xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision bc2a9408fa65195288b41751016c36fd00a75a85)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 
39 #include <asm/emulated_ops.h>
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/machdep.h>
44 #include <asm/rtas.h>
45 #include <asm/pmc.h>
46 #ifdef CONFIG_PPC32
47 #include <asm/reg.h>
48 #endif
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 
64 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
65 int (*__debugger)(struct pt_regs *regs) __read_mostly;
66 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
72 
73 EXPORT_SYMBOL(__debugger);
74 EXPORT_SYMBOL(__debugger_ipi);
75 EXPORT_SYMBOL(__debugger_bpt);
76 EXPORT_SYMBOL(__debugger_sstep);
77 EXPORT_SYMBOL(__debugger_iabr_match);
78 EXPORT_SYMBOL(__debugger_break_match);
79 EXPORT_SYMBOL(__debugger_fault_handler);
80 #endif
81 
82 /* Transactional Memory trap debug */
83 #ifdef TM_DEBUG_SW
84 #define TM_DEBUG(x...) printk(KERN_INFO x)
85 #else
86 #define TM_DEBUG(x...) do { } while(0)
87 #endif
88 
89 /*
90  * Trap & Exception support
91  */
92 
93 #ifdef CONFIG_PMAC_BACKLIGHT
94 static void pmac_backlight_unblank(void)
95 {
96 	mutex_lock(&pmac_backlight_mutex);
97 	if (pmac_backlight) {
98 		struct backlight_properties *props;
99 
100 		props = &pmac_backlight->props;
101 		props->brightness = props->max_brightness;
102 		props->power = FB_BLANK_UNBLANK;
103 		backlight_update_status(pmac_backlight);
104 	}
105 	mutex_unlock(&pmac_backlight_mutex);
106 }
107 #else
108 static inline void pmac_backlight_unblank(void) { }
109 #endif
110 
111 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
112 static int die_owner = -1;
113 static unsigned int die_nest_count;
114 static int die_counter;
115 
116 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
117 {
118 	int cpu;
119 	unsigned long flags;
120 
121 	if (debugger(regs))
122 		return 1;
123 
124 	oops_enter();
125 
126 	/* racy, but better than risking deadlock. */
127 	raw_local_irq_save(flags);
128 	cpu = smp_processor_id();
129 	if (!arch_spin_trylock(&die_lock)) {
130 		if (cpu == die_owner)
131 			/* nested oops. should stop eventually */;
132 		else
133 			arch_spin_lock(&die_lock);
134 	}
135 	die_nest_count++;
136 	die_owner = cpu;
137 	console_verbose();
138 	bust_spinlocks(1);
139 	if (machine_is(powermac))
140 		pmac_backlight_unblank();
141 	return flags;
142 }
143 
144 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
145 			       int signr)
146 {
147 	bust_spinlocks(0);
148 	die_owner = -1;
149 	add_taint(TAINT_DIE);
150 	die_nest_count--;
151 	oops_exit();
152 	printk("\n");
153 	if (!die_nest_count)
154 		/* Nest count reaches zero, release the lock. */
155 		arch_spin_unlock(&die_lock);
156 	raw_local_irq_restore(flags);
157 
158 	crash_fadump(regs, "die oops");
159 
160 	/*
161 	 * A system reset (0x100) is a request to dump, so we always send
162 	 * it through the crashdump code.
163 	 */
164 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
165 		crash_kexec(regs);
166 
167 		/*
168 		 * We aren't the primary crash CPU. We need to send it
169 		 * to a holding pattern to avoid it ending up in the panic
170 		 * code.
171 		 */
172 		crash_kexec_secondary(regs);
173 	}
174 
175 	if (!signr)
176 		return;
177 
178 	/*
179 	 * While our oops output is serialised by a spinlock, output
180 	 * from panic() called below can race and corrupt it. If we
181 	 * know we are going to panic, delay for 1 second so we have a
182 	 * chance to get clean backtraces from all CPUs that are oopsing.
183 	 */
184 	if (in_interrupt() || panic_on_oops || !current->pid ||
185 	    is_global_init(current)) {
186 		mdelay(MSEC_PER_SEC);
187 	}
188 
189 	if (in_interrupt())
190 		panic("Fatal exception in interrupt");
191 	if (panic_on_oops)
192 		panic("Fatal exception");
193 	do_exit(signr);
194 }
195 
196 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
197 {
198 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
199 #ifdef CONFIG_PREEMPT
200 	printk("PREEMPT ");
201 #endif
202 #ifdef CONFIG_SMP
203 	printk("SMP NR_CPUS=%d ", NR_CPUS);
204 #endif
205 #ifdef CONFIG_DEBUG_PAGEALLOC
206 	printk("DEBUG_PAGEALLOC ");
207 #endif
208 #ifdef CONFIG_NUMA
209 	printk("NUMA ");
210 #endif
211 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
212 
213 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
214 		return 1;
215 
216 	print_modules();
217 	show_regs(regs);
218 
219 	return 0;
220 }
221 
222 void die(const char *str, struct pt_regs *regs, long err)
223 {
224 	unsigned long flags = oops_begin(regs);
225 
226 	if (__die(str, regs, err))
227 		err = 0;
228 	oops_end(flags, regs, err);
229 }
230 
231 void user_single_step_siginfo(struct task_struct *tsk,
232 				struct pt_regs *regs, siginfo_t *info)
233 {
234 	memset(info, 0, sizeof(*info));
235 	info->si_signo = SIGTRAP;
236 	info->si_code = TRAP_TRACE;
237 	info->si_addr = (void __user *)regs->nip;
238 }
239 
240 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
241 {
242 	siginfo_t info;
243 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
244 			"at %08lx nip %08lx lr %08lx code %x\n";
245 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 			"at %016lx nip %016lx lr %016lx code %x\n";
247 
248 	if (!user_mode(regs)) {
249 		die("Exception in kernel mode", regs, signr);
250 		return;
251 	}
252 
253 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
254 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
255 				   current->comm, current->pid, signr,
256 				   addr, regs->nip, regs->link, code);
257 	}
258 
259 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
260 		local_irq_enable();
261 
262 	current->thread.trap_nr = code;
263 	memset(&info, 0, sizeof(info));
264 	info.si_signo = signr;
265 	info.si_code = code;
266 	info.si_addr = (void __user *) addr;
267 	force_sig_info(signr, &info, current);
268 }
269 
270 #ifdef CONFIG_PPC64
271 void system_reset_exception(struct pt_regs *regs)
272 {
273 	/* See if any machine dependent calls */
274 	if (ppc_md.system_reset_exception) {
275 		if (ppc_md.system_reset_exception(regs))
276 			return;
277 	}
278 
279 	die("System Reset", regs, SIGABRT);
280 
281 	/* Must die if the interrupt is not recoverable */
282 	if (!(regs->msr & MSR_RI))
283 		panic("Unrecoverable System Reset");
284 
285 	/* What should we do here? We could issue a shutdown or hard reset. */
286 }
287 #endif
288 
289 /*
290  * I/O accesses can cause machine checks on powermacs.
