xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64 
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82 
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89 
90 /*
91  * Trap & Exception support
92  */
93 
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 	mutex_lock(&pmac_backlight_mutex);
98 	if (pmac_backlight) {
99 		struct backlight_properties *props;
100 
101 		props = &pmac_backlight->props;
102 		props->brightness = props->max_brightness;
103 		props->power = FB_BLANK_UNBLANK;
104 		backlight_update_status(pmac_backlight);
105 	}
106 	mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111 
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116 
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 	int cpu;
120 	unsigned long flags;
121 
122 	if (debugger(regs))
123 		return 1;
124 
125 	oops_enter();
126 
127 	/* racy, but better than risking deadlock. */
128 	raw_local_irq_save(flags);
129 	cpu = smp_processor_id();
130 	if (!arch_spin_trylock(&die_lock)) {
131 		if (cpu == die_owner)
132 			/* nested oops. should stop eventually */;
133 		else
134 			arch_spin_lock(&die_lock);
135 	}
136 	die_nest_count++;
137 	die_owner = cpu;
138 	console_verbose();
139 	bust_spinlocks(1);
140 	if (machine_is(powermac))
141 		pmac_backlight_unblank();
142 	return flags;
143 }
144 
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 			       int signr)
147 {
148 	bust_spinlocks(0);
149 	die_owner = -1;
150 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 	die_nest_count--;
152 	oops_exit();
153 	printk("\n");
154 	if (!die_nest_count)
155 		/* Nest count reaches zero, release the lock. */
156 		arch_spin_unlock(&die_lock);
157 	raw_local_irq_restore(flags);
158 
159 	crash_fadump(regs, "die oops");
160 
161 	/*
162 	 * A system reset (0x100) is a request to dump, so we always send
163 	 * it through the crashdump code.
164 	 */
165 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 		crash_kexec(regs);
167 
168 		/*
169 		 * We aren't the primary crash CPU. We need to send it
170 		 * to a holding pattern to avoid it ending up in the panic
171 		 * code.
172 		 */
173 		crash_kexec_secondary(regs);
174 	}
175 
176 	if (!signr)
177 		return;
178 
179 	/*
180 	 * While our oops output is serialised by a spinlock, output
181 	 * from panic() called below can race and corrupt it. If we
182 	 * know we are going to panic, delay for 1 second so we have a
183 	 * chance to get clean backtraces from all CPUs that are oopsing.
184 	 */
185 	if (in_interrupt() || panic_on_oops || !current->pid ||
186 	    is_global_init(current)) {
187 		mdelay(MSEC_PER_SEC);
188 	}
189 
190 	if (in_interrupt())
191 		panic("Fatal exception in interrupt");
192 	if (panic_on_oops)
193 		panic("Fatal exception");
194 	do_exit(signr);
195 }
196 
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 	printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 	printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 	printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 	printk("NUMA ");
211 #endif
212 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
213 
214 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 		return 1;
216 
217 	print_modules();
218 	show_regs(regs);
219 
220 	return 0;
221 }
222 
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 	unsigned long flags = oops_begin(regs);
226 
227 	if (__die(str, regs, err))
228 		err = 0;
229 	oops_end(flags, regs, err);
230 }
231 
232 void user_single_step_siginfo(struct task_struct *tsk,
233 				struct pt_regs *regs, siginfo_t *info)
234 {
235 	memset(info, 0, sizeof(*info));
236 	info->si_signo = SIGTRAP;
237 	info->si_code = TRAP_TRACE;
238 	info->si_addr = (void __user *)regs->nip;
239 }
240 
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 	siginfo_t info;
244 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 			"at %08lx nip %08lx lr %08lx code %x\n";
246 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 			"at %016lx nip %016lx lr %016lx code %x\n";
248 
249 	if (!user_mode(regs)) {
250 		die("Exception in kernel mode", regs, signr);
251 		return;
252 	}
253 
254 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 				   current->comm, current->pid, signr,
257 				   addr, regs->nip, regs->link, code);
258 	}
259 
260 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 		local_irq_enable();
262 
263 	current->thread.trap_nr = code;
264 	memset(&info, 0, sizeof(info));
265 	info.si_signo = signr;
266 	info.si_code = code;
267 	info.si_addr = (void __user *) addr;
268 	force_sig_info(signr, &info, current);
269 }
270 
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 	/* See if any machine dependent calls */
275 	if (ppc_md.system_reset_exception) {
276 		if (ppc_md.system_reset_exception(regs))
277 			return;
278 	}
279 
280 	die("System Reset", regs, SIGABRT);
281 
282 	/* Must die if the interrupt is not recoverable */
283 	if (!(regs->msr & MSR_RI))
284 		panic("Unrecoverable System Reset");
285 
286 	/* What should we do here? We could issue a shutdown or hard reset. */
287 }
288 
289 /*
290  * This function is called in real mode. Strictly no printk's please.
291  *
292  * regs->nip and regs->msr contains srr0 and ssr1.
293  */
294 long machine_check_early(struct pt_regs *regs)
295 {
296 	long handled = 0;
297 
298 	__this_cpu_inc(irq_stat.mce_exceptions);
299 
300 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
301 
302 	if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
303 		handled = cur_cpu_spec->machine_check_early(regs);
304 	return handled;
305 }
306 
307 long hmi_exception_realmode(struct pt_regs *regs)
308 {
309 	__this_cpu_inc(irq_stat.hmi_exceptions);
310 
311 	if (ppc_md.hmi_exception_early)
312 		ppc_md.hmi_exception_early(regs);
313 
314 	return 0;
315 }
316 
317 #endif
318 
319 /*
320  * I/O accesses can cause machine checks on powermacs.
321  * Check if the NIP corresponds to the address of a sync
322  * instruction for which there is an entry in the exception
323  * table.
324  * Note that the 601 only takes a machine check on TEA
325  * (transfer error ack) signal assertion, and does not
326  * set any of the top 16 bits of SRR1.
327  *  -- paulus.
328  */
329 static inline int check_io_access(struct pt_regs *regs)
330 {
331 #ifdef CONFIG_PPC32
332 	unsigned long msr = regs->msr;
333 	const struct exception_table_entry *entry;
334 	unsigned int *nip = (unsigned int *)regs->nip;
335 
336 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
337 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
338 		/*
339 		 * Check that it's a sync instruction, or somewhere
340 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
341 		 * As the address is in the exception table
342 		 * we should be able to read the instr there.
343 		 * For the debug message, we look at the preceding
344 		 * load or store.
