_vm_deactivated();
5050 
5051 	kvmppc_free_vcores(kvm);
5052 
5053 
5054 	if (kvm_is_radix(kvm))
5055 		kvmppc_free_radix(kvm);
5056 	else
5057 		kvmppc_free_hpt(&kvm->arch.hpt);
5058 
5059 	/* Perform global invalidation and return lpid to the pool */
5060 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5061 		if (nesting_enabled(kvm))
5062 			kvmhv_release_all_nested(kvm);
5063 		kvm->arch.process_table = 0;
5064 		if (kvm->arch.secure_guest)
5065 			uv_svm_terminate(kvm->arch.lpid);
5066 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5067 	}
5068 
5069 	kvmppc_free_lpid(kvm->arch.lpid);
5070 
5071 	kvmppc_free_pimap(kvm);
5072 }
5073 
5074 /* We don't need to emulate any privileged instructions or dcbz */
5075 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5076 				     unsigned int inst, int *advance)
5077 {
5078 	return EMULATE_FAIL;
5079 }
5080 
5081 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5082 					ulong spr_val)
5083 {
5084 	return EMULATE_FAIL;
5085 }
5086 
5087 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5088 					ulong *spr_val)
5089 {
5090 	return EMULATE_FAIL;
5091 }
5092 
5093 static int kvmppc_core_check_processor_compat_hv(void)
5094 {
5095 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5096 	    cpu_has_feature(CPU_FTR_ARCH_206))
5097 		return 0;
5098 
5099 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5100 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5101 		return 0;
5102 
5103 	return -EIO;
5104 }
5105 
5106 #ifdef CONFIG_KVM_XICS
5107 
5108 void kvmppc_free_pimap(struct kvm *kvm)
5109 {
5110 	kfree(kvm->arch.pimap);
5111 }
5112 
5113 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5114 {
5115 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5116 }
5117 
5118 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5119 {
5120 	struct irq_desc *desc;
5121 	struct kvmppc_irq_map *irq_map;
5122 	struct kvmppc_passthru_irqmap *pimap;
5123 	struct irq_chip *chip;
5124 	int i, rc = 0;
5125 
5126 	if (!kvm_irq_bypass)
5127 		return 1;
5128 
5129 	desc = irq_to_desc(host_irq);
5130 	if (!desc)
5131 		return -EIO;
5132 
5133 	mutex_lock(&kvm->lock);
5134 
5135 	pimap = kvm->arch.pimap;
5136 	if (pimap == NULL) {
5137 		/* First call, allocate structure to hold IRQ map */
5138 		pimap = kvmppc_alloc_pimap();
5139 		if (pimap == NULL) {
5140 			mutex_unlock(&kvm->lock);
5141 			return -ENOMEM;
5142 		}
5143 		kvm->arch.pimap = pimap;
5144 	}
5145 
5146 	/*
5147 	 * For now, we only support interrupts for which the EOI operation
5148 	 * is an OPAL call followed by a write to XIRR, since that's
5149 	 * what our real-mode EOI code does, or a XIVE interrupt
5150 	 */
5151 	chip = irq_data_get_irq_chip(&desc->irq_data);
5152 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5153 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5154 			host_irq, guest_gsi);
5155 		mutex_unlock(&kvm->lock);
5156 		return -ENOENT;
5157 	}
5158 
5159 	/*
5160 	 * See if we already have an entry for this guest IRQ number.
5161 	 * If it's mapped to a hardware IRQ number, that's an error,
5162 	 * otherwise re-use this entry.
5163 	 */
5164 	for (i = 0; i < pimap->n_mapped; i++) {
5165 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5166 			if (pimap->mapped[i].r_hwirq) {
5167 				mutex_unlock(&kvm->lock);
5168 				return -EINVAL;
5169 			}
5170 			break;
5171 		}
5172 	}
5173 
5174 	if (i == KVMPPC_PIRQ_MAPPED) {
5175 		mutex_unlock(&kvm->lock);
5176 		return -EAGAIN;		/* table is full */
5177 	}
5178 
5179 	irq_map = &pimap->mapped[i];
5180 
5181 	irq_map->v_hwirq = guest_gsi;
5182 	irq_map->desc = desc;
5183 
5184 	/*
5185 	 * Order the above two stores before the next to serialize with
5186 	 * the KVM real mode handler.