291  * Check if the NIP corresponds to the address of a sync
292  * instruction for which there is an entry in the exception
293  * table.
294  * Note that the 601 only takes a machine check on TEA
295  * (transfer error ack) signal assertion, and does not
296  * set any of the top 16 bits of SRR1.
297  *  -- paulus.
298  */
299 static inline int check_io_access(struct pt_regs *regs)
300 {
301 #ifdef CONFIG_PPC32
302 	unsigned long msr = regs->msr;
303 	const struct exception_table_entry *entry;
304 	unsigned int *nip = (unsigned int *)regs->nip;
305 
306 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
307 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
308 		/*
309 		 * Check that it's a sync instruction, or somewhere
310 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
311 		 * As the address is in the exception table
312 		 * we should be able to read the instr there.
313 		 * For the debug message, we look at the preceding
314 		 * load or store.
315 		 */
316 		if (*nip == 0x60000000)		/* nop */
317 			nip -= 2;
318 		else if (*nip == 0x4c00012c)	/* isync */
319 			--nip;
320 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
321 			/* sync or twi */
322 			unsigned int rb;
323 
324 			--nip;
325 			rb = (*nip >> 11) & 0x1f;
326 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
327 			       (*nip & 0x100)? "OUT to": "IN from",
328 			       regs->gpr[rb] - _IO_BASE, nip);
329 			regs->msr |= MSR_RI;
330 			regs->nip = entry->fixup;
331 			return 1;
332 		}
333 	}
334 #endif /* CONFIG_PPC32 */
335 	return 0;
336 }
337 
338 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
339 /* On 4xx, the reason for the machine check or program exception
340    is in the ESR. */
341 #define get_reason(regs)	((regs)->dsisr)
342 #ifndef CONFIG_FSL_BOOKE
343 #define get_mc_reason(regs)	((regs)->dsisr)
344 #else
345 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
346 #endif
347 #define REASON_FP		ESR_FP
348 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
349 #define REASON_PRIVILEGED	ESR_PPR
350 #define REASON_TRAP		ESR_PTR
351 
352 /* single-step stuff */
353 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
354 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
355 
356 #else
357 /* On non-4xx, the reason for the machine check or program
358    exception is in the MSR. */
359 #define get_reason(regs)	((regs)->msr)
360 #define get_mc_reason(regs)	((regs)->msr)
361 #define REASON_TM		0x200000
362 #define REASON_FP		0x100000
363 #define REASON_ILLEGAL		0x80000
364 #define REASON_PRIVILEGED	0x40000
365 #define REASON_TRAP		0x20000
366 
367 #define single_stepping(regs)	((regs)->msr & MSR_SE)
368 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
369 #endif
370 
371 #if defined(CONFIG_4xx)
372 int machine_check_4xx(struct pt_regs *regs)
373 {
374 	unsigned long reason = get_mc_reason(regs);
375 
376 	if (reason & ESR_IMCP) {
377 		printk("Instruction");
378 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
379 	} else
380 		printk("Data");
381 	printk(" machine check in kernel mode.\n");
382 
383 	return 0;
384 }
385 
386 int machine_check_440A(struct pt_regs *regs)
387 {
388 	unsigned long reason = get_mc_reason(regs);
389 
390 	printk("Machine check in kernel mode.\n");
391 	if (reason & ESR_IMCP){
392 		printk("Instruction Synchronous Machine Check exception\n");
393 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
394 	}
395 	else {
396 		u32 mcsr = mfspr(SPRN_MCSR);
397 		if (mcsr & MCSR_IB)
398 			printk("Instruction Read PLB Error\n");
399 		if (mcsr & MCSR_DRB)
400 			printk("Data Read PLB Error\n");
401 		if (mcsr & MCSR_DWB)
402 			printk("Data Write PLB Error\n");
403 		if (mcsr & MCSR_TLBP)
404 			printk("TLB Parity Error\n");
405 		if (mcsr & MCSR_ICP){
406 			flush_instruction_cache();
407 			printk("I-Cache Parity Error\n");
408 		}
409 		if (mcsr & MCSR_DCSP)
410 			printk("D-Cache Search Parity Error\n");
411 		if (mcsr & MCSR_DCFP)
412 			printk("D-Cache Flush Parity Error\n");
413 		if (mcsr & MCSR_IMPE)
414 			printk("Machine Check exception is imprecise\n");
415 
416 		/* Clear MCSR */
417 		mtspr(SPRN_MCSR, mcsr);
418 	}
419 	return 0;
420 }
421 
422 int machine_check_47x(struct pt_regs *regs)
423 {
424 	unsigned long reason = get_mc_reason(regs);
425 	u32 mcsr;
426 
427 	printk(KERN_ERR "Machine check in kernel mode.\n");
428 	if (reason & ESR_IMCP) {
429 		printk(KERN_ERR
430 		       "Instruction Synchronous Machine Check exception\n");
431 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
432 		return 0;
433 	}
434 	mcsr = mfspr(SPRN_MCSR);
435 	if (mcsr & MCSR_IB)
436 		printk(KERN_ERR "Instruction Read PLB Error\n");
437 	if (mcsr & MCSR_DRB)
438 		printk(KERN_ERR "Data Read PLB Error\n");
439 	if (mcsr & MCSR_DWB)
440 		printk(KERN_ERR "Data Write PLB Error\n");
441 	if (mcsr & MCSR_TLBP)
442 		printk(KERN_ERR "TLB Parity Error\n");
443 	if (mcsr & MCSR_ICP) {
444 		flush_instruction_cache();
445 		printk(KERN_ERR "I-Cache Parity Error\n");
446 	}
447 	if (mcsr & MCSR_DCSP)
448 		printk(KERN_ERR "D-Cache Search Parity Error\n");
449 	if (mcsr & PPC47x_MCSR_GPR)
450 		printk(KERN_ERR "GPR Parity Error\n");
451 	if (mcsr & PPC47x_MCSR_FPR)
452 		printk(KERN_ERR "FPR Parity Error\n");
453 	if (mcsr & PPC47x_MCSR_IPR)
454 		printk(KERN_ERR "Machine Check exception is imprecise\n");
455 
456 	/* Clear MCSR */
457 	mtspr(SPRN_MCSR, mcsr);
458 
459 	return 0;
460 }
461 #elif defined(CONFIG_E500)
462 int machine_check_e500mc(struct pt_regs *regs)
463 {
464 	unsigned long mcsr = mfspr(SPRN_MCSR);
465 	unsigned long reason = mcsr;
466 	int recoverable = 1;
467 
468 	if (reason & MCSR_LD) {
469 		recoverable = fsl_rio_mcheck_exception(regs);
470 		if (recoverable == 1)
471 			goto silent_out;
472 	}
473 
474 	printk("Machine check in kernel mode.\n");
475 	printk("Caused by (from MCSR=%lx): ", reason);
476 
477 	if (reason & MCSR_MCP)
478 		printk("Machine Check Signal\n");
479 
480 	if (reason & MCSR_ICPERR) {
481 		printk("Instruction Cache Parity Error\n");
482 
483 		/*
484 		 * This is recoverable by invalidating the i-cache.
