xref: /openbmc/linux/arch/powerpc/kernel/traps.c (revision 3a3b5aa63fad4911e239055c2c0a89ce2dac62ce)
1 /*
2  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
3  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU General Public License
7  *  as published by the Free Software Foundation; either version
8  *  2 of the License, or (at your option) any later version.
9  *
10  *  Modified by Cort Dougan (cort@cs.nmt.edu)
11  *  and Paul Mackerras (paulus@samba.org)
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of hardware exceptions
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39 
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #ifdef CONFIG_PPC32
48 #include <asm/reg.h>
49 #endif
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <sysdev/fsl_pci.h>
66 
67 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
68 int (*__debugger)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
75 
76 EXPORT_SYMBOL(__debugger);
77 EXPORT_SYMBOL(__debugger_ipi);
78 EXPORT_SYMBOL(__debugger_bpt);
79 EXPORT_SYMBOL(__debugger_sstep);
80 EXPORT_SYMBOL(__debugger_iabr_match);
81 EXPORT_SYMBOL(__debugger_break_match);
82 EXPORT_SYMBOL(__debugger_fault_handler);
83 #endif
84 
85 /* Transactional Memory trap debug */
86 #ifdef TM_DEBUG_SW
87 #define TM_DEBUG(x...) printk(KERN_INFO x)
88 #else
89 #define TM_DEBUG(x...) do { } while(0)
90 #endif
91 
92 /*
93  * Trap & Exception support
94  */
95 
96 #ifdef CONFIG_PMAC_BACKLIGHT
97 static void pmac_backlight_unblank(void)
98 {
99 	mutex_lock(&pmac_backlight_mutex);
100 	if (pmac_backlight) {
101 		struct backlight_properties *props;
102 
103 		props = &pmac_backlight->props;
104 		props->brightness = props->max_brightness;
105 		props->power = FB_BLANK_UNBLANK;
106 		backlight_update_status(pmac_backlight);
107 	}
108 	mutex_unlock(&pmac_backlight_mutex);
109 }
110 #else
111 static inline void pmac_backlight_unblank(void) { }
112 #endif
113 
114 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
115 static int die_owner = -1;
116 static unsigned int die_nest_count;
117 static int die_counter;
118 
119 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
120 {
121 	int cpu;
122 	unsigned long flags;
123 
124 	if (debugger(regs))
125 		return 1;
126 
127 	oops_enter();
128 
129 	/* racy, but better than risking deadlock. */
130 	raw_local_irq_save(flags);
131 	cpu = smp_processor_id();
132 	if (!arch_spin_trylock(&die_lock)) {
133 		if (cpu == die_owner)
134 			/* nested oops. should stop eventually */;
135 		else
136 			arch_spin_lock(&die_lock);
137 	}
138 	die_nest_count++;
139 	die_owner = cpu;
140 	console_verbose();
141 	bust_spinlocks(1);
142 	if (machine_is(powermac))
143 		pmac_backlight_unblank();
144 	return flags;
145 }
146 
147 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
148 			       int signr)
149 {
150 	bust_spinlocks(0);
151 	die_owner = -1;
152 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
153 	die_nest_count--;
154 	oops_exit();
155 	printk("\n");
156 	if (!die_nest_count)
157 		/* Nest count reaches zero, release the lock. */
158 		arch_spin_unlock(&die_lock);
159 	raw_local_irq_restore(flags);
160 
161 	crash_fadump(regs, "die oops");
162 
163 	/*
164 	 * A system reset (0x100) is a request to dump, so we always send
165 	 * it through the crashdump code.
166 	 */
167 	if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
168 		crash_kexec(regs);
169 
170 		/*
171 		 * We aren't the primary crash CPU. We need to send it
172 		 * to a holding pattern to avoid it ending up in the panic
173 		 * code.
174 		 */
175 		crash_kexec_secondary(regs);
176 	}
177 
178 	if (!signr)
179 		return;
180 
181 	/*
182 	 * While our oops output is serialised by a spinlock, output
183 	 * from panic() called below can race and corrupt it. If we
184 	 * know we are going to panic, delay for 1 second so we have a
185 	 * chance to get clean backtraces from all CPUs that are oopsing.