345 		 */
346 		if (*nip == 0x60000000)		/* nop */
347 			nip -= 2;
348 		else if (*nip == 0x4c00012c)	/* isync */
349 			--nip;
350 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
351 			/* sync or twi */
352 			unsigned int rb;
353 
354 			--nip;
355 			rb = (*nip >> 11) & 0x1f;
356 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
357 			       (*nip & 0x100)? "OUT to": "IN from",
358 			       regs->gpr[rb] - _IO_BASE, nip);
359 			regs->msr |= MSR_RI;
360 			regs->nip = entry->fixup;
361 			return 1;
362 		}
363 	}
364 #endif /* CONFIG_PPC32 */
365 	return 0;
366 }
367 
368 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
369 /* On 4xx, the reason for the machine check or program exception
370    is in the ESR. */
371 #define get_reason(regs)	((regs)->dsisr)
372 #ifndef CONFIG_FSL_BOOKE
373 #define get_mc_reason(regs)	((regs)->dsisr)
374 #else
375 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
376 #endif
377 #define REASON_FP		ESR_FP
378 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
379 #define REASON_PRIVILEGED	ESR_PPR
380 #define REASON_TRAP		ESR_PTR
381 
382 /* single-step stuff */
383 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
384 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
385 
386 #else
387 /* On non-4xx, the reason for the machine check or program
388    exception is in the MSR. */
389 #define get_reason(regs)	((regs)->msr)
390 #define get_mc_reason(regs)	((regs)->msr)
391 #define REASON_TM		0x200000
392 #define REASON_FP		0x100000
393 #define REASON_ILLEGAL		0x80000
394 #define REASON_PRIVILEGED	0x40000
395 #define REASON_TRAP		0x20000
396 
397 #define single_stepping(regs)	((regs)->msr & MSR_SE)
398 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
399 #endif
400 
401 #if defined(CONFIG_4xx)
402 int machine_check_4xx(struct pt_regs *regs)
403 {
404 	unsigned long reason = get_mc_reason(regs);
405 
406 	if (reason & ESR_IMCP) {
407 		printk("Instruction");
408 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
409 	} else
410 		printk("Data");
411 	printk(" machine check in kernel mode.\n");
412 
413 	return 0;
414 }
415 
416 int machine_check_440A(struct pt_regs *regs)
417 {
418 	unsigned long reason = get_mc_reason(regs);
419 
420 	printk("Machine check in kernel mode.\n");
421 	if (reason & ESR_IMCP){
422 		printk("Instruction Synchronous Machine Check exception\n");
423 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
424 	}
425 	else {
426 		u32 mcsr = mfspr(SPRN_MCSR);
427 		if (mcsr & MCSR_IB)
428 			printk("Instruction Read PLB Error\n");
429 		if (mcsr & MCSR_DRB)
430 			printk("Data Read PLB Error\n");
431 		if (mcsr & MCSR_DWB)
432 			printk("Data Write PLB Error\n");
433 		if (mcsr & MCSR_TLBP)
434 			printk("TLB Parity Error\n");
435 		if (mcsr & MCSR_ICP){
436 			flush_instruction_cache();
437 			printk("I-Cache Parity Error\n");
438 		}
439 		if (mcsr & MCSR_DCSP)
440 			printk("D-Cache Search Parity Error\n");
441 		if (mcsr & MCSR_DCFP)
442 			printk("D-Cache Flush Parity Error\n");
443 		if (mcsr & MCSR_IMPE)
444 			printk("Machine Check exception is imprecise\n");
445 
446 		/* Clear MCSR */
447 		mtspr(SPRN_MCSR, mcsr);
448 	}
449 	return 0;
450 }
451 
452 int machine_check_47x(struct pt_regs *regs)
453 {
454 	unsigned long reason = get_mc_reason(regs);
455 	u32 mcsr;
456 
457 	printk(KERN_ERR "Machine check in kernel mode.\n");
458 	if (reason & ESR_IMCP) {
459 		printk(KERN_ERR
460 		       "Instruction Synchronous Machine Check exception\n");
461 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
462 		return 0;
463 	}
464 	mcsr = mfspr(SPRN_MCSR);
465 	if (mcsr & MCSR_IB)
466 		printk(KERN_ERR "Instruction Read PLB Error\n");
467 	if (mcsr & MCSR_DRB)
468 		printk(KERN_ERR "Data Read PLB Error\n");
469 	if (mcsr & MCSR_DWB)
470 		printk(KERN_ERR "Data Write PLB Error\n");
471 	if (mcsr & MCSR_TLBP)
472 		printk(KERN_ERR "TLB Parity Error\n");
473 	if (mcsr & MCSR_ICP) {
474 		flush_instruction_cache();
475 		printk(KERN_ERR "I-Cache Parity Error\n");
476 	}
477 	if (mcsr & MCSR_DCSP)
478 		printk(KERN_ERR "D-Cache Search Parity Error\n");
479 	if (mcsr & PPC47x_MCSR_GPR)
480 		printk(KERN_ERR "GPR Parity Error\n");
481 	if (mcsr & PPC47x_MCSR_FPR)
482 		printk(KERN_ERR "FPR Parity Error\n");
483 	if (mcsr & PPC47x_MCSR_IPR)
484 		printk(KERN_ERR "Machine Check exception is imprecise\n");
485 
486 	/* Clear MCSR */
487 	mtspr(SPRN_MCSR, mcsr);
488 
489 	return 0;
490 }
491 #elif defined(CONFIG_E500)
492 int machine_check_e500mc(struct pt_regs *regs)
493 {
494 	unsigned long mcsr = mfspr(SPRN_MCSR);
495 	unsigned long reason = mcsr;
496 	int recoverable = 1;
497 
498 	if (reason & MCSR_LD) {
499 		recoverable = fsl_rio_mcheck_exception(regs);
500 		if (recoverable == 1)
501 			goto silent_out;
502 	}
503 
504 	printk("Machine check in kernel mode.\n");
505 	printk("Caused by (from MCSR=%lx): ", reason);
506 
507 	if (reason & MCSR_MCP)
508 		printk("Machine Check Signal\n");
509 
510 	if (reason & MCSR_ICPERR) {
511 		printk("Instruction Cache Parity Error\n");
512 
513 		/*
514 		 * This is recoverable by invalidating the i-cache.
515 		 */
516 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
517 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
518 			;
519 
520 		/*
521 		 * This will generally be accompanied by an instruction
522 		 * fetch error report -- only treat MCSR_IF as fatal
523 		 * if it wasn't due to an L1 parity error.
524 		 */
525 		reason &= ~MCSR_IF;
526 	}
527 
528 	if (reason & MCSR_DCPERR_MC) {
529 		printk("Data Cache Parity Error\n");
530 
531 		/*
532 		 * In write shadow mode we auto-recover from the error, but it
533 		 * may still get logged and cause a machine check.  We should
534 		 * only treat the non-write shadow case as non-recoverable.
