xref: /openbmc/linux/arch/powerpc/kexec/core_64.c (revision 4e541b06b0e8ae6ebd85a913dba8db43d3ce6fe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PPC64 code to handle Linux booting another kernel.
4  *
5  * Copyright (C) 2004-2005, IBM Corp.
6  *
7  * Created by: Milton D Miller II
8  */
9 
10 
11 #include <linux/kexec.h>
12 #include <linux/smp.h>
13 #include <linux/thread_info.h>
14 #include <linux/init_task.h>
15 #include <linux/errno.h>
16 #include <linux/kernel.h>
17 #include <linux/cpu.h>
18 #include <linux/hardirq.h>
19 
20 #include <asm/page.h>
21 #include <asm/current.h>
22 #include <asm/machdep.h>
23 #include <asm/cacheflush.h>
24 #include <asm/firmware.h>
25 #include <asm/paca.h>
26 #include <asm/mmu.h>
27 #include <asm/sections.h>	/* _end */
28 #include <asm/prom.h>
29 #include <asm/smp.h>
30 #include <asm/hw_breakpoint.h>
31 #include <asm/asm-prototypes.h>
32 #include <asm/svm.h>
33 #include <asm/ultravisor.h>
34 
35 int machine_kexec_prepare(struct kimage *image)
36 {
37 	int i;
38 	unsigned long begin, end;	/* limits of segment */
39 	unsigned long low, high;	/* limits of blocked memory range */
40 	struct device_node *node;
41 	const unsigned long *basep;
42 	const unsigned int *sizep;
43 
44 	/*
45 	 * Since we use the kernel fault handlers and paging code to
46 	 * handle the virtual mode, we must make sure no destination
47 	 * overlaps kernel static data or bss.
48 	 */
49 	for (i = 0; i < image->nr_segments; i++)
50 		if (image->segment[i].mem < __pa(_end))
51 			return -ETXTBSY;
52 
53 	/* We also should not overwrite the tce tables */
54 	for_each_node_by_type(node, "pci") {
55 		basep = of_get_property(node, "linux,tce-base", NULL);
56 		sizep = of_get_property(node, "linux,tce-size", NULL);
57 		if (basep == NULL || sizep == NULL)
58 			continue;
59 
60 		low = *basep;
61 		high = low + (*sizep);
62 
63 		for (i = 0; i < image->nr_segments; i++) {
64 			begin = image->segment[i].mem;
65 			end = begin + image->segment[i].memsz;
66 
67 			if ((begin < high) && (end > low)) {
68 				of_node_put(node);
69 				return -ETXTBSY;
70 			}
71 		}
72 	}
73 
74 	return 0;
75 }
76 
77 /* Called during kexec sequence with MMU off */
78 static notrace void copy_segments(unsigned long ind)
79 {
80 	unsigned long entry;
81 	unsigned long *ptr;
82 	void *dest;
83 	void *addr;
84 
85 	/*
86 	 * We rely on kexec_load to create a lists that properly
87 	 * initializes these pointers before they are used.
88 	 * We will still crash if the list is wrong, but at least
89 	 * the compiler will be quiet.
90 	 */
91 	ptr = NULL;
92 	dest = NULL;
93 
94 	for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
95 		addr = __va(entry & PAGE_MASK);
96 
97 		switch (entry & IND_FLAGS) {
98 		case IND_DESTINATION:
99 			dest = addr;
100 			break;
101 		case IND_INDIRECTION:
102 			ptr = addr;
103 			break;
104 		case IND_SOURCE:
105 			copy_page(dest, addr);
106 			dest += PAGE_SIZE;
107 		}
108 	}
109 }
110 
111 /* Called during kexec sequence with MMU off */
112 notrace void kexec_copy_flush(struct kimage *image)
113 {
114 	long i, nr_segments = image->nr_segments;
115 	struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
116 
117 	/* save the ranges on the stack to efficiently flush the icache */
118 	memcpy(ranges, image->segment, sizeof(ranges));
119 
120 	/*
121 	 * After this call we may not use anything allocated in dynamic
122 	 * memory, including *image.
123 	 *
124 	 * Only globals and the stack are allowed.
125 	 */
126 	copy_segments(image->head);
127 
128 	/*
129 	 * we need to clear the icache for all dest pages sometime,
130 	 * including ones that were in place on the original copy
131 	 */
132 	for (i = 0; i < nr_segments; i++)
133 		flush_icache_range((unsigned long)__va(ranges[i].mem),
134 			(unsigned long)__va(ranges[i].mem + ranges[i].memsz));
135 }
136 
137 #ifdef CONFIG_SMP
138 
139 static int kexec_all_irq_disabled = 0;
140 
141 static void kexec_smp_down(void *arg)
142 {
143 	local_irq_disable();
144 	hard_irq_disable();
145 
146 	mb(); /* make sure our irqs are disabled before we say they are */
147 	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
148 	while(kexec_all_irq_disabled == 0)
149 		cpu_relax();
150 	mb(); /* make sure all irqs are disabled before this */
151 	hw_breakpoint_disable();
152 	/*
153 	 * Now every CPU has IRQs off, we can clear out any pending
154 	 * IPIs and be sure that no more will come in after this.