485 		 */
486 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
487 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
488 			;
489 
490 		/*
491 		 * This will generally be accompanied by an instruction
492 		 * fetch error report -- only treat MCSR_IF as fatal
493 		 * if it wasn't due to an L1 parity error.
494 		 */
495 		reason &= ~MCSR_IF;
496 	}
497 
498 	if (reason & MCSR_DCPERR_MC) {
499 		printk("Data Cache Parity Error\n");
500 
501 		/*
502 		 * In write shadow mode we auto-recover from the error, but it
503 		 * may still get logged and cause a machine check.  We should
504 		 * only treat the non-write shadow case as non-recoverable.
505 		 */
506 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
507 			recoverable = 0;
508 	}
509 
510 	if (reason & MCSR_L2MMU_MHIT) {
511 		printk("Hit on multiple TLB entries\n");
512 		recoverable = 0;
513 	}
514 
515 	if (reason & MCSR_NMI)
516 		printk("Non-maskable interrupt\n");
517 
518 	if (reason & MCSR_IF) {
519 		printk("Instruction Fetch Error Report\n");
520 		recoverable = 0;
521 	}
522 
523 	if (reason & MCSR_LD) {
524 		printk("Load Error Report\n");
525 		recoverable = 0;
526 	}
527 
528 	if (reason & MCSR_ST) {
529 		printk("Store Error Report\n");
530 		recoverable = 0;
531 	}
532 
533 	if (reason & MCSR_LDG) {
534 		printk("Guarded Load Error Report\n");
535 		recoverable = 0;
536 	}
537 
538 	if (reason & MCSR_TLBSYNC)
539 		printk("Simultaneous tlbsync operations\n");
540 
541 	if (reason & MCSR_BSL2_ERR) {
542 		printk("Level 2 Cache Error\n");
543 		recoverable = 0;
544 	}
545 
546 	if (reason & MCSR_MAV) {
547 		u64 addr;
548 
549 		addr = mfspr(SPRN_MCAR);
550 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
551 
552 		printk("Machine Check %s Address: %#llx\n",
553 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
554 	}
555 
556 silent_out:
557 	mtspr(SPRN_MCSR, mcsr);
558 	return mfspr(SPRN_MCSR) == 0 && recoverable;
559 }
560 
561 int machine_check_e500(struct pt_regs *regs)
562 {
563 	unsigned long reason = get_mc_reason(regs);
564 
565 	if (reason & MCSR_BUS_RBERR) {
566 		if (fsl_rio_mcheck_exception(regs))
567 			return 1;
568 	}
569 
570 	printk("Machine check in kernel mode.\n");
571 	printk("Caused by (from MCSR=%lx): ", reason);
572 
573 	if (reason & MCSR_MCP)
574 		printk("Machine Check Signal\n");
575 	if (reason & MCSR_ICPERR)
576 		printk("Instruction Cache Parity Error\n");
577 	if (reason & MCSR_DCP_PERR)
578 		printk("Data Cache Push Parity Error\n");
579 	if (reason & MCSR_DCPERR)
580 		printk("Data Cache Parity Error\n");
581 	if (reason & MCSR_BUS_IAERR)
582 		printk("Bus - Instruction Address Error\n");
583 	if (reason & MCSR_BUS_RAERR)
584 		printk("Bus - Read Address Error\n");
585 	if (reason & MCSR_BUS_WAERR)
586 		printk("Bus - Write Address Error\n");
587 	if (reason & MCSR_BUS_IBERR)
588 		printk("Bus - Instruction Data Error\n");
589 	if (reason & MCSR_BUS_RBERR)
590 		printk("Bus - Read Data Bus Error\n");
591 	if (reason & MCSR_BUS_WBERR)
592 		printk("Bus - Read Data Bus Error\n");
593 	if (reason & MCSR_BUS_IPERR)
594 		printk("Bus - Instruction Parity Error\n");
595 	if (reason & MCSR_BUS_RPERR)
596 		printk("Bus - Read Parity Error\n");
597 
598 	return 0;
599 }
600 
601 int machine_check_generic(struct pt_regs *regs)
602 {
603 	return 0;
604 }
605 #elif defined(CONFIG_E200)
606 int machine_check_e200(struct pt_regs *regs)
607 {
608 	unsigned long reason = get_mc_reason(regs);
609 
610 	printk("Machine check in kernel mode.\n");
611 	printk("Caused by (from MCSR=%lx): ", reason);
612 
613 	if (reason & MCSR_MCP)
614 		printk("Machine Check Signal\n");
615 	if (reason & MCSR_CP_PERR)
616 		printk("Cache Push Parity Error\n");
617 	if (reason & MCSR_CPERR)
618 		printk("Cache Parity Error\n");
619 	if (reason & MCSR_EXCP_ERR)
620 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
621 	if (reason & MCSR_BUS_IRERR)
622 		printk("Bus - Read Bus Error on instruction fetch\n");
623 	if (reason & MCSR_BUS_DRERR)
624 		printk("Bus - Read Bus Error on data load\n");
625 	if (reason & MCSR_BUS_WRERR)
626 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
627 
628 	return 0;
629 }
630 #else
631 int machine_check_generic(struct pt_regs *regs)
632 {
633 	unsigned long reason = get_mc_reason(regs);
634 
635 	printk("Machine check in kernel mode.\n");
636 	printk("Caused by (from SRR1=%lx): ", reason);
637 	switch (reason & 0x601F0000) {
638 	case 0x80000:
639 		printk("Machine check signal\n");
640 		break;
641 	case 0:		/* for 601 */
642 	case 0x40000:
643 	case 0x140000:	/* 7450 MSS error and TEA */
644 		printk("Transfer error ack signal\n");
645 		break;
646 	case 0x20000:
647 		printk("Data parity error signal\n");
648 		break;
649 	case 0x10000:
650 		printk("Address parity error signal\n");
651 		break;
652 	case 0x20000000:
653 		printk("L1 Data Cache error\n");
654 		break;
655 	case 0x40000000:
656 		printk("L1 Instruction Cache error\n");
657 		break;
658 	case 0x00100000:
659 		printk("L2 data cache parity error\n");
660 		break;
661 	default:
662 		printk("Unknown values in msr\n");
663 	}
664 	return 0;
665 }
666 #endif /* everything else */
667 
668 void machine_check_exception(struct pt_regs *regs)
669 {
670 	int recover = 0;
671 
672 	__get_cpu_var(irq_stat).mce_exceptions++;
673 
674 	/* See if any machine dependent calls. In theory, we would want
675 	 * to call the CPU first, and call the ppc_md. one if the CPU
676 	 * one returns a positive number. However there is existing code
677 	 * that assumes the board gets a first chance, so let's keep it
678 	 * that way for now and fix things later. --BenH.