535 		 */
536 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
537 			recoverable = 0;
538 	}
539 
540 	if (reason & MCSR_L2MMU_MHIT) {
541 		printk("Hit on multiple TLB entries\n");
542 		recoverable = 0;
543 	}
544 
545 	if (reason & MCSR_NMI)
546 		printk("Non-maskable interrupt\n");
547 
548 	if (reason & MCSR_IF) {
549 		printk("Instruction Fetch Error Report\n");
550 		recoverable = 0;
551 	}
552 
553 	if (reason & MCSR_LD) {
554 		printk("Load Error Report\n");
555 		recoverable = 0;
556 	}
557 
558 	if (reason & MCSR_ST) {
559 		printk("Store Error Report\n");
560 		recoverable = 0;
561 	}
562 
563 	if (reason & MCSR_LDG) {
564 		printk("Guarded Load Error Report\n");
565 		recoverable = 0;
566 	}
567 
568 	if (reason & MCSR_TLBSYNC)
569 		printk("Simultaneous tlbsync operations\n");
570 
571 	if (reason & MCSR_BSL2_ERR) {
572 		printk("Level 2 Cache Error\n");
573 		recoverable = 0;
574 	}
575 
576 	if (reason & MCSR_MAV) {
577 		u64 addr;
578 
579 		addr = mfspr(SPRN_MCAR);
580 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
581 
582 		printk("Machine Check %s Address: %#llx\n",
583 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
584 	}
585 
586 silent_out:
587 	mtspr(SPRN_MCSR, mcsr);
588 	return mfspr(SPRN_MCSR) == 0 && recoverable;
589 }
590 
591 int machine_check_e500(struct pt_regs *regs)
592 {
593 	unsigned long reason = get_mc_reason(regs);
594 
595 	if (reason & MCSR_BUS_RBERR) {
596 		if (fsl_rio_mcheck_exception(regs))
597 			return 1;
598 		if (fsl_pci_mcheck_exception(regs))
599 			return 1;
600 	}
601 
602 	printk("Machine check in kernel mode.\n");
603 	printk("Caused by (from MCSR=%lx): ", reason);
604 
605 	if (reason & MCSR_MCP)
606 		printk("Machine Check Signal\n");
607 	if (reason & MCSR_ICPERR)
608 		printk("Instruction Cache Parity Error\n");
609 	if (reason & MCSR_DCP_PERR)
610 		printk("Data Cache Push Parity Error\n");
611 	if (reason & MCSR_DCPERR)
612 		printk("Data Cache Parity Error\n");
613 	if (reason & MCSR_BUS_IAERR)
614 		printk("Bus - Instruction Address Error\n");
615 	if (reason & MCSR_BUS_RAERR)
616 		printk("Bus - Read Address Error\n");
617 	if (reason & MCSR_BUS_WAERR)
618 		printk("Bus - Write Address Error\n");
619 	if (reason & MCSR_BUS_IBERR)
620 		printk("Bus - Instruction Data Error\n");
621 	if (reason & MCSR_BUS_RBERR)
622 		printk("Bus - Read Data Bus Error\n");
623 	if (reason & MCSR_BUS_WBERR)
624 		printk("Bus - Write Data Bus Error\n");
625 	if (reason & MCSR_BUS_IPERR)
626 		printk("Bus - Instruction Parity Error\n");
627 	if (reason & MCSR_BUS_RPERR)
628 		printk("Bus - Read Parity Error\n");
629 
630 	return 0;
631 }
632 
633 int machine_check_generic(struct pt_regs *regs)
634 {
635 	return 0;
636 }
637 #elif defined(CONFIG_E200)
638 int machine_check_e200(struct pt_regs *regs)
639 {
640 	unsigned long reason = get_mc_reason(regs);
641 
642 	printk("Machine check in kernel mode.\n");
643 	printk("Caused by (from MCSR=%lx): ", reason);
644 
645 	if (reason & MCSR_MCP)
646 		printk("Machine Check Signal\n");
647 	if (reason & MCSR_CP_PERR)
648 		printk("Cache Push Parity Error\n");
649 	if (reason & MCSR_CPERR)
650 		printk("Cache Parity Error\n");
651 	if (reason & MCSR_EXCP_ERR)
652 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
653 	if (reason & MCSR_BUS_IRERR)
654 		printk("Bus - Read Bus Error on instruction fetch\n");
655 	if (reason & MCSR_BUS_DRERR)
656 		printk("Bus - Read Bus Error on data load\n");
657 	if (reason & MCSR_BUS_WRERR)
658 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
659 
660 	return 0;
661 }
662 #else
663 int machine_check_generic(struct pt_regs *regs)
664 {
665 	unsigned long reason = get_mc_reason(regs);
666 
667 	printk("Machine check in kernel mode.\n");
668 	printk("Caused by (from SRR1=%lx): ", reason);
669 	switch (reason & 0x601F0000) {
670 	case 0x80000:
671 		printk("Machine check signal\n");
672 		break;
673 	case 0:		/* for 601 */
674 	case 0x40000:
675 	case 0x140000:	/* 7450 MSS error and TEA */
676 		printk("Transfer error ack signal\n");
677 		break;
678 	case 0x20000:
679 		printk("Data parity error signal\n");
680 		break;
681 	case 0x10000:
682 		printk("Address parity error signal\n");
683 		break;
684 	case 0x20000000:
685 		printk("L1 Data Cache error\n");
686 		break;
687 	case 0x40000000:
688 		printk("L1 Instruction Cache error\n");
689 		break;
690 	case 0x00100000:
691 		printk("L2 data cache parity error\n");
692 		break;
693 	default:
694 		printk("Unknown values in msr\n");
695 	}
696 	return 0;
697 }
698 #endif /* everything else */
699 
700 void machine_check_exception(struct pt_regs *regs)
701 {
702 	enum ctx_state prev_state = exception_enter();
703 	int recover = 0;
704 
705 	__this_cpu_inc(irq_stat.mce_exceptions);
706 
707 	/* See if any machine dependent calls. In theory, we would want
708 	 * to call the CPU first, and call the ppc_md. one if the CPU
709 	 * one returns a positive number. However there is existing code
710 	 * that assumes the board gets a first chance, so let's keep it
711 	 * that way for now and fix things later. --BenH.
712 	 */
713 	if (ppc_md.machine_check_exception)
714 		recover = ppc_md.machine_check_exception(regs);
715 	else if (cur_cpu_spec->machine_check)
716 		recover = cur_cpu_spec->machine_check(regs);
717 
718 	if (recover > 0)
719 		goto bail;
720 
721 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
722 	/* the qspan pci read routines can cause machine checks -- Cort
723 	 *
724 	 * yuck !!! that totally needs to go away ! There are better ways
725 	 * to deal with that than having a wart in the mcheck handler.