5187 	 */
5188 	smp_wmb();
5189 	irq_map->r_hwirq = desc->irq_data.hwirq;
5190 
5191 	if (i == pimap->n_mapped)
5192 		pimap->n_mapped++;
5193 
5194 	if (xics_on_xive())
5195 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5196 	else
5197 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5198 	if (rc)
5199 		irq_map->r_hwirq = 0;
5200 
5201 	mutex_unlock(&kvm->lock);
5202 
5203 	return 0;
5204 }
5205 
5206 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5207 {
5208 	struct irq_desc *desc;
5209 	struct kvmppc_passthru_irqmap *pimap;
5210 	int i, rc = 0;
5211 
5212 	if (!kvm_irq_bypass)
5213 		return 0;
5214 
5215 	desc = irq_to_desc(host_irq);
5216 	if (!desc)
5217 		return -EIO;
5218 
5219 	mutex_lock(&kvm->lock);
5220 	if (!kvm->arch.pimap)
5221 		goto unlock;
5222 
5223 	pimap = kvm->arch.pimap;
5224 
5225 	for (i = 0; i < pimap->n_mapped; i++) {
5226 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5227 			break;
5228 	}
5229 
5230 	if (i == pimap->n_mapped) {
5231 		mutex_unlock(&kvm->lock);
5232 		return -ENODEV;
5233 	}
5234 
5235 	if (xics_on_xive())
5236 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5237 	else
5238 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5239 
5240 	/* invalidate the entry (what do do on error from the above ?) */
5241 	pimap->mapped[i].r_hwirq = 0;
5242 
5243 	/*
5244 	 * We don't free this structure even when the count goes to
5245 	 * zero. The structure is freed when we destroy the VM.
5246 	 */
5247  unlock:
5248 	mutex_unlock(&kvm->lock);
5249 	return rc;
5250 }
5251 
5252 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5253 					     struct irq_bypass_producer *prod)
5254 {
5255 	int ret = 0;
5256 	struct kvm_kernel_irqfd *irqfd =
5257 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5258 
5259 	irqfd->producer = prod;
5260 
5261 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5262 	if (ret)
5263 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5264 			prod->irq, irqfd->gsi, ret);
5265 
5266 	return ret;
5267 }
5268 
5269 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5270 					      struct irq_bypass_producer *prod)
5271 {
5272 	int ret;
5273 	struct kvm_kernel_irqfd *irqfd =
5274 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5275 
5276 	irqfd->producer = NULL;
5277 
5278 	/*
5279 	 * When producer of consumer is unregistered, we change back to
5280 	 * default external interrupt handling mode - KVM real mode
5281 	 * will switch back to host.
5282 	 */
5283 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5284 	if (ret)
5285 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5286 			prod->irq, irqfd->gsi, ret);
5287 }
5288 #endif
5289 
5290 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5291 				 unsigned int ioctl, unsigned long arg)
5292 {
5293 	struct kvm *kvm __maybe_unused = filp->private_data;
5294 	void __user *argp = (void __user *)arg;
5295 	long r;
5296 
5297 	switch (ioctl) {
5298 
5299 	case KVM_PPC_ALLOCATE_HTAB: {
5300 		u32 htab_order;
5301 
5302 		/* If we're a nested hypervisor, we currently only support radix */
5303 		if (kvmhv_on_pseries()) {
5304 			r = -EOPNOTSUPP;
5305 			break;
5306 		}
5307 
5308 		r = -EFAULT;
5309 		if (get_user(htab_order, (u32 __user *)argp))
5310 			break;
5311 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5312 		if (r)
5313 			break;
5314 		r = 0;
5315 		break;
5316 	}
5317 
5318 	case KVM_PPC_GET_HTAB_FD: {
5319 		struct kvm_get_htab_fd ghf;
5320 
5321 		r = -EFAULT;
5322 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5323 			break;
5324 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5325 		break;
5326 	}
5327 
5328 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5329 		struct kvm_ppc_resize_hpt rhpt;
5330 
5331 		r = -EFAULT;
5332 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5333 			break;
5334 
5335 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5336 		break;
5337 	}
5338 
5339 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5340 		struct kvm_ppc_resize_hpt rhpt;
5341 
5342 		r = -EFAULT;
5343 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5344 			break;
5345 
5346 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5347 		break;
5348 	}
5349 
5350 	default:
5351 		r = -ENOTTY;
5352 	}
5353 
5354 	return r;
5355 }
5356 
5357 /*
5358  * List of hcall numbers to enable by default.