679 	 */
680 	if (ppc_md.machine_check_exception)
681 		recover = ppc_md.machine_check_exception(regs);
682 	else if (cur_cpu_spec->machine_check)
683 		recover = cur_cpu_spec->machine_check(regs);
684 
685 	if (recover > 0)
686 		return;
687 
688 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
689 	/* the qspan pci read routines can cause machine checks -- Cort
690 	 *
691 	 * yuck !!! that totally needs to go away ! There are better ways
692 	 * to deal with that than having a wart in the mcheck handler.
693 	 * -- BenH
694 	 */
695 	bad_page_fault(regs, regs->dar, SIGBUS);
696 	return;
697 #endif
698 
699 	if (debugger_fault_handler(regs))
700 		return;
701 
702 	if (check_io_access(regs))
703 		return;
704 
705 	die("Machine check", regs, SIGBUS);
706 
707 	/* Must die if the interrupt is not recoverable */
708 	if (!(regs->msr & MSR_RI))
709 		panic("Unrecoverable Machine check");
710 }
711 
712 void SMIException(struct pt_regs *regs)
713 {
714 	die("System Management Interrupt", regs, SIGABRT);
715 }
716 
717 void unknown_exception(struct pt_regs *regs)
718 {
719 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
720 	       regs->nip, regs->msr, regs->trap);
721 
722 	_exception(SIGTRAP, regs, 0, 0);
723 }
724 
725 void instruction_breakpoint_exception(struct pt_regs *regs)
726 {
727 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
728 					5, SIGTRAP) == NOTIFY_STOP)
729 		return;
730 	if (debugger_iabr_match(regs))
731 		return;
732 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
733 }
734 
735 void RunModeException(struct pt_regs *regs)
736 {
737 	_exception(SIGTRAP, regs, 0, 0);
738 }
739 
740 void __kprobes single_step_exception(struct pt_regs *regs)
741 {
742 	clear_single_step(regs);
743 
744 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
745 					5, SIGTRAP) == NOTIFY_STOP)
746 		return;
747 	if (debugger_sstep(regs))
748 		return;
749 
750 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
751 }
752 
753 /*
754  * After we have successfully emulated an instruction, we have to
755  * check if the instruction was being single-stepped, and if so,
756  * pretend we got a single-step exception.  This was pointed out
757  * by Kumar Gala.  -- paulus
758  */
759 static void emulate_single_step(struct pt_regs *regs)
760 {
761 	if (single_stepping(regs))
762 		single_step_exception(regs);
763 }
764 
765 static inline int __parse_fpscr(unsigned long fpscr)
766 {
767 	int ret = 0;
768 
769 	/* Invalid operation */
770 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
771 		ret = FPE_FLTINV;
772 
773 	/* Overflow */
774 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
775 		ret = FPE_FLTOVF;
776 
777 	/* Underflow */
778 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
779 		ret = FPE_FLTUND;
780 
781 	/* Divide by zero */
782 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
783 		ret = FPE_FLTDIV;
784 
785 	/* Inexact result */
786 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
787 		ret = FPE_FLTRES;
788 
789 	return ret;
790 }
791 
792 static void parse_fpe(struct pt_regs *regs)
793 {
794 	int code = 0;
795 
796 	flush_fp_to_thread(current);
797 
798 	code = __parse_fpscr(current->thread.fpscr.val);
799 
800 	_exception(SIGFPE, regs, code, regs->nip);
801 }
802 
803 /*
804  * Illegal instruction emulation support.  Originally written to
805  * provide the PVR to user applications using the mfspr rd, PVR.
806  * Return non-zero if we can't emulate, or -EFAULT if the associated
807  * memory access caused an access fault.  Return zero on success.
808  *
809  * There are a couple of ways to do this, either "decode" the instruction
810  * or directly match lots of bits.  In this case, matching lots of
811  * bits is faster and easier.
812  *
813  */
814 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
815 {
816 	u8 rT = (instword >> 21) & 0x1f;
817 	u8 rA = (instword >> 16) & 0x1f;
818 	u8 NB_RB = (instword >> 11) & 0x1f;
819 	u32 num_bytes;
820 	unsigned long EA;
821 	int pos = 0;
822 
823 	/* Early out if we are an invalid form of lswx */
824 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
825 		if ((rT == rA) || (rT == NB_RB))
826 			return -EINVAL;
827 
828 	EA = (rA == 0) ? 0 : regs->gpr[rA];
829 
830 	switch (instword & PPC_INST_STRING_MASK) {
831 		case PPC_INST_LSWX:
832 		case PPC_INST_STSWX:
833 			EA += NB_RB;
834 			num_bytes = regs->xer & 0x7f;
835 			break;
836 		case PPC_INST_LSWI:
837 		case PPC_INST_STSWI:
838 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
839 			break;
840 		default:
841 			return -EINVAL;
842 	}
843 
844 	while (num_bytes != 0)
845 	{
846 		u8 val;
847 		u32 shift = 8 * (3 - (pos & 0x3));
848 
849 		switch ((instword & PPC_INST_STRING_MASK)) {
850 			case PPC_INST_LSWX:
851 			case PPC_INST_LSWI:
852 				if (get_user(val, (u8 __user *)EA))
853 					return -EFAULT;
854 				/* first time updating this reg,
855 				 * zero it out */
856 				if (pos == 0)
857 					regs->gpr[rT] = 0;
858 				regs->gpr[rT] |= val << shift;
859 				break;
860 			case PPC_INST_STSWI:
861 			case PPC_INST_STSWX:
862 				val = regs->gpr[rT] >> shift;
863 				if (put_user(val, (u8 __user *)EA))
864 					return -EFAULT;
865 				break;
866 		}
867 		/* move EA to next address */
868 		EA += 1;
869 		num_bytes--;
870 
871 		/* manage our position within the register */
872 		if (++pos == 4) {
873 			pos = 0;
874 			if (++rT == 32)
875 				rT = 0;