726 	 * -- BenH
727 	 */
728 	bad_page_fault(regs, regs->dar, SIGBUS);
729 	goto bail;
730 #endif
731 
732 	if (debugger_fault_handler(regs))
733 		goto bail;
734 
735 	if (check_io_access(regs))
736 		goto bail;
737 
738 	die("Machine check", regs, SIGBUS);
739 
740 	/* Must die if the interrupt is not recoverable */
741 	if (!(regs->msr & MSR_RI))
742 		panic("Unrecoverable Machine check");
743 
744 bail:
745 	exception_exit(prev_state);
746 }
747 
748 void SMIException(struct pt_regs *regs)
749 {
750 	die("System Management Interrupt", regs, SIGABRT);
751 }
752 
753 void handle_hmi_exception(struct pt_regs *regs)
754 {
755 	struct pt_regs *old_regs;
756 
757 	old_regs = set_irq_regs(regs);
758 	irq_enter();
759 
760 	if (ppc_md.handle_hmi_exception)
761 		ppc_md.handle_hmi_exception(regs);
762 
763 	irq_exit();
764 	set_irq_regs(old_regs);
765 }
766 
767 void unknown_exception(struct pt_regs *regs)
768 {
769 	enum ctx_state prev_state = exception_enter();
770 
771 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
772 	       regs->nip, regs->msr, regs->trap);
773 
774 	_exception(SIGTRAP, regs, 0, 0);
775 
776 	exception_exit(prev_state);
777 }
778 
779 void instruction_breakpoint_exception(struct pt_regs *regs)
780 {
781 	enum ctx_state prev_state = exception_enter();
782 
783 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
784 					5, SIGTRAP) == NOTIFY_STOP)
785 		goto bail;
786 	if (debugger_iabr_match(regs))
787 		goto bail;
788 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
789 
790 bail:
791 	exception_exit(prev_state);
792 }
793 
794 void RunModeException(struct pt_regs *regs)
795 {
796 	_exception(SIGTRAP, regs, 0, 0);
797 }
798 
799 void __kprobes single_step_exception(struct pt_regs *regs)
800 {
801 	enum ctx_state prev_state = exception_enter();
802 
803 	clear_single_step(regs);
804 
805 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
806 					5, SIGTRAP) == NOTIFY_STOP)
807 		goto bail;
808 	if (debugger_sstep(regs))
809 		goto bail;
810 
811 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
812 
813 bail:
814 	exception_exit(prev_state);
815 }
816 
817 /*
818  * After we have successfully emulated an instruction, we have to
819  * check if the instruction was being single-stepped, and if so,
820  * pretend we got a single-step exception.  This was pointed out
821  * by Kumar Gala.  -- paulus
822  */
823 static void emulate_single_step(struct pt_regs *regs)
824 {
825 	if (single_stepping(regs))
826 		single_step_exception(regs);
827 }
828 
829 static inline int __parse_fpscr(unsigned long fpscr)
830 {
831 	int ret = 0;
832 
833 	/* Invalid operation */
834 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
835 		ret = FPE_FLTINV;
836 
837 	/* Overflow */
838 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
839 		ret = FPE_FLTOVF;
840 
841 	/* Underflow */
842 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
843 		ret = FPE_FLTUND;
844 
845 	/* Divide by zero */
846 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
847 		ret = FPE_FLTDIV;
848 
849 	/* Inexact result */
850 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
851 		ret = FPE_FLTRES;
852 
853 	return ret;
854 }
855 
856 static void parse_fpe(struct pt_regs *regs)
857 {
858 	int code = 0;
859 
860 	flush_fp_to_thread(current);
861 
862 	code = __parse_fpscr(current->thread.fp_state.fpscr);
863 
864 	_exception(SIGFPE, regs, code, regs->nip);
865 }
866 
867 /*
868  * Illegal instruction emulation support.  Originally written to
869  * provide the PVR to user applications using the mfspr rd, PVR.
870  * Return non-zero if we can't emulate, or -EFAULT if the associated
871  * memory access caused an access fault.  Return zero on success.
872  *
873  * There are a couple of ways to do this, either "decode" the instruction
874  * or directly match lots of bits.  In this case, matching lots of
875  * bits is faster and easier.
876  *
877  */
878 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
879 {
880 	u8 rT = (instword >> 21) & 0x1f;
881 	u8 rA = (instword >> 16) & 0x1f;
882 	u8 NB_RB = (instword >> 11) & 0x1f;
883 	u32 num_bytes;
884 	unsigned long EA;
885 	int pos = 0;
886 
887 	/* Early out if we are an invalid form of lswx */
888 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
889 		if ((rT == rA) || (rT == NB_RB))
890 			return -EINVAL;
891 
892 	EA = (rA == 0) ? 0 : regs->gpr[rA];
893 
894 	switch (instword & PPC_INST_STRING_MASK) {
895 		case PPC_INST_LSWX:
896 		case PPC_INST_STSWX:
897 			EA += NB_RB;
898 			num_bytes = regs->xer & 0x7f;
899 			break;
900 		case PPC_INST_LSWI:
901 		case PPC_INST_STSWI:
902 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
903 			break;
904 		default:
905 			return -EINVAL;
906 	}
907 
908 	while (num_bytes != 0)
909 	{
910 		u8 val;
911 		u32 shift = 8 * (3 - (pos & 0x3));
912 
913 		/* if process is 32-bit, clear upper 32 bits of EA */
914 		if ((regs->msr & MSR_64BIT) == 0)
915 			EA &= 0xFFFFFFFF;
916 
917 		switch ((instword & PPC_INST_STRING_MASK)) {
918 			case PPC_INST_LSWX:
919 			case PPC_INST_LSWI:
920 				if (get_user(val, (u8 __user *)EA))
921 					return -EFAULT;
922 				/* first time updating this reg,
923 				 * zero it out */
924 				if (pos == 0)
925 					regs->gpr[rT] = 0;
926 				regs->gpr[rT] |= val << shift;
927 				break;
928 			case PPC_INST_STSWI:
929 			case PPC_INST_STSWX:
930 				val = regs->gpr[rT] >> shift;
931 				if (put_user(val, (u8 __user *)EA))
932 					return -EFAULT;
933 				break;
934 		}
935 		/* move EA to next address */
936 		EA += 1;
937 		num_bytes--;
938 
939 		/* manage our position within the register */
940 		if (++pos == 4) {
941 			pos = 0;
942 			if (++rT == 32)
943 				rT = 0;
944 		}
945 	}
946 
947 	return 0;
948 }
949 
950 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
951 {
952 	u32 ra,rs;
953 	unsigned long tmp;
954 
955 	ra = (instword >> 16) & 0x1f;
956 	rs = (instword >> 21) & 0x1f;
957 
958 	tmp = regs->gpr[rs];
959 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
960 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
961 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
962 	regs->gpr[ra] = tmp;
963 
964 	return 0;
965 }
966 
967 static int emulate_isel(struct pt_regs *regs, u32 instword)
968 {
969 	u8 rT = (instword >> 21) & 0x1f;
970 	u8 rA = (instword >> 16) & 0x1f;
971 	u8 rB = (instword >> 11) & 0x1f;
972 	u8 BC = (instword >> 6) & 0x1f;
973 	u8 bit;
974 	unsigned long tmp;
975 
976 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
977 	bit = (regs->ccr >> (31 - BC)) & 0x1;
978 
979 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
980 
981 	return 0;
982 }
983 
984 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
985 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
986 {
987         /* If we're emulating a load/store in an active transaction, we cannot
988          * emulate it as the kernel operates in transaction suspended context.
989          * We need to abort the transaction.  This creates a persistent TM
990          * abort so tell the user what caused it with a new code.