5359  * For compatibility with old userspace, we enable by default
5360  * all hcalls that were implemented before the hcall-enabling
5361  * facility was added.  Note this list should not include H_RTAS.
5362  */
5363 static unsigned int default_hcall_list[] = {
5364 	H_REMOVE,
5365 	H_ENTER,
5366 	H_READ,
5367 	H_PROTECT,
5368 	H_BULK_REMOVE,
5369 	H_GET_TCE,
5370 	H_PUT_TCE,
5371 	H_SET_DABR,
5372 	H_SET_XDABR,
5373 	H_CEDE,
5374 	H_PROD,
5375 	H_CONFER,
5376 	H_REGISTER_VPA,
5377 #ifdef CONFIG_KVM_XICS
5378 	H_EOI,
5379 	H_CPPR,
5380 	H_IPI,
5381 	H_IPOLL,
5382 	H_XIRR,
5383 	H_XIRR_X,
5384 #endif
5385 	0
5386 };
5387 
5388 static void init_default_hcalls(void)
5389 {
5390 	int i;
5391 	unsigned int hcall;
5392 
5393 	for (i = 0; default_hcall_list[i]; ++i) {
5394 		hcall = default_hcall_list[i];
5395 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5396 		__set_bit(hcall / 4, default_enabled_hcalls);
5397 	}
5398 }
5399 
5400 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5401 {
5402 	unsigned long lpcr;
5403 	int radix;
5404 	int err;
5405 
5406 	/* If not on a POWER9, reject it */
5407 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5408 		return -ENODEV;
5409 
5410 	/* If any unknown flags set, reject it */
5411 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5412 		return -EINVAL;
5413 
5414 	/* GR (guest radix) bit in process_table field must match */
5415 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5416 	if (!!(cfg->process_table & PATB_GR) != radix)
5417 		return -EINVAL;
5418 
5419 	/* Process table size field must be reasonable, i.e. <= 24 */
5420 	if ((cfg->process_table & PRTS_MASK) > 24)
5421 		return -EINVAL;
5422 
5423 	/* We can change a guest to/from radix now, if the host is radix */
5424 	if (radix && !radix_enabled())
5425 		return -EINVAL;
5426 
5427 	/* If we're a nested hypervisor, we currently only support radix */
5428 	if (kvmhv_on_pseries() && !radix)
5429 		return -EINVAL;
5430 
5431 	mutex_lock(&kvm->arch.mmu_setup_lock);
5432 	if (radix != kvm_is_radix(kvm)) {
5433 		if (kvm->arch.mmu_ready) {
5434 			kvm->arch.mmu_ready = 0;
5435 			/* order mmu_ready vs. vcpus_running */
5436 			smp_mb();
5437 			if (atomic_read(&kvm->arch.vcpus_running)) {
5438 				kvm->arch.mmu_ready = 1;
5439 				err = -EBUSY;
5440 				goto out_unlock;
5441 			}
5442 		}
5443 		if (radix)
5444 			err = kvmppc_switch_mmu_to_radix(kvm);
5445 		else
5446 			err = kvmppc_switch_mmu_to_hpt(kvm);
5447 		if (err)
5448 			goto out_unlock;
5449 	}
5450 
5451 	kvm->arch.process_table = cfg->process_table;
5452 	kvmppc_setup_partition_table(kvm);
5453 
5454 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5455 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5456 	err = 0;
5457 
5458  out_unlock:
5459 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5460 	return err;
5461 }
5462 
5463 static int kvmhv_enable_nested(struct kvm *kvm)
5464 {
5465 	if (!nested)
5466 		return -EPERM;
5467 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5468 		return -ENODEV;
5469 
5470 	/* kvm == NULL means the caller is testing if the capability exists */
5471 	if (kvm)
5472 		kvm->arch.nested_enable = true;
5473 	return 0;
5474 }
5475 
5476 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5477 				 int size)