876 		}
877 	}
878 
879 	return 0;
880 }
881 
882 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
883 {
884 	u32 ra,rs;
885 	unsigned long tmp;
886 
887 	ra = (instword >> 16) & 0x1f;
888 	rs = (instword >> 21) & 0x1f;
889 
890 	tmp = regs->gpr[rs];
891 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
892 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
893 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
894 	regs->gpr[ra] = tmp;
895 
896 	return 0;
897 }
898 
899 static int emulate_isel(struct pt_regs *regs, u32 instword)
900 {
901 	u8 rT = (instword >> 21) & 0x1f;
902 	u8 rA = (instword >> 16) & 0x1f;
903 	u8 rB = (instword >> 11) & 0x1f;
904 	u8 BC = (instword >> 6) & 0x1f;
905 	u8 bit;
906 	unsigned long tmp;
907 
908 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
909 	bit = (regs->ccr >> (31 - BC)) & 0x1;
910 
911 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
912 
913 	return 0;
914 }
915 
916 static int emulate_instruction(struct pt_regs *regs)
917 {
918 	u32 instword;
919 	u32 rd;
920 
921 	if (!user_mode(regs) || (regs->msr & MSR_LE))
922 		return -EINVAL;
923 	CHECK_FULL_REGS(regs);
924 
925 	if (get_user(instword, (u32 __user *)(regs->nip)))
926 		return -EFAULT;
927 
928 	/* Emulate the mfspr rD, PVR. */
929 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
930 		PPC_WARN_EMULATED(mfpvr, regs);
931 		rd = (instword >> 21) & 0x1f;
932 		regs->gpr[rd] = mfspr(SPRN_PVR);
933 		return 0;
934 	}
935 
936 	/* Emulating the dcba insn is just a no-op.  */
937 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
938 		PPC_WARN_EMULATED(dcba, regs);
939 		return 0;
940 	}
941 
942 	/* Emulate the mcrxr insn.  */
943 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
944 		int shift = (instword >> 21) & 0x1c;
945 		unsigned long msk = 0xf0000000UL >> shift;
946 
947 		PPC_WARN_EMULATED(mcrxr, regs);
948 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
949 		regs->xer &= ~0xf0000000UL;
950 		return 0;
951 	}
952 
953 	/* Emulate load/store string insn. */
954 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
955 		PPC_WARN_EMULATED(string, regs);
956 		return emulate_string_inst(regs, instword);
957 	}
958 
959 	/* Emulate the popcntb (Population Count Bytes) instruction. */
960 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
961 		PPC_WARN_EMULATED(popcntb, regs);
962 		return emulate_popcntb_inst(regs, instword);
963 	}
964 
965 	/* Emulate isel (Integer Select) instruction */
966 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
967 		PPC_WARN_EMULATED(isel, regs);
968 		return emulate_isel(regs, instword);
969 	}
970 
971 #ifdef CONFIG_PPC64
972 	/* Emulate the mfspr rD, DSCR. */
973 	if (((instword & PPC_INST_MFSPR_DSCR_MASK) == PPC_INST_MFSPR_DSCR) &&
974 			cpu_has_feature(CPU_FTR_DSCR)) {
975 		PPC_WARN_EMULATED(mfdscr, regs);
976 		rd = (instword >> 21) & 0x1f;
977 		regs->gpr[rd] = mfspr(SPRN_DSCR);
978 		return 0;
979 	}
980 	/* Emulate the mtspr DSCR, rD. */
981 	if (((instword & PPC_INST_MTSPR_DSCR_MASK) == PPC_INST_MTSPR_DSCR) &&
982 			cpu_has_feature(CPU_FTR_DSCR)) {
983 		PPC_WARN_EMULATED(mtdscr, regs);
984 		rd = (instword >> 21) & 0x1f;
985 		current->thread.dscr = regs->gpr[rd];
986 		current->thread.dscr_inherit = 1;
987 		mtspr(SPRN_DSCR, current->thread.dscr);
988 		return 0;
989 	}
990 #endif
991 
992 	return -EINVAL;
993 }
994 
995 int is_valid_bugaddr(unsigned long addr)
996 {
997 	return is_kernel_addr(addr);
998 }
999 
1000 void __kprobes program_check_exception(struct pt_regs *regs)
1001 {
1002 	unsigned int reason = get_reason(regs);
1003 	extern int do_mathemu(struct pt_regs *regs);
1004 
1005 	/* We can now get here via a FP Unavailable exception if the core
1006 	 * has no FPU, in that case the reason flags will be 0 */
1007 
1008 	if (reason & REASON_FP) {
1009 		/* IEEE FP exception */
1010 		parse_fpe(regs);
1011 		return;
1012 	}
1013 	if (reason & REASON_TRAP) {
1014 		/* Debugger is first in line to stop recursive faults in
1015 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1016 		if (debugger_bpt(regs))
1017 			return;
1018 
1019 		/* trap exception */
1020 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1021 				== NOTIFY_STOP)
1022 			return;
1023 
1024 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1025 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1026 			regs->nip += 4;
1027 			return;
1028 		}
1029 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1030 		return;
1031 	}
1032 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1033 	if (reason & REASON_TM) {
1034 		/* This is a TM "Bad Thing Exception" program check.
1035 		 * This occurs when:
1036 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1037 		 *    transition in TM states.
1038 		 * -  A trechkpt is attempted when transactional.
1039 		 * -  A treclaim is attempted when non transactional.
1040 		 * -  A tend is illegally attempted.
1041 		 * -  writing a TM SPR when transactional.
1042 		 */
1043 		if (!user_mode(regs) &&
1044 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1045 			regs->nip += 4;
1046 			return;
1047 		}
1048 		/* If usermode caused this, it's done something illegal and
1049 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1050 		 * operand to distinguish from the instruction just being bad
1051 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1052 		 * illegal /placement/ of a valid instruction.