991 	 */
992 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
993 		tm_enable();
994 		tm_abort(cause);
995 		return true;
996 	}
997 	return false;
998 }
999 #else
1000 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1001 {
1002 	return false;
1003 }
1004 #endif
1005 
1006 static int emulate_instruction(struct pt_regs *regs)
1007 {
1008 	u32 instword;
1009 	u32 rd;
1010 
1011 	if (!user_mode(regs))
1012 		return -EINVAL;
1013 	CHECK_FULL_REGS(regs);
1014 
1015 	if (get_user(instword, (u32 __user *)(regs->nip)))
1016 		return -EFAULT;
1017 
1018 	/* Emulate the mfspr rD, PVR. */
1019 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1020 		PPC_WARN_EMULATED(mfpvr, regs);
1021 		rd = (instword >> 21) & 0x1f;
1022 		regs->gpr[rd] = mfspr(SPRN_PVR);
1023 		return 0;
1024 	}
1025 
1026 	/* Emulating the dcba insn is just a no-op.  */
1027 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1028 		PPC_WARN_EMULATED(dcba, regs);
1029 		return 0;
1030 	}
1031 
1032 	/* Emulate the mcrxr insn.  */
1033 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1034 		int shift = (instword >> 21) & 0x1c;
1035 		unsigned long msk = 0xf0000000UL >> shift;
1036 
1037 		PPC_WARN_EMULATED(mcrxr, regs);
1038 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1039 		regs->xer &= ~0xf0000000UL;
1040 		return 0;
1041 	}
1042 
1043 	/* Emulate load/store string insn. */
1044 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1045 		if (tm_abort_check(regs,
1046 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1047 			return -EINVAL;
1048 		PPC_WARN_EMULATED(string, regs);
1049 		return emulate_string_inst(regs, instword);
1050 	}
1051 
1052 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1053 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1054 		PPC_WARN_EMULATED(popcntb, regs);
1055 		return emulate_popcntb_inst(regs, instword);
1056 	}
1057 
1058 	/* Emulate isel (Integer Select) instruction */
1059 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1060 		PPC_WARN_EMULATED(isel, regs);
1061 		return emulate_isel(regs, instword);
1062 	}
1063 
1064 	/* Emulate sync instruction variants */
1065 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1066 		PPC_WARN_EMULATED(sync, regs);
1067 		asm volatile("sync");
1068 		return 0;
1069 	}
1070 
1071 #ifdef CONFIG_PPC64
1072 	/* Emulate the mfspr rD, DSCR. */
1073 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1074 		PPC_INST_MFSPR_DSCR_USER) ||
1075 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1076 		PPC_INST_MFSPR_DSCR)) &&
1077 			cpu_has_feature(CPU_FTR_DSCR)) {
1078 		PPC_WARN_EMULATED(mfdscr, regs);
1079 		rd = (instword >> 21) & 0x1f;
1080 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1081 		return 0;
1082 	}
1083 	/* Emulate the mtspr DSCR, rD. */
1084 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1085 		PPC_INST_MTSPR_DSCR_USER) ||
1086 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1087 		PPC_INST_MTSPR_DSCR)) &&
1088 			cpu_has_feature(CPU_FTR_DSCR)) {
1089 		PPC_WARN_EMULATED(mtdscr, regs);
1090 		rd = (instword >> 21) & 0x1f;
1091 		current->thread.dscr = regs->gpr[rd];
1092 		current->thread.dscr_inherit = 1;
1093 		mtspr(SPRN_DSCR, current->thread.dscr);
1094 		return 0;
1095 	}
1096 #endif
1097 
1098 	return -EINVAL;
1099 }
1100 
1101 int is_valid_bugaddr(unsigned long addr)
1102 {
1103 	return is_kernel_addr(addr);
1104 }
1105 
1106 #ifdef CONFIG_MATH_EMULATION
1107 static int emulate_math(struct pt_regs *regs)
1108 {
1109 	int ret;
1110 	extern int do_mathemu(struct pt_regs *regs);
1111 
1112 	ret = do_mathemu(regs);
1113 	if (ret >= 0)
1114 		PPC_WARN_EMULATED(math, regs);
1115 
1116 	switch (ret) {
1117 	case 0:
1118 		emulate_single_step(regs);
1119 		return 0;
1120 	case 1: {
1121 			int code = 0;
1122 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1123 			_exception(SIGFPE, regs, code, regs->nip);
1124 			return 0;
1125 		}
1126 	case -EFAULT:
1127 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1128 		return 0;
1129 	}
1130 
1131 	return -1;
1132 }
1133 #else
1134 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1135 #endif
1136 
1137 void __kprobes program_check_exception(struct pt_regs *regs)
1138 {
1139 	enum ctx_state prev_state = exception_enter();
1140 	unsigned int reason = get_reason(regs);
1141 
1142 	/* We can now get here via a FP Unavailable exception if the core
1143 	 * has no FPU, in that case the reason flags will be 0 */
1144 
1145 	if (reason & REASON_FP) {
1146 		/* IEEE FP exception */
1147 		parse_fpe(regs);
1148 		goto bail;
1149 	}
1150 	if (reason & REASON_TRAP) {
1151 		/* Debugger is first in line to stop recursive faults in
1152 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1153 		if (debugger_bpt(regs))
1154 			goto bail;
1155 
1156 		/* trap exception */
1157 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1158 				== NOTIFY_STOP)
1159 			goto bail;
1160 
1161 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1162 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1163 			regs->nip += 4;
1164 			goto bail;
1165 		}
1166 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1167 		goto bail;
1168 	}
1169 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1170 	if (reason & REASON_TM) {
1171 		/* This is a TM "Bad Thing Exception" program check.
1172 		 * This occurs when:
1173 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1174 		 *    transition in TM states.
1175 		 * -  A trechkpt is attempted when transactional.
1176 		 * -  A treclaim is attempted when non transactional.
1177 		 * -  A tend is illegally attempted.
1178 		 * -  writing a TM SPR when transactional.
1179 		 */
1180 		if (!user_mode(regs) &&
1181 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1182 			regs->nip += 4;
1183 			goto bail;
1184 		}
1185 		/* If usermode caused this, it's done something illegal and
1186 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1187 		 * operand to distinguish from the instruction just being bad
1188 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1189 		 * illegal /placement/ of a valid instruction.
1190 		 */
1191 		if (user_mode(regs)) {
1192 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1193 			goto bail;
1194 		} else {
1195 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1196 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1197 			die("Unrecoverable exception", regs, SIGABRT);
1198 		}
1199 	}
1200 #endif
1201 
1202 	/*
1203 	 * If we took the program check in the kernel skip down to sending a
1204 	 * SIGILL. The subsequent cases all relate to emulating instructions
1205 	 * which we should only do for userspace. We also do not want to enable
1206 	 * interrupts for kernel faults because that might lead to further
1207 	 * faults, and loose the context of the original exception.
1208 	 */
1209 	if (!user_mode(regs))
1210 		goto sigill;
1211 
1212 	/* We restore the interrupt state now */
1213 	if (!arch_irq_disabled_regs(regs))
1214 		local_irq_enable();
1215 
1216 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1217 	 * but there seems to be a hardware bug on the 405GP (RevD)
1218 	 * that means ESR is sometimes set incorrectly - either to
1219 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1220 	 * hardware people - not sure if it can happen on any illegal
1221 	 * instruction or only on FP instructions, whether there is a
1222 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1223 	 */
1224 	if (!emulate_math(regs))
1225 		goto bail;
1226 
1227 	/* Try to emulate it if we should. */
1228 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1229 		switch (emulate_instruction(regs)) {
1230 		case 0:
1231 			regs->nip += 4;
1232 			emulate_single_step(regs);
1233 			goto bail;
1234 		case -EFAULT:
1235 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1236 			goto bail;
1237 		}
1238 	}
1239 
1240 sigill:
1241 	if (reason & REASON_PRIVILEGED)
1242 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1243 	else
1244 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1245 
1246 bail:
1247 	exception_exit(prev_state);
1248 }
1249 
1250 /*
1251  * This occurs when running in hypervisor mode on POWER6 or later
1252  * and an illegal instruction is encountered.