5478 {
5479 	int rc = -EINVAL;
5480 
5481 	if (kvmhv_vcpu_is_radix(vcpu)) {
5482 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5483 
5484 		if (rc > 0)
5485 			rc = -EINVAL;
5486 	}
5487 
5488 	/* For now quadrants are the only way to access nested guest memory */
5489 	if (rc && vcpu->arch.nested)
5490 		rc = -EAGAIN;
5491 
5492 	return rc;
5493 }
5494 
5495 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5496 				int size)
5497 {
5498 	int rc = -EINVAL;
5499 
5500 	if (kvmhv_vcpu_is_radix(vcpu)) {
5501 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5502 
5503 		if (rc > 0)
5504 			rc = -EINVAL;
5505 	}
5506 
5507 	/* For now quadrants are the only way to access nested guest memory */
5508 	if (rc && vcpu->arch.nested)
5509 		rc = -EAGAIN;
5510 
5511 	return rc;
5512 }
5513 
5514 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5515 {
5516 	unpin_vpa(kvm, vpa);
5517 	vpa->gpa = 0;
5518 	vpa->pinned_addr = NULL;
5519 	vpa->dirty = false;
5520 	vpa->update_pending = 0;
5521 }
5522 
5523 /*
5524  * Enable a guest to become a secure VM, or test whether
5525  * that could be enabled.
5526  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5527  * tested (kvm == NULL) or enabled (kvm != NULL).
5528  */
5529 static int kvmhv_enable_svm(struct kvm *kvm)
5530 {
5531 	if (!kvmppc_uvmem_available())
5532 		return -EINVAL;
5533 	if (kvm)
5534 		kvm->arch.svm_enabled = 1;
5535 	return 0;
5536 }
5537 
5538 /*
5539  *  IOCTL handler to turn off secure mode of guest
5540  *
5541  * - Release all device pages
5542  * - Issue ucall to terminate the guest on the UV side
5543  * - Unpin the VPA pages.
5544  * - Reinit the partition scoped page tables
5545  */
5546 static int kvmhv_svm_off(struct kvm *kvm)
5547 {
5548 	struct kvm_vcpu *vcpu;
5549 	int mmu_was_ready;
5550 	int srcu_idx;
5551 	int ret = 0;
5552 	int i;
5553 
5554 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5555 		return ret;
5556 
5557 	mutex_lock(&kvm->arch.mmu_setup_lock);
5558 	mmu_was_ready = kvm->arch.mmu_ready;
5559 	if (kvm->arch.mmu_ready) {
5560 		kvm->arch.mmu_ready = 0;
5561 		/* order mmu_ready vs. vcpus_running */
5562 		smp_mb();
5563 		if (atomic_read(&kvm->arch.vcpus_running)) {
5564 			kvm->arch.mmu_ready = 1;
5565 			ret = -EBUSY;
5566 			goto out;
5567 		}
5568 	}
5569 
5570 	srcu_idx = srcu_read_lock(&kvm->srcu);
5571 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5572 		struct kvm_memory_slot *memslot;
5573 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5574 
5575 		if (!slots)
5576 			continue;
5577 
5578 		kvm_for_each_memslot(memslot, slots) {
5579 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
5580 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5581 		}
5582 	}
5583 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5584 
5585 	ret = uv_svm_terminate(kvm->arch.lpid);
5586 	if (ret != U_SUCCESS) {
5587 		ret = -EINVAL;
5588 		goto out;
5589 	}
5590 
5591 	/*
5592 	 * When secure guest is reset, all the guest pages are sent
5593 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5594 	 * chance to run and unpin their VPA pages. Unpinning of all
5595 	 * VPA pages is done here explicitly so that VPA pages
5596 	 * can be migrated to the secure side.