1053 		 */
1054 		if (user_mode(regs)) {
1055 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1056 			return;
1057 		} else {
1058 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1059 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1060 			die("Unrecoverable exception", regs, SIGABRT);
1061 		}
1062 	}
1063 #endif
1064 
1065 	/* We restore the interrupt state now */
1066 	if (!arch_irq_disabled_regs(regs))
1067 		local_irq_enable();
1068 
1069 #ifdef CONFIG_MATH_EMULATION
1070 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1071 	 * but there seems to be a hardware bug on the 405GP (RevD)
1072 	 * that means ESR is sometimes set incorrectly - either to
1073 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1074 	 * hardware people - not sure if it can happen on any illegal
1075 	 * instruction or only on FP instructions, whether there is a
1076 	 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
1077 	switch (do_mathemu(regs)) {
1078 	case 0:
1079 		emulate_single_step(regs);
1080 		return;
1081 	case 1: {
1082 			int code = 0;
1083 			code = __parse_fpscr(current->thread.fpscr.val);
1084 			_exception(SIGFPE, regs, code, regs->nip);
1085 			return;
1086 		}
1087 	case -EFAULT:
1088 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1089 		return;
1090 	}
1091 	/* fall through on any other errors */
1092 #endif /* CONFIG_MATH_EMULATION */
1093 
1094 	/* Try to emulate it if we should. */
1095 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1096 		switch (emulate_instruction(regs)) {
1097 		case 0:
1098 			regs->nip += 4;
1099 			emulate_single_step(regs);
1100 			return;
1101 		case -EFAULT:
1102 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1103 			return;
1104 		}
1105 	}
1106 
1107 	if (reason & REASON_PRIVILEGED)
1108 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1109 	else
1110 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1111 }
1112 
1113 void alignment_exception(struct pt_regs *regs)
1114 {
1115 	int sig, code, fixed = 0;
1116 
1117 	/* We restore the interrupt state now */
1118 	if (!arch_irq_disabled_regs(regs))
1119 		local_irq_enable();
1120 
1121 	/* we don't implement logging of alignment exceptions */
1122 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1123 		fixed = fix_alignment(regs);
1124 
1125 	if (fixed == 1) {
1126 		regs->nip += 4;	/* skip over emulated instruction */
1127 		emulate_single_step(regs);
1128 		return;
1129 	}
1130 
1131 	/* Operand address was bad */
1132 	if (fixed == -EFAULT) {
1133 		sig = SIGSEGV;
1134 		code = SEGV_ACCERR;
1135 	} else {
1136 		sig = SIGBUS;
1137 		code = BUS_ADRALN;
1138 	}
1139 	if (user_mode(regs))
1140 		_exception(sig, regs, code, regs->dar);
1141 	else
1142 		bad_page_fault(regs, regs->dar, sig);
1143 }
1144 
1145 void StackOverflow(struct pt_regs *regs)
1146 {
1147 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1148 	       current, regs->gpr[1]);
1149 	debugger(regs);
1150 	show_regs(regs);
1151 	panic("kernel stack overflow");
1152 }
1153 
1154 void nonrecoverable_exception(struct pt_regs *regs)
1155 {
1156 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1157 	       regs->nip, regs->msr);
1158 	debugger(regs);
1159 	die("nonrecoverable exception", regs, SIGKILL);
1160 }
1161 
1162 void trace_syscall(struct pt_regs *regs)
1163 {
1164 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1165 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1166 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1167 }
1168 
1169 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1170 {
1171 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1172 			  "%lx at %lx\n", regs->trap, regs->nip);
1173 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1174 }
1175 
1176 void altivec_unavailable_exception(struct pt_regs *regs)
1177 {
1178 	if (user_mode(regs)) {
1179 		/* A user program has executed an altivec instruction,
1180 		   but this kernel doesn't support altivec. */
1181 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1182 		return;
1183 	}
1184 
1185 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1186 			"%lx at %lx\n", regs->trap, regs->nip);
1187 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1188 }
1189 
1190 void vsx_unavailable_exception(struct pt_regs *regs)
1191 {
1192 	if (user_mode(regs)) {
1193 		/* A user program has executed an vsx instruction,
1194 		   but this kernel doesn't support vsx. */
1195 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1196 		return;
1197 	}
1198 
1199 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1200 			"%lx at %lx\n", regs->trap, regs->nip);
1201 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1202 }
1203 
1204 void tm_unavailable_exception(struct pt_regs *regs)
1205 {
1206 	/* We restore the interrupt state now */
1207 	if (!arch_irq_disabled_regs(regs))
1208 		local_irq_enable();
1209 
1210 	/* Currently we never expect a TMU exception.  Catch
1211 	 * this and kill the process!
1212 	 */
1213 	printk(KERN_EMERG "Unexpected TM unavailable exception at %lx "
1214 	       "(msr %lx)\n",
1215 	       regs->nip, regs->msr);
1216 
1217 	if (user_mode(regs)) {
1218 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1219 		return;
1220 	}
1221 
1222 	die("Unexpected TM unavailable exception", regs, SIGABRT);
1223 }
1224 
1225 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1226 
1227 extern void do_load_up_fpu(struct pt_regs *regs);
1228 
1229 void fp_unavailable_tm(struct pt_regs *regs)
1230 {
1231 	/* Note:  This does not handle any kind of FP laziness. */
1232 
1233 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1234 		 regs->nip, regs->msr);
1235 	tm_enable();
1236 
1237         /* We can only have got here if the task started using FP after
1238          * beginning the transaction.  So, the transactional regs are just a
1239          * copy of the checkpointed ones.  But, we still need to recheckpoint
1240          * as we're enabling FP for the process; it will return, abort the
1241          * transaction, and probably retry but now with FP enabled.  So the
1242          * checkpointed FP registers need to be loaded.
1243 	 */
1244 	tm_reclaim(&current->thread, current->thread.regs->msr,
1245 		   TM_CAUSE_FAC_UNAV);
1246 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1247 
1248 	/* Enable FP for the task: */
1249 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1250 
1251 	/* This loads and recheckpoints the FP registers from
1252 	 * thread.fpr[].  They will remain in registers after the
1253 	 * checkpoint so we don't need to reload them after.
1254 	 */
1255 	tm_recheckpoint(&current->thread, regs->msr);
1256 }
1257 
1258 #ifdef CONFIG_ALTIVEC
1259 extern void do_load_up_altivec(struct pt_regs *regs);
1260 
1261 void altivec_unavailable_tm(struct pt_regs *regs)
1262 {
1263 	/* See the comments in fp_unavailable_tm().  This function operates
1264 	 * the same way.
1265 	 */
1266 
1267 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1268 		 "MSR=%lx\n",
1269 		 regs->nip, regs->msr);
1270 	tm_enable();
1271 	tm_reclaim(&current->thread, current->thread.regs->msr,
1272 		   TM_CAUSE_FAC_UNAV);
1273 	regs->msr |= MSR_VEC;
1274 	tm_recheckpoint(&current->thread, regs->msr);
1275 	current->thread.used_vr = 1;
1276 }
1277 #endif
1278 
1279 #ifdef CONFIG_VSX
1280 void vsx_unavailable_tm(struct pt_regs *regs)
1281 {
1282 	/* See the comments in fp_unavailable_tm().  This works similarly,
1283 	 * though we're loading both FP and VEC registers in here.
1284 	 *
1285 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1286 	 * regs.  Either way, set MSR_VSX.