1253  */
1254 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1255 {
1256 	regs->msr |= REASON_ILLEGAL;
1257 	program_check_exception(regs);
1258 }
1259 
1260 void alignment_exception(struct pt_regs *regs)
1261 {
1262 	enum ctx_state prev_state = exception_enter();
1263 	int sig, code, fixed = 0;
1264 
1265 	/* We restore the interrupt state now */
1266 	if (!arch_irq_disabled_regs(regs))
1267 		local_irq_enable();
1268 
1269 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1270 		goto bail;
1271 
1272 	/* we don't implement logging of alignment exceptions */
1273 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1274 		fixed = fix_alignment(regs);
1275 
1276 	if (fixed == 1) {
1277 		regs->nip += 4;	/* skip over emulated instruction */
1278 		emulate_single_step(regs);
1279 		goto bail;
1280 	}
1281 
1282 	/* Operand address was bad */
1283 	if (fixed == -EFAULT) {
1284 		sig = SIGSEGV;
1285 		code = SEGV_ACCERR;
1286 	} else {
1287 		sig = SIGBUS;
1288 		code = BUS_ADRALN;
1289 	}
1290 	if (user_mode(regs))
1291 		_exception(sig, regs, code, regs->dar);
1292 	else
1293 		bad_page_fault(regs, regs->dar, sig);
1294 
1295 bail:
1296 	exception_exit(prev_state);
1297 }
1298 
1299 void StackOverflow(struct pt_regs *regs)
1300 {
1301 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1302 	       current, regs->gpr[1]);
1303 	debugger(regs);
1304 	show_regs(regs);
1305 	panic("kernel stack overflow");
1306 }
1307 
1308 void nonrecoverable_exception(struct pt_regs *regs)
1309 {
1310 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1311 	       regs->nip, regs->msr);
1312 	debugger(regs);
1313 	die("nonrecoverable exception", regs, SIGKILL);
1314 }
1315 
1316 void trace_syscall(struct pt_regs *regs)
1317 {
1318 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1319 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1320 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1321 }
1322 
1323 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1324 {
1325 	enum ctx_state prev_state = exception_enter();
1326 
1327 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1328 			  "%lx at %lx\n", regs->trap, regs->nip);
1329 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1330 
1331 	exception_exit(prev_state);
1332 }
1333 
1334 void altivec_unavailable_exception(struct pt_regs *regs)
1335 {
1336 	enum ctx_state prev_state = exception_enter();
1337 
1338 	if (user_mode(regs)) {
1339 		/* A user program has executed an altivec instruction,
1340 		   but this kernel doesn't support altivec. */
1341 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1342 		goto bail;
1343 	}
1344 
1345 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1346 			"%lx at %lx\n", regs->trap, regs->nip);
1347 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1348 
1349 bail:
1350 	exception_exit(prev_state);
1351 }
1352 
1353 void vsx_unavailable_exception(struct pt_regs *regs)
1354 {
1355 	if (user_mode(regs)) {
1356 		/* A user program has executed an vsx instruction,
1357 		   but this kernel doesn't support vsx. */
1358 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1359 		return;
1360 	}
1361 
1362 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1363 			"%lx at %lx\n", regs->trap, regs->nip);
1364 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1365 }
1366 
1367 #ifdef CONFIG_PPC64
1368 void facility_unavailable_exception(struct pt_regs *regs)
1369 {
1370 	static char *facility_strings[] = {
1371 		[FSCR_FP_LG] = "FPU",
1372 		[FSCR_VECVSX_LG] = "VMX/VSX",
1373 		[FSCR_DSCR_LG] = "DSCR",
1374 		[FSCR_PM_LG] = "PMU SPRs",
1375 		[FSCR_BHRB_LG] = "BHRB",
1376 		[FSCR_TM_LG] = "TM",
1377 		[FSCR_EBB_LG] = "EBB",
1378 		[FSCR_TAR_LG] = "TAR",
1379 	};
1380 	char *facility = "unknown";
1381 	u64 value;
1382 	u32 instword, rd;
1383 	u8 status;
1384 	bool hv;
1385 
1386 	hv = (regs->trap == 0xf80);
1387 	if (hv)
1388 		value = mfspr(SPRN_HFSCR);
1389 	else
1390 		value = mfspr(SPRN_FSCR);
1391 
1392 	status = value >> 56;
1393 	if (status == FSCR_DSCR_LG) {
1394 		/*
1395 		 * User is accessing the DSCR register using the problem
1396 		 * state only SPR number (0x03) either through a mfspr or
1397 		 * a mtspr instruction. If it is a write attempt through
1398 		 * a mtspr, then we set the inherit bit. This also allows
1399 		 * the user to write or read the register directly in the
1400 		 * future by setting via the FSCR DSCR bit. But in case it
1401 		 * is a read DSCR attempt through a mfspr instruction, we
1402 		 * just emulate the instruction instead. This code path will
1403 		 * always emulate all the mfspr instructions till the user
1404 		 * has attempted atleast one mtspr instruction. This way it
1405 		 * preserves the same behaviour when the user is accessing
1406 		 * the DSCR through privilege level only SPR number (0x11)
1407 		 * which is emulated through illegal instruction exception.
1408 		 * We always leave HFSCR DSCR set.
1409 		 */
1410 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1411 			pr_err("Failed to fetch the user instruction\n");
1412 			return;
1413 		}
1414 
1415 		/* Write into DSCR (mtspr 0x03, RS) */
1416 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1417 				== PPC_INST_MTSPR_DSCR_USER) {
1418 			rd = (instword >> 21) & 0x1f;
1419 			current->thread.dscr = regs->gpr[rd];
1420 			current->thread.dscr_inherit = 1;
1421 			mtspr(SPRN_FSCR, value | FSCR_DSCR);
1422 		}
1423 
1424 		/* Read from DSCR (mfspr RT, 0x03) */
1425 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1426 				== PPC_INST_MFSPR_DSCR_USER) {
1427 			if (emulate_instruction(regs)) {
1428 				pr_err("DSCR based mfspr emulation failed\n");
1429 				return;
1430 			}
1431 			regs->nip += 4;
1432 			emulate_single_step(regs);
1433 		}
1434 		return;
1435 	}
1436 
1437 	if ((status < ARRAY_SIZE(facility_strings)) &&
1438 	    facility_strings[status])
1439 		facility = facility_strings[status];
1440 
1441 	/* We restore the interrupt state now */
1442 	if (!arch_irq_disabled_regs(regs))
1443 		local_irq_enable();
1444 
1445 	pr_err_ratelimited(
1446 		"%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1447 		hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1448 
1449 	if (user_mode(regs)) {
1450 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1451 		return;
1452 	}
1453 
1454 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1455 }
1456 #endif
1457 
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459 
1460 void fp_unavailable_tm(struct pt_regs *regs)
1461 {
1462 	/* Note:  This does not handle any kind of FP laziness. */
1463 
1464 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1465 		 regs->nip, regs->msr);
1466 
1467         /* We can only have got here if the task started using FP after
1468          * beginning the transaction.  So, the transactional regs are just a
1469          * copy of the checkpointed ones.  But, we still need to recheckpoint
1470          * as we're enabling FP for the process; it will return, abort the
1471          * transaction, and probably retry but now with FP enabled.  So the
1472          * checkpointed FP registers need to be loaded.
1473 	 */
1474 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1475 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1476 
1477 	/* Enable FP for the task: */
1478 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1479 
1480 	/* This loads and recheckpoints the FP registers from
1481 	 * thread.fpr[].  They will remain in registers after the
1482 	 * checkpoint so we don't need to reload them after.
1483 	 * If VMX is in use, the VRs now hold checkpointed values,
1484 	 * so we don't want to load the VRs from the thread_struct.