155 	 */
156 	if (ppc_md.kexec_cpu_down)
157 		ppc_md.kexec_cpu_down(0, 1);
158 
159 	reset_sprs();
160 
161 	kexec_smp_wait();
162 	/* NOTREACHED */
163 }
164 
165 static void kexec_prepare_cpus_wait(int wait_state)
166 {
167 	int my_cpu, i, notified=-1;
168 
169 	hw_breakpoint_disable();
170 	my_cpu = get_cpu();
171 	/* Make sure each CPU has at least made it to the state we need.
172 	 *
173 	 * FIXME: There is a (slim) chance of a problem if not all of the CPUs
174 	 * are correctly onlined.  If somehow we start a CPU on boot with RTAS
175 	 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
176 	 * time, the boot CPU will timeout.  If it does eventually execute
177 	 * stuff, the secondary will start up (paca_ptrs[]->cpu_start was
178 	 * written) and get into a peculiar state.
179 	 * If the platform supports smp_ops->take_timebase(), the secondary CPU
180 	 * will probably be spinning in there.  If not (i.e. pseries), the
181 	 * secondary will continue on and try to online itself/idle/etc. If it
182 	 * survives that, we need to find these
183 	 * possible-but-not-online-but-should-be CPUs and chaperone them into
184 	 * kexec_smp_wait().
185 	 */
186 	for_each_online_cpu(i) {
187 		if (i == my_cpu)
188 			continue;
189 
190 		while (paca_ptrs[i]->kexec_state < wait_state) {
191 			barrier();
192 			if (i != notified) {
193 				printk(KERN_INFO "kexec: waiting for cpu %d "
194 				       "(physical %d) to enter %i state\n",
195 				       i, paca_ptrs[i]->hw_cpu_id, wait_state);
196 				notified = i;
197 			}
198 		}
199 	}
200 	mb();
201 }
202 
203 /*
204  * We need to make sure each present CPU is online.  The next kernel will scan
205  * the device tree and assume primary threads are online and query secondary
206  * threads via RTAS to online them if required.  If we don't online primary
207  * threads, they will be stuck.  However, we also online secondary threads as we
208  * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
209  * threads as offline -- and again, these CPUs will be stuck.
210  *
211  * So, we online all CPUs that should be running, including secondary threads.
212  */
213 static void wake_offline_cpus(void)
214 {
215 	int cpu = 0;
216 
217 	for_each_present_cpu(cpu) {
218 		if (!cpu_online(cpu)) {
219 			printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
220 			       cpu);
221 			WARN_ON(add_cpu(cpu));
222 		}
223 	}
224 }
225 
226 static void kexec_prepare_cpus(void)
227 {
228 	wake_offline_cpus();
229 	smp_call_function(kexec_smp_down, NULL, /* wait */0);
230 	local_irq_disable();
231 	hard_irq_disable();
232 
233 	mb(); /* make sure IRQs are disabled before we say they are */
234 	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
235 
236 	kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
237 	/* we are sure every CPU has IRQs off at this point */
238 	kexec_all_irq_disabled = 1;
239 
240 	/*
241 	 * Before removing MMU mappings make sure all CPUs have entered real
242 	 * mode:
243 	 */
244 	kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
245 
246 	/* after we tell the others to go down */
247 	if (ppc_md.kexec_cpu_down)
248 		ppc_md.kexec_cpu_down(0, 0);
249 
250 	put_cpu();
251 }
252 
253 #else /* ! SMP */
254 
255 static void kexec_prepare_cpus(void)
256 {
257 	/*
258 	 * move the secondarys to us so that we can copy
259 	 * the new kernel 0-0x100 safely
260 	 *
261 	 * do this if kexec in setup.c ?
262 	 *
263 	 * We need to release the cpus if we are ever going from an
264 	 * UP to an SMP kernel.
265 	 */
266 	smp_release_cpus();
267 	if (ppc_md.kexec_cpu_down)
268 		ppc_md.kexec_cpu_down(0, 0);
269 	local_irq_disable();
270 	hard_irq_disable();
271 }
272 
273 #endif /* SMP */
274 
275 /*
276  * kexec thread structure and stack.
277  *
278  * We need to make sure that this is 16384-byte aligned due to the
279  * way process stacks are handled.  It also must be statically allocated
280  * or allocated as part of the kimage, because everything else may be
281  * overwritten when we copy the kexec image.  We piggyback on the
282  * "init_task" linker section here to statically allocate a stack.
283  *
284  * We could use a smaller stack if we don't care about anything using
285  * current, but that audit has not been performed.
286  */
287 static union thread_union kexec_stack __init_task_data =
288 	{ };
289 
290 /*
291  * For similar reasons to the stack above, the kexecing CPU needs to be on a
292  * static PACA; we switch to kexec_paca.