5597 	 *
5598 	 * This is required to for the secure SMP guest to reboot
5599 	 * correctly.
5600 	 */
5601 	kvm_for_each_vcpu(i, vcpu, kvm) {
5602 		spin_lock(&vcpu->arch.vpa_update_lock);
5603 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5604 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5605 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5606 		spin_unlock(&vcpu->arch.vpa_update_lock);
5607 	}
5608 
5609 	kvmppc_setup_partition_table(kvm);
5610 	kvm->arch.secure_guest = 0;
5611 	kvm->arch.mmu_ready = mmu_was_ready;
5612 out:
5613 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5614 	return ret;
5615 }
5616 
5617 static int kvmhv_enable_dawr1(struct kvm *kvm)
5618 {
5619 	if (!cpu_has_feature(CPU_FTR_DAWR1))
5620 		return -ENODEV;
5621 
5622 	/* kvm == NULL means the caller is testing if the capability exists */
5623 	if (kvm)
5624 		kvm->arch.dawr1_enabled = true;
5625 	return 0;
5626 }
5627 
5628 static bool kvmppc_hash_v3_possible(void)
5629 {
5630 	if (radix_enabled() && no_mixing_hpt_and_radix)
5631 		return false;
5632 
5633 	return cpu_has_feature(CPU_FTR_ARCH_300) &&
5634 		cpu_has_feature(CPU_FTR_HVMODE);
5635 }
5636 
5637 static struct kvmppc_ops kvm_ops_hv = {
5638 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5639 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5640 	.get_one_reg = kvmppc_get_one_reg_hv,
5641 	.set_one_reg = kvmppc_set_one_reg_hv,
5642 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5643 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5644 	.inject_interrupt = kvmppc_inject_interrupt_hv,
5645 	.set_msr     = kvmppc_set_msr_hv,
5646 	.vcpu_run    = kvmppc_vcpu_run_hv,
5647 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5648 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5649 	.check_requests = kvmppc_core_check_requests_hv,
5650 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5651 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5652 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5653 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5654 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5655 	.age_hva  = kvm_age_hva_hv,
5656 	.test_age_hva = kvm_test_age_hva_hv,
5657 	.set_spte_hva = kvm_set_spte_hva_hv,
5658 	.free_memslot = kvmppc_core_free_memslot_hv,
5659 	.init_vm =  kvmppc_core_init_vm_hv,
5660 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5661 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5662 	.emulate_op = kvmppc_core_emulate_op_hv,
5663 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5664 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5665 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5666 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5667 	.hcall_implemented = kvmppc_hcall_impl_hv,
5668 #ifdef CONFIG_KVM_XICS
5669 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5670 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5671 #endif
5672 	.configure_mmu = kvmhv_configure_mmu,
5673 	.get_rmmu_info = kvmhv_get_rmmu_info,
5674 	.set_smt_mode = kvmhv_set_smt_mode,
5675 	.enable_nested = kvmhv_enable_nested,
5676 	.load_from_eaddr = kvmhv_load_from_eaddr,
5677 	.store_to_eaddr = kvmhv_store_to_eaddr,
5678 	.enable_svm = kvmhv_enable_svm,
5679 	.svm_off = kvmhv_svm_off,
5680 	.enable_dawr1 = kvmhv_enable_dawr1,
5681 	.hash_v3_possible = kvmppc_hash_v3_possible,
5682 };
5683 