1485 	 */
1486 	tm_recheckpoint(&current->thread, MSR_FP);
1487 
1488 	/* If VMX is in use, get the transactional values back */
1489 	if (regs->msr & MSR_VEC) {
1490 		do_load_up_transact_altivec(&current->thread);
1491 		/* At this point all the VSX state is loaded, so enable it */
1492 		regs->msr |= MSR_VSX;
1493 	}
1494 }
1495 
1496 void altivec_unavailable_tm(struct pt_regs *regs)
1497 {
1498 	/* See the comments in fp_unavailable_tm().  This function operates
1499 	 * the same way.
1500 	 */
1501 
1502 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1503 		 "MSR=%lx\n",
1504 		 regs->nip, regs->msr);
1505 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1506 	regs->msr |= MSR_VEC;
1507 	tm_recheckpoint(&current->thread, MSR_VEC);
1508 	current->thread.used_vr = 1;
1509 
1510 	if (regs->msr & MSR_FP) {
1511 		do_load_up_transact_fpu(&current->thread);
1512 		regs->msr |= MSR_VSX;
1513 	}
1514 }
1515 
1516 void vsx_unavailable_tm(struct pt_regs *regs)
1517 {
1518 	unsigned long orig_msr = regs->msr;
1519 
1520 	/* See the comments in fp_unavailable_tm().  This works similarly,
1521 	 * though we're loading both FP and VEC registers in here.
1522 	 *
1523 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1524 	 * regs.  Either way, set MSR_VSX.
1525 	 */
1526 
1527 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1528 		 "MSR=%lx\n",
1529 		 regs->nip, regs->msr);
1530 
1531 	current->thread.used_vsr = 1;
1532 
1533 	/* If FP and VMX are already loaded, we have all the state we need */
1534 	if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1535 		regs->msr |= MSR_VSX;
1536 		return;
1537 	}
1538 
1539 	/* This reclaims FP and/or VR regs if they're already enabled */
1540 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1541 
1542 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1543 		MSR_VSX;
1544 
1545 	/* This loads & recheckpoints FP and VRs; but we have
1546 	 * to be sure not to overwrite previously-valid state.
1547 	 */
1548 	tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1549 
1550 	if (orig_msr & MSR_FP)
1551 		do_load_up_transact_fpu(&current->thread);
1552 	if (orig_msr & MSR_VEC)
1553 		do_load_up_transact_altivec(&current->thread);
1554 }
1555 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1556 
1557 void performance_monitor_exception(struct pt_regs *regs)
1558 {
1559 	__this_cpu_inc(irq_stat.pmu_irqs);
1560 
1561 	perf_irq(regs);
1562 }
1563 
1564 #ifdef CONFIG_8xx
1565 void SoftwareEmulation(struct pt_regs *regs)
1566 {
1567 	CHECK_FULL_REGS(regs);
1568 
1569 	if (!user_mode(regs)) {
1570 		debugger(regs);
1571 		die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1572 			regs, SIGFPE);
1573 	}
1574 
1575 	if (!emulate_math(regs))
1576 		return;
1577 
1578 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1579 }
1580 #endif /* CONFIG_8xx */
1581 
1582 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1583 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1584 {
1585 	int changed = 0;
1586 	/*
1587 	 * Determine the cause of the debug event, clear the
1588 	 * event flags and send a trap to the handler. Torez
1589 	 */
1590 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1591 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1592 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1593 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1594 #endif
1595 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1596 			     5);
1597 		changed |= 0x01;
1598 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1599 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1600 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1601 			     6);
1602 		changed |= 0x01;
1603 	}  else if (debug_status & DBSR_IAC1) {
1604 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1605 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1606 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1607 			     1);
1608 		changed |= 0x01;
1609 	}  else if (debug_status & DBSR_IAC2) {
1610 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1611 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1612 			     2);
1613 		changed |= 0x01;
1614 	}  else if (debug_status & DBSR_IAC3) {
1615 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1616 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1617 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1618 			     3);
1619 		changed |= 0x01;
1620 	}  else if (debug_status & DBSR_IAC4) {
1621 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1622 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1623 			     4);
1624 		changed |= 0x01;
1625 	}
1626 	/*
1627 	 * At the point this routine was called, the MSR(DE) was turned off.
1628 	 * Check all other debug flags and see if that bit needs to be turned
1629 	 * back on or not.
1630 	 */
1631 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1632 			       current->thread.debug.dbcr1))
1633 		regs->msr |= MSR_DE;
1634 	else
1635 		/* Make sure the IDM flag is off */
1636 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1637 
1638 	if (changed & 0x01)
1639 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1640 }
1641 
1642 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1643 {
1644 	current->thread.debug.dbsr = debug_status;
1645 
1646 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1647 	 * on server, it stops on the target of the branch. In order to simulate
1648 	 * the server behaviour, we thus restart right away with a single step
1649 	 * instead of stopping here when hitting a BT
1650 	 */
1651 	if (debug_status & DBSR_BT) {
1652 		regs->msr &= ~MSR_DE;
1653 
1654 		/* Disable BT */
1655 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1656 		/* Clear the BT event */
1657 		mtspr(SPRN_DBSR, DBSR_BT);
1658 
1659 		/* Do the single step trick only when coming from userspace */
1660 		if (user_mode(regs)) {
1661 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1662 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1663 			regs->msr |= MSR_DE;
1664 			return;
1665 		}
1666 
1667 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1668 			       5, SIGTRAP) == NOTIFY_STOP) {
1669 			return;
1670 		}
1671 		if (debugger_sstep(regs))
1672 			return;
1673 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1674 		regs->msr &= ~MSR_DE;
1675 
1676 		/* Disable instruction completion */
1677 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1678 		/* Clear the instruction completion event */
1679 		mtspr(SPRN_DBSR, DBSR_IC);
1680 
1681 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1682 			       5, SIGTRAP) == NOTIFY_STOP) {
1683 			return;
1684 		}
1685 
1686 		if (debugger_sstep(regs))
1687 			return;
1688 
1689 		if (user_mode(regs)) {
1690 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
1691 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1692 					       current->thread.debug.dbcr1))
1693 				regs->msr |= MSR_DE;
1694 			else
1695 				/* Make sure the IDM bit is off */
1696 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1697 		}
1698 
1699 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1700 	} else
1701 		handle_debug(regs, debug_status);
1702 }
1703 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1704 
1705 #if !defined(CONFIG_TAU_INT)
1706 void TAUException(struct pt_regs *regs)
1707 {
1708 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1709 	       regs->nip, regs->msr, regs->trap, print_tainted());