1287 	 */
1288 
1289 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1290 		 "MSR=%lx\n",
1291 		 regs->nip, regs->msr);
1292 
1293 	tm_enable();
1294 	/* This reclaims FP and/or VR regs if they're already enabled */
1295 	tm_reclaim(&current->thread, current->thread.regs->msr,
1296 		   TM_CAUSE_FAC_UNAV);
1297 
1298 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1299 		MSR_VSX;
1300 	/* This loads & recheckpoints FP and VRs. */
1301 	tm_recheckpoint(&current->thread, regs->msr);
1302 	current->thread.used_vsr = 1;
1303 }
1304 #endif
1305 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1306 
1307 void performance_monitor_exception(struct pt_regs *regs)
1308 {
1309 	__get_cpu_var(irq_stat).pmu_irqs++;
1310 
1311 	perf_irq(regs);
1312 }
1313 
1314 #ifdef CONFIG_8xx
1315 void SoftwareEmulation(struct pt_regs *regs)
1316 {
1317 	extern int do_mathemu(struct pt_regs *);
1318 	extern int Soft_emulate_8xx(struct pt_regs *);
1319 #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1320 	int errcode;
1321 #endif
1322 
1323 	CHECK_FULL_REGS(regs);
1324 
1325 	if (!user_mode(regs)) {
1326 		debugger(regs);
1327 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1328 	}
1329 
1330 #ifdef CONFIG_MATH_EMULATION
1331 	errcode = do_mathemu(regs);
1332 	if (errcode >= 0)
1333 		PPC_WARN_EMULATED(math, regs);
1334 
1335 	switch (errcode) {
1336 	case 0:
1337 		emulate_single_step(regs);
1338 		return;
1339 	case 1: {
1340 			int code = 0;
1341 			code = __parse_fpscr(current->thread.fpscr.val);
1342 			_exception(SIGFPE, regs, code, regs->nip);
1343 			return;
1344 		}
1345 	case -EFAULT:
1346 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1347 		return;
1348 	default:
1349 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1350 		return;
1351 	}
1352 
1353 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1354 	errcode = Soft_emulate_8xx(regs);
1355 	if (errcode >= 0)
1356 		PPC_WARN_EMULATED(8xx, regs);
1357 
1358 	switch (errcode) {
1359 	case 0:
1360 		emulate_single_step(regs);
1361 		return;
1362 	case 1:
1363 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1364 		return;
1365 	case -EFAULT:
1366 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1367 		return;
1368 	}
1369 #else
1370 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1371 #endif
1372 }
1373 #endif /* CONFIG_8xx */
1374 
1375 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1376 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1377 {
1378 	int changed = 0;
1379 	/*
1380 	 * Determine the cause of the debug event, clear the
1381 	 * event flags and send a trap to the handler. Torez
1382 	 */
1383 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1384 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1385 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1386 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1387 #endif
1388 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1389 			     5);
1390 		changed |= 0x01;
1391 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1392 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1393 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1394 			     6);
1395 		changed |= 0x01;
1396 	}  else if (debug_status & DBSR_IAC1) {
1397 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1398 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1399 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1400 			     1);
1401 		changed |= 0x01;
1402 	}  else if (debug_status & DBSR_IAC2) {
1403 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1404 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1405 			     2);
1406 		changed |= 0x01;
1407 	}  else if (debug_status & DBSR_IAC3) {
1408 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1409 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1410 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1411 			     3);
1412 		changed |= 0x01;
1413 	}  else if (debug_status & DBSR_IAC4) {
1414 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1415 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1416 			     4);
1417 		changed |= 0x01;
1418 	}
1419 	/*
1420 	 * At the point this routine was called, the MSR(DE) was turned off.
1421 	 * Check all other debug flags and see if that bit needs to be turned
1422 	 * back on or not.
1423 	 */
1424 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1425 		regs->msr |= MSR_DE;
1426 	else
1427 		/* Make sure the IDM flag is off */
1428 		current->thread.dbcr0 &= ~DBCR0_IDM;
1429 
1430 	if (changed & 0x01)
1431 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1432 }
1433 
1434 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1435 {
1436 	current->thread.dbsr = debug_status;
1437 
1438 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1439 	 * on server, it stops on the target of the branch. In order to simulate
1440 	 * the server behaviour, we thus restart right away with a single step
1441 	 * instead of stopping here when hitting a BT
1442 	 */
1443 	if (debug_status & DBSR_BT) {
1444 		regs->msr &= ~MSR_DE;
1445 
1446 		/* Disable BT */
1447 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1448 		/* Clear the BT event */
1449 		mtspr(SPRN_DBSR, DBSR_BT);
1450 
1451 		/* Do the single step trick only when coming from userspace */
1452 		if (user_mode(regs)) {
1453 			current->thread.dbcr0 &= ~DBCR0_BT;
1454 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1455 			regs->msr |= MSR_DE;
1456 			return;
1457 		}
1458 
1459 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1460 			       5, SIGTRAP) == NOTIFY_STOP) {
1461 			return;
1462 		}
1463 		if (debugger_sstep(regs))
1464 			return;
1465 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1466 		regs->msr &= ~MSR_DE;
1467 
1468 		/* Disable instruction completion */
1469 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1470 		/* Clear the instruction completion event */
1471 		mtspr(SPRN_DBSR, DBSR_IC);
1472 
1473 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1474 			       5, SIGTRAP) == NOTIFY_STOP) {
1475 			return;
1476 		}
1477 
1478 		if (debugger_sstep(regs))
1479 			return;
1480 
1481 		if (user_mode(regs)) {
1482 			current->thread.dbcr0 &= ~DBCR0_IC;
1483 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1484 					       current->thread.dbcr1))
1485 				regs->msr |= MSR_DE;
1486 			else
1487 				/* Make sure the IDM bit is off */
1488 				current->thread.dbcr0 &= ~DBCR0_IDM;
1489 		}
1490 
1491 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1492 	} else
1493 		handle_debug(regs, debug_status);
1494 }
1495 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1496 
1497 #if !defined(CONFIG_TAU_INT)
1498 void TAUException(struct pt_regs *regs)
1499 {
1500 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1501 	       regs->nip, regs->msr, regs->trap, print_tainted());
1502 }
1503 #endif /* CONFIG_INT_TAU */
1504 
1505 #ifdef CONFIG_ALTIVEC
1506 void altivec_assist_exception(struct pt_regs *regs)
1507 {
1508 	int err;
1509 
1510 	if (!user_mode(regs)) {
1511 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1512 		       " at %lx\n", regs->nip);
1513 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1514 	}
1515 
1516 	flush_altivec_to_thread(current);
1517 
1518 	PPC_WARN_EMULATED(altivec, regs);
1519 	err = emulate_altivec(regs);
1520 	if (err == 0) {