293  */
294 struct paca_struct kexec_paca;
295 
296 /* Our assembly helper, in misc_64.S */
297 extern void kexec_sequence(void *newstack, unsigned long start,
298 			   void *image, void *control,
299 			   void (*clear_all)(void),
300 			   bool copy_with_mmu_off) __noreturn;
301 
302 /* too late to fail here */
303 void default_machine_kexec(struct kimage *image)
304 {
305 	bool copy_with_mmu_off;
306 
307 	/* prepare control code if any */
308 
309 	/*
310         * If the kexec boot is the normal one, need to shutdown other cpus
311         * into our wait loop and quiesce interrupts.
312         * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
313         * stopping other CPUs and collecting their pt_regs is done before
314         * using debugger IPI.
315         */
316 
317 	if (!kdump_in_progress())
318 		kexec_prepare_cpus();
319 
320 	printk("kexec: Starting switchover sequence.\n");
321 
322 	/* switch to a staticly allocated stack.  Based on irq stack code.
323 	 * We setup preempt_count to avoid using VMX in memcpy.
324 	 * XXX: the task struct will likely be invalid once we do the copy!
325 	 */
326 	current_thread_info()->flags = 0;
327 	current_thread_info()->preempt_count = HARDIRQ_OFFSET;
328 
329 	/* We need a static PACA, too; copy this CPU's PACA over and switch to
330 	 * it. Also poison per_cpu_offset and NULL lppaca to catch anyone using
331 	 * non-static data.
332 	 */
333 	memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
334 	kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
335 #ifdef CONFIG_PPC_PSERIES
336 	kexec_paca.lppaca_ptr = NULL;
337 #endif
338 
339 	if (is_secure_guest() && !(image->preserve_context ||
340 				   image->type == KEXEC_TYPE_CRASH)) {
341 		uv_unshare_all_pages();
342 		printk("kexec: Unshared all shared pages.\n");
343 	}
344 
345 	paca_ptrs[kexec_paca.paca_index] = &kexec_paca;
346 
347 	setup_paca(&kexec_paca);
348 
349 	/*
350 	 * The lppaca should be unregistered at this point so the HV won't
351 	 * touch it. In the case of a crash, none of the lppacas are
352 	 * unregistered so there is not much we can do about it here.
353 	 */
354 
355 	/*
356 	 * On Book3S, the copy must happen with the MMU off if we are either
357 	 * using Radix page tables or we are not in an LPAR since we can
358 	 * overwrite the page tables while copying.
359 	 *
360 	 * In an LPAR, we keep the MMU on otherwise we can't access beyond
361 	 * the RMA. On BookE there is no real MMU off mode, so we have to
362 	 * keep it enabled as well (but then we have bolted TLB entries).
363 	 */
364 #ifdef CONFIG_PPC_BOOK3E
365 	copy_with_mmu_off = false;
366 #else
367 	copy_with_mmu_off = radix_enabled() ||
368 		!(firmware_has_feature(FW_FEATURE_LPAR) ||
369 		  firmware_has_feature(FW_FEATURE_PS3_LV1));
370 #endif
371 
372 	/* Some things are best done in assembly.  Finding globals with
373 	 * a toc is easier in C, so pass in what we can.
374 	 */
375 	kexec_sequence(&kexec_stack, image->start, image,
376 		       page_address(image->control_code_page),
377 		       mmu_cleanup_all, copy_with_mmu_off);
378 	/* NOTREACHED */
379 }
380 
381 #ifdef CONFIG_PPC_64S_HASH_MMU
382 /* Values we need to export to the second kernel via the device tree. */
383 static unsigned long htab_base;
384 static unsigned long htab_size;
385 
386 static struct property htab_base_prop = {
387 	.name = "linux,htab-base",
388 	.length = sizeof(unsigned long),
389 	.value = &htab_base,
390 };
391 
392 static struct property htab_size_prop = {
393 	.name = "linux,htab-size",
394 	.length = sizeof(unsigned long),
395 	.value = &htab_size,
396 };
397 
398 static int __init export_htab_values(void)
399 {
400 	struct device_node *node;
401 
402 	/* On machines with no htab htab_address is NULL */
403 	if (!htab_address)
404 		return -ENODEV;
405 
406 	node = of_find_node_by_path("/chosen");
407 	if (!node)
408 		return -ENODEV;
409 
410 	/* remove any stale propertys so ours can be found */
411 	of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL));
412 	of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL));
413 
414 	htab_base = cpu_to_be64(__pa(htab_address));
415 	of_add_property(node, &htab_base_prop);
416 	htab_size = cpu_to_be64(htab_size_bytes);
417 	of_add_property(node, &htab_size_prop);
418 
419 	of_node_put(node);
420 	return 0;
421 }
422 late_initcall(export_htab_values);
423 #endif /* CONFIG_PPC_64S_HASH_MMU */
424