1710 }
1711 #endif /* CONFIG_INT_TAU */
1712 
1713 #ifdef CONFIG_ALTIVEC
1714 void altivec_assist_exception(struct pt_regs *regs)
1715 {
1716 	int err;
1717 
1718 	if (!user_mode(regs)) {
1719 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1720 		       " at %lx\n", regs->nip);
1721 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1722 	}
1723 
1724 	flush_altivec_to_thread(current);
1725 
1726 	PPC_WARN_EMULATED(altivec, regs);
1727 	err = emulate_altivec(regs);
1728 	if (err == 0) {
1729 		regs->nip += 4;		/* skip emulated instruction */
1730 		emulate_single_step(regs);
1731 		return;
1732 	}
1733 
1734 	if (err == -EFAULT) {
1735 		/* got an error reading the instruction */
1736 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1737 	} else {
1738 		/* didn't recognize the instruction */
1739 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1740 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1741 				   "in %s at %lx\n", current->comm, regs->nip);
1742 		current->thread.vr_state.vscr.u[3] |= 0x10000;
1743 	}
1744 }
1745 #endif /* CONFIG_ALTIVEC */
1746 
1747 #ifdef CONFIG_FSL_BOOKE
1748 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1749 			   unsigned long error_code)
1750 {
1751 	/* We treat cache locking instructions from the user
1752 	 * as priv ops, in the future we could try to do
1753 	 * something smarter
1754 	 */
1755 	if (error_code & (ESR_DLK|ESR_ILK))
1756 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1757 	return;
1758 }
1759 #endif /* CONFIG_FSL_BOOKE */
1760 
1761 #ifdef CONFIG_SPE
1762 void SPEFloatingPointException(struct pt_regs *regs)
1763 {
1764 	extern int do_spe_mathemu(struct pt_regs *regs);
1765 	unsigned long spefscr;
1766 	int fpexc_mode;
1767 	int code = 0;
1768 	int err;
1769 
1770 	flush_spe_to_thread(current);
1771 
1772 	spefscr = current->thread.spefscr;
1773 	fpexc_mode = current->thread.fpexc_mode;
1774 
1775 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1776 		code = FPE_FLTOVF;
1777 	}
1778 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1779 		code = FPE_FLTUND;
1780 	}
1781 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1782 		code = FPE_FLTDIV;
1783 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1784 		code = FPE_FLTINV;
1785 	}
1786 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1787 		code = FPE_FLTRES;
1788 
1789 	err = do_spe_mathemu(regs);
1790 	if (err == 0) {
1791 		regs->nip += 4;		/* skip emulated instruction */
1792 		emulate_single_step(regs);
1793 		return;
1794 	}
1795 
1796 	if (err == -EFAULT) {
1797 		/* got an error reading the instruction */
1798 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1799 	} else if (err == -EINVAL) {
1800 		/* didn't recognize the instruction */
1801 		printk(KERN_ERR "unrecognized spe instruction "
1802 		       "in %s at %lx\n", current->comm, regs->nip);
1803 	} else {
1804 		_exception(SIGFPE, regs, code, regs->nip);
1805 	}
1806 
1807 	return;
1808 }
1809 
1810 void SPEFloatingPointRoundException(struct pt_regs *regs)
1811 {
1812 	extern int speround_handler(struct pt_regs *regs);
1813 	int err;
1814 
1815 	preempt_disable();
1816 	if (regs->msr & MSR_SPE)
1817 		giveup_spe(current);
1818 	preempt_enable();
1819 
1820 	regs->nip -= 4;
1821 	err = speround_handler(regs);
1822 	if (err == 0) {
1823 		regs->nip += 4;		/* skip emulated instruction */
1824 		emulate_single_step(regs);
1825 		return;
1826 	}
1827 
1828 	if (err == -EFAULT) {
1829 		/* got an error reading the instruction */
1830 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1831 	} else if (err == -EINVAL) {
1832 		/* didn't recognize the instruction */
1833 		printk(KERN_ERR "unrecognized spe instruction "
1834 		       "in %s at %lx\n", current->comm, regs->nip);
1835 	} else {
1836 		_exception(SIGFPE, regs, 0, regs->nip);
1837 		return;
1838 	}
1839 }
1840 #endif
1841 
1842 /*
1843  * We enter here if we get an unrecoverable exception, that is, one
1844  * that happened at a point where the RI (recoverable interrupt) bit
1845  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1846  * we therefore lost state by taking this exception.
1847  */
1848 void unrecoverable_exception(struct pt_regs *regs)
1849 {
1850 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1851 	       regs->trap, regs->nip);
1852 	die("Unrecoverable exception", regs, SIGABRT);
1853 }
1854 
1855 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1856 /*
1857  * Default handler for a Watchdog exception,
1858  * spins until a reboot occurs
1859  */
1860 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1861 {
1862 	/* Generic WatchdogHandler, implement your own */
1863 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1864 	return;
1865 }
1866 
1867 void WatchdogException(struct pt_regs *regs)
1868 {
1869 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1870 	WatchdogHandler(regs);
1871 }
1872 #endif
1873 
1874 /*
1875  * We enter here if we discover during exception entry that we are
1876  * running in supervisor mode with a userspace value in the stack pointer.
1877  */
1878 void kernel_bad_stack(struct pt_regs *regs)
1879 {
1880 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1881 	       regs->gpr[1], regs->nip);
1882 	die("Bad kernel stack pointer", regs, SIGABRT);
1883 }
1884 
1885 void __init trap_init(void)
1886 {
1887 }
1888 
1889 
1890 #ifdef CONFIG_PPC_EMULATED_STATS
1891 
1892 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1893 
1894 struct ppc_emulated ppc_emulated = {
1895 #ifdef CONFIG_ALTIVEC
1896 	WARN_EMULATED_SETUP(altivec),
1897 #endif
1898 	WARN_EMULATED_SETUP(dcba),
1899 	WARN_EMULATED_SETUP(dcbz),
1900 	WARN_EMULATED_SETUP(fp_pair),
1901 	WARN_EMULATED_SETUP(isel),
1902 	WARN_EMULATED_SETUP(mcrxr),
1903 	WARN_EMULATED_SETUP(mfpvr),
1904 	WARN_EMULATED_SETUP(multiple),
1905 	WARN_EMULATED_SETUP(popcntb),
1906 	WARN_EMULATED_SETUP(spe),
1907 	WARN_EMULATED_SETUP(string),
1908 	WARN_EMULATED_SETUP(sync),
1909 	WARN_EMULATED_SETUP(unaligned),
1910 #ifdef CONFIG_MATH_EMULATION
1911 	WARN_EMULATED_SETUP(math),
1912 #endif
1913 #ifdef CONFIG_VSX
1914 	WARN_EMULATED_SETUP(vsx),
1915 #endif
1916 #ifdef CONFIG_PPC64
1917 	WARN_EMULATED_SETUP(mfdscr),
1918 	WARN_EMULATED_SETUP(mtdscr),
1919 	WARN_EMULATED_SETUP(lq_stq),
1920 #endif
1921 };
1922 
1923 u32 ppc_warn_emulated;
1924 
1925 void ppc_warn_emulated_print(const char *type)
1926 {
1927 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1928 			    type);
1929 }
1930 
1931 static int __init ppc_warn_emulated_init(void)
1932 {
1933 	struct dentry *dir, *d;
1934 	unsigned int i;
1935 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1936 
1937 	if (!powerpc_debugfs_root)
1938 		return -ENODEV;
1939 
1940 	dir = debugfs_create_dir("emulated_instructions",
1941 				 powerpc_debugfs_root);
1942 	if (!dir)
1943 		return -ENOMEM;
1944 
1945 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1946 			       &ppc_warn_emulated);
1947 	if (!d)
1948 		goto fail;
1949 
1950 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1951 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1952 				       (u32 *)&entries[i].val.counter);
1953 		if (!d)
1954 			goto fail;
1955 	}
1956 
1957 	return 0;
1958 
1959 fail:
1960 	debugfs_remove_recursive(dir);
1961 	return -ENOMEM;
1962 }
1963 
1964 device_initcall(ppc_warn_emulated_init);
1965 
1966 #endif /* CONFIG_PPC_EMULATED_STATS */
1967