1521 		regs->nip += 4;		/* skip emulated instruction */
1522 		emulate_single_step(regs);
1523 		return;
1524 	}
1525 
1526 	if (err == -EFAULT) {
1527 		/* got an error reading the instruction */
1528 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1529 	} else {
1530 		/* didn't recognize the instruction */
1531 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1532 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1533 				   "in %s at %lx\n", current->comm, regs->nip);
1534 		current->thread.vscr.u[3] |= 0x10000;
1535 	}
1536 }
1537 #endif /* CONFIG_ALTIVEC */
1538 
1539 #ifdef CONFIG_VSX
1540 void vsx_assist_exception(struct pt_regs *regs)
1541 {
1542 	if (!user_mode(regs)) {
1543 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1544 		       " at %lx\n", regs->nip);
1545 		die("Kernel VSX assist exception", regs, SIGILL);
1546 	}
1547 
1548 	flush_vsx_to_thread(current);
1549 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1550 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1551 }
1552 #endif /* CONFIG_VSX */
1553 
1554 #ifdef CONFIG_FSL_BOOKE
1555 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1556 			   unsigned long error_code)
1557 {
1558 	/* We treat cache locking instructions from the user
1559 	 * as priv ops, in the future we could try to do
1560 	 * something smarter
1561 	 */
1562 	if (error_code & (ESR_DLK|ESR_ILK))
1563 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1564 	return;
1565 }
1566 #endif /* CONFIG_FSL_BOOKE */
1567 
1568 #ifdef CONFIG_SPE
1569 void SPEFloatingPointException(struct pt_regs *regs)
1570 {
1571 	extern int do_spe_mathemu(struct pt_regs *regs);
1572 	unsigned long spefscr;
1573 	int fpexc_mode;
1574 	int code = 0;
1575 	int err;
1576 
1577 	flush_spe_to_thread(current);
1578 
1579 	spefscr = current->thread.spefscr;
1580 	fpexc_mode = current->thread.fpexc_mode;
1581 
1582 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1583 		code = FPE_FLTOVF;
1584 	}
1585 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1586 		code = FPE_FLTUND;
1587 	}
1588 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1589 		code = FPE_FLTDIV;
1590 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1591 		code = FPE_FLTINV;
1592 	}
1593 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1594 		code = FPE_FLTRES;
1595 
1596 	err = do_spe_mathemu(regs);
1597 	if (err == 0) {
1598 		regs->nip += 4;		/* skip emulated instruction */
1599 		emulate_single_step(regs);
1600 		return;
1601 	}
1602 
1603 	if (err == -EFAULT) {
1604 		/* got an error reading the instruction */
1605 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1606 	} else if (err == -EINVAL) {
1607 		/* didn't recognize the instruction */
1608 		printk(KERN_ERR "unrecognized spe instruction "
1609 		       "in %s at %lx\n", current->comm, regs->nip);
1610 	} else {
1611 		_exception(SIGFPE, regs, code, regs->nip);
1612 	}
1613 
1614 	return;
1615 }
1616 
1617 void SPEFloatingPointRoundException(struct pt_regs *regs)
1618 {
1619 	extern int speround_handler(struct pt_regs *regs);
1620 	int err;
1621 
1622 	preempt_disable();
1623 	if (regs->msr & MSR_SPE)
1624 		giveup_spe(current);
1625 	preempt_enable();
1626 
1627 	regs->nip -= 4;
1628 	err = speround_handler(regs);
1629 	if (err == 0) {
1630 		regs->nip += 4;		/* skip emulated instruction */
1631 		emulate_single_step(regs);
1632 		return;
1633 	}
1634 
1635 	if (err == -EFAULT) {
1636 		/* got an error reading the instruction */
1637 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1638 	} else if (err == -EINVAL) {
1639 		/* didn't recognize the instruction */
1640 		printk(KERN_ERR "unrecognized spe instruction "
1641 		       "in %s at %lx\n", current->comm, regs->nip);
1642 	} else {
1643 		_exception(SIGFPE, regs, 0, regs->nip);
1644 		return;
1645 	}
1646 }
1647 #endif
1648 
1649 /*
1650  * We enter here if we get an unrecoverable exception, that is, one
1651  * that happened at a point where the RI (recoverable interrupt) bit
1652  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1653  * we therefore lost state by taking this exception.
1654  */
1655 void unrecoverable_exception(struct pt_regs *regs)
1656 {
1657 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1658 	       regs->trap, regs->nip);
1659 	die("Unrecoverable exception", regs, SIGABRT);
1660 }
1661 
1662 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1663 /*
1664  * Default handler for a Watchdog exception,
1665  * spins until a reboot occurs
1666  */
1667 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1668 {
1669 	/* Generic WatchdogHandler, implement your own */
1670 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1671 	return;
1672 }
1673 
1674 void WatchdogException(struct pt_regs *regs)
1675 {
1676 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1677 	WatchdogHandler(regs);
1678 }
1679 #endif
1680 
1681 /*
1682  * We enter here if we discover during exception entry that we are
1683  * running in supervisor mode with a userspace value in the stack pointer.
1684  */
1685 void kernel_bad_stack(struct pt_regs *regs)
1686 {
1687 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1688 	       regs->gpr[1], regs->nip);
1689 	die("Bad kernel stack pointer", regs, SIGABRT);
1690 }
1691 
1692 void __init trap_init(void)
1693 {
1694 }
1695 
1696 
1697 #ifdef CONFIG_PPC_EMULATED_STATS
1698 
1699 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1700 
1701 struct ppc_emulated ppc_emulated = {
1702 #ifdef CONFIG_ALTIVEC
1703 	WARN_EMULATED_SETUP(altivec),
1704 #endif
1705 	WARN_EMULATED_SETUP(dcba),
1706 	WARN_EMULATED_SETUP(dcbz),
1707 	WARN_EMULATED_SETUP(fp_pair),
1708 	WARN_EMULATED_SETUP(isel),
1709 	WARN_EMULATED_SETUP(mcrxr),
1710 	WARN_EMULATED_SETUP(mfpvr),
1711 	WARN_EMULATED_SETUP(multiple),
1712 	WARN_EMULATED_SETUP(popcntb),
1713 	WARN_EMULATED_SETUP(spe),
1714 	WARN_EMULATED_SETUP(string),
1715 	WARN_EMULATED_SETUP(unaligned),
1716 #ifdef CONFIG_MATH_EMULATION
1717 	WARN_EMULATED_SETUP(math),
1718 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1719 	WARN_EMULATED_SETUP(8xx),
1720 #endif
1721 #ifdef CONFIG_VSX
1722 	WARN_EMULATED_SETUP(vsx),
1723 #endif
1724 #ifdef CONFIG_PPC64
1725 	WARN_EMULATED_SETUP(mfdscr),
1726 	WARN_EMULATED_SETUP(mtdscr),
1727 #endif
1728 };
1729 
1730 u32 ppc_warn_emulated;
1731 
1732 void ppc_warn_emulated_print(const char *type)
1733 {
1734 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1735 			    type);
1736 }
1737 
1738 static int __init ppc_warn_emulated_init(void)
1739 {
1740 	struct dentry *dir, *d;
1741 	unsigned int i;
1742 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1743 
1744 	if (!powerpc_debugfs_root)
1745 		return -ENODEV;
1746 
1747 	dir = debugfs_create_dir("emulated_instructions",
1748 				 powerpc_debugfs_root);
1749 	if (!dir)
1750 		return -ENOMEM;
1751 
1752 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1753 			       &ppc_warn_emulated);
1754 	if (!d)
1755 		goto fail;
1756 
1757 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1758 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1759 				       (u32 *)&entries[i].val.counter);
1760 		if (!d)
1761 			goto fail;
1762 	}
1763 
1764 	return 0;
1765 
1766 fail:
1767 	debugfs_remove_recursive(dir);
1768 	return -ENOMEM;
1769 }
1770 
1771 device_initcall(ppc_warn_emulated_init);
1772 
1773 #endif /* CONFIG_PPC_EMULATED_STATS */
1774