5684 static int kvm_init_subcore_bitmap(void)
5685 {
5686 	int i, j;
5687 	int nr_cores = cpu_nr_cores();
5688 	struct sibling_subcore_state *sibling_subcore_state;
5689 
5690 	for (i = 0; i < nr_cores; i++) {
5691 		int first_cpu = i * threads_per_core;
5692 		int node = cpu_to_node(first_cpu);
5693 
5694 		/* Ignore if it is already allocated. */
5695 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5696 			continue;
5697 
5698 		sibling_subcore_state =
5699 			kzalloc_node(sizeof(struct sibling_subcore_state),
5700 							GFP_KERNEL, node);
5701 		if (!sibling_subcore_state)
5702 			return -ENOMEM;
5703 
5704 
5705 		for (j = 0; j < threads_per_core; j++) {
5706 			int cpu = first_cpu + j;
5707 
5708 			paca_ptrs[cpu]->sibling_subcore_state =
5709 						sibling_subcore_state;
5710 		}
5711 	}
5712 	return 0;
5713 }
5714 
5715 static int kvmppc_radix_possible(void)
5716 {
5717 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5718 }
5719 
5720 static int kvmppc_book3s_init_hv(void)
5721 {
5722 	int r;
5723 
5724 	if (!tlbie_capable) {
5725 		pr_err("KVM-HV: Host does not support TLBIE\n");
5726 		return -ENODEV;
5727 	}
5728 
5729 	/*
5730 	 * FIXME!! Do we need to check on all cpus ?
5731 	 */
5732 	r = kvmppc_core_check_processor_compat_hv();
5733 	if (r < 0)
5734 		return -ENODEV;
5735 
5736 	r = kvmhv_nested_init();
5737 	if (r)
5738 		return r;
5739 
5740 	r = kvm_init_subcore_bitmap();
5741 	if (r)
5742 		return r;
5743 
5744 	/*
5745 	 * We need a way of accessing the XICS interrupt controller,
5746 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5747 	 * indirectly, via OPAL.
5748 	 */
5749 #ifdef CONFIG_SMP
5750 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5751 	    !local_paca->kvm_hstate.xics_phys) {
5752 		struct device_node *np;
5753 
5754 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5755 		if (!np) {
5756 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5757 			return -ENODEV;
5758 		}
5759 		/* presence of intc confirmed - node can be dropped again */
5760 		of_node_put(np);
5761 	}
5762 #endif
5763 
5764 	kvm_ops_hv.owner = THIS_MODULE;
5765 	kvmppc_hv_ops = &kvm_ops_hv;
5766 
5767 	init_default_hcalls();
5768 
5769 	init_vcore_lists();
5770 
5771 	r = kvmppc_mmu_hv_init();
5772 	if (r)
5773 		return r;
5774 
5775 	if (kvmppc_radix_possible())
5776 		r = kvmppc_radix_init();
5777 
5778 	/*
5779 	 * POWER9 chips before version 2.02 can't have some threads in
5780 	 * HPT mode and some in radix mode on the same core.
5781 	 */
5782 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5783 		unsigned int pvr = mfspr(SPRN_PVR);
5784 		if ((pvr >> 16) == PVR_POWER9 &&
5785 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5786 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5787 			no_mixing_hpt_and_radix = true;
5788 	}
5789 
5790 	r = kvmppc_uvmem_init();
5791 	if (r < 0)
5792 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5793 
5794 	return r;
5795 }
5796 
5797 static void kvmppc_book3s_exit_hv(void)
5798 {
5799 	kvmppc_uvmem_free();
5800 	kvmppc_free_host_rm_ops();
5801 	if (kvmppc_radix_possible())
5802 		kvmppc_radix_exit();
5803 	kvmppc_hv_ops = NULL;
5804 	kvmhv_nested_exit();
5805 }
5806 
5807 module_init(kvmppc_book3s_init_hv);
5808 module_exit(kvmppc_book3s_exit_hv);
5809 MODULE_LICENSE("GPL");
5810 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5811 MODULE_ALIAS("devname:kvm");
5812