186 	 */
187 	if (in_interrupt() || panic_on_oops || !current->pid ||
188 	    is_global_init(current)) {
189 		mdelay(MSEC_PER_SEC);
190 	}
191 
192 	if (in_interrupt())
193 		panic("Fatal exception in interrupt");
194 	if (panic_on_oops)
195 		panic("Fatal exception");
196 	do_exit(signr);
197 }
198 
199 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
200 {
201 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
202 #ifdef CONFIG_PREEMPT
203 	printk("PREEMPT ");
204 #endif
205 #ifdef CONFIG_SMP
206 	printk("SMP NR_CPUS=%d ", NR_CPUS);
207 #endif
208 #ifdef CONFIG_DEBUG_PAGEALLOC
209 	printk("DEBUG_PAGEALLOC ");
210 #endif
211 #ifdef CONFIG_NUMA
212 	printk("NUMA ");
213 #endif
214 	printk("%s\n", ppc_md.name ? ppc_md.name : "");
215 
216 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
217 		return 1;
218 
219 	print_modules();
220 	show_regs(regs);
221 
222 	return 0;
223 }
224 
225 void die(const char *str, struct pt_regs *regs, long err)
226 {
227 	unsigned long flags = oops_begin(regs);
228 
229 	if (__die(str, regs, err))
230 		err = 0;
231 	oops_end(flags, regs, err);
232 }
233 
234 void user_single_step_siginfo(struct task_struct *tsk,
235 				struct pt_regs *regs, siginfo_t *info)
236 {
237 	memset(info, 0, sizeof(*info));
238 	info->si_signo = SIGTRAP;
239 	info->si_code = TRAP_TRACE;
240 	info->si_addr = (void __user *)regs->nip;
241 }
242 
243 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
244 {
245 	siginfo_t info;
246 	const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 			"at %08lx nip %08lx lr %08lx code %x\n";
248 	const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
249 			"at %016lx nip %016lx lr %016lx code %x\n";
250 
251 	if (!user_mode(regs)) {
252 		die("Exception in kernel mode", regs, signr);
253 		return;
254 	}
255 
256 	if (show_unhandled_signals && unhandled_signal(current, signr)) {
257 		printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
258 				   current->comm, current->pid, signr,
259 				   addr, regs->nip, regs->link, code);
260 	}
261 
262 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
263 		local_irq_enable();
264 
265 	current->thread.trap_nr = code;
266 	memset(&info, 0, sizeof(info));
267 	info.si_signo = signr;
268 	info.si_code = code;
269 	info.si_addr = (void __user *) addr;
270 	force_sig_info(signr, &info, current);
271 }
272 
273 #ifdef CONFIG_PPC64
274 void system_reset_exception(struct pt_regs *regs)
275 {
276 	/* See if any machine dependent calls */
277 	if (ppc_md.system_reset_exception) {
278 		if (ppc_md.system_reset_exception(regs))
279 			return;
280 	}
281 
282 	die("System Reset", regs, SIGABRT);
283 
284 	/* Must die if the interrupt is not recoverable */
285 	if (!(regs->msr & MSR_RI))
286 		panic("Unrecoverable System Reset");
287 
288 	/* What should we do here? We could issue a shutdown or hard reset. */
289 }
290 #endif
291 
292 /*
293  * I/O accesses can cause machine checks on powermacs.
294  * Check if the NIP corresponds to the address of a sync
295  * instruction for which there is an entry in the exception
296  * table.
297  * Note that the 601 only takes a machine check on TEA
298  * (transfer error ack) signal assertion, and does not
299  * set any of the top 16 bits of SRR1.
300  *  -- paulus.
301  */
302 static inline int check_io_access(struct pt_regs *regs)
303 {
304 #ifdef CONFIG_PPC32
305 	unsigned long msr = regs->msr;
306 	const struct exception_table_entry *entry;
307 	unsigned int *nip = (unsigned int *)regs->nip;
308 
309 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
310 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
311 		/*
312 		 * Check that it's a sync instruction, or somewhere
313 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
314 		 * As the address is in the exception table
315 		 * we should be able to read the instr there.
316 		 * For the debug message, we look at the preceding
317 		 * load or store.
318 		 */
319 		if (*nip == 0x60000000)		/* nop */
320 			nip -= 2;
321 		else if (*nip == 0x4c00012c)	/* isync */
322 			--nip;
323 		if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
324 			/* sync or twi */
325 			unsigned int rb;
326 
327 			--nip;
328 			rb = (*nip >> 11) & 0x1f;
329 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
330 			       (*nip & 0x100)? "OUT to": "IN from",
331 			       regs->gpr[rb] - _IO_BASE, nip);
332 			regs->msr |= MSR_RI;
333 			regs->nip = entry->fixup;
334 			return 1;
335 		}
336 	}
337 #endif /* CONFIG_PPC32 */
338 	return 0;
339 }
340 
341 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
342 /* On 4xx, the reason for the machine check or program exception
343    is in the ESR. */
344 #define get_reason(regs)	((regs)->dsisr)
345 #ifndef CONFIG_FSL_BOOKE
346 #define get_mc_reason(regs)	((regs)->dsisr)
347 #else
348 #define get_mc_reason(regs)	(mfspr(SPRN_MCSR))
349 #endif
350 #define REASON_FP		ESR_FP
351 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
352 #define REASON_PRIVILEGED	ESR_PPR
353 #define REASON_TRAP		ESR_PTR
354 
355 /* single-step stuff */
356 #define single_stepping(regs)	(current->thread.dbcr0 & DBCR0_IC)
357 #define clear_single_step(regs)	(current->thread.dbcr0 &= ~DBCR0_IC)
358 
359 #else
360 /* On non-4xx, the reason for the machine check or program
361    exception is in the MSR. */
362 #define get_reason(regs)	((regs)->msr)
363 #define get_mc_reason(regs)	((regs)->msr)
364 #define REASON_TM		0x200000
365 #define REASON_FP		0x100000
366 #define REASON_ILLEGAL		0x80000
367 #define REASON_PRIVILEGED	0x40000
368 #define REASON_TRAP		0x20000
369 
370 #define single_stepping(regs)	((regs)->msr & MSR_SE)
371 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
372 #endif
373 
374 #if defined(CONFIG_4xx)
375 int machine_check_4xx(struct pt_regs *regs)
376 {
377 	unsigned long reason = get_mc_reason(regs);
378 
379 	if (reason & ESR_IMCP) {
380 		printk("Instruction");
381 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
382 	} else
383 		printk("Data");
384 	printk(" machine check in kernel mode.\n");
385 
386 	return 0;
387 }
388 
389 int machine_check_440A(struct pt_regs *regs)
390 {
391 	unsigned long reason = get_mc_reason(regs);
392 
393 	printk("Machine check in kernel mode.\n");
394 	if (reason & ESR_IMCP){
395 		printk("Instruction Synchronous Machine Check exception\n");
396 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
397 	}
398 	else {
399 		u32 mcsr = mfspr(SPRN_MCSR);
400 		if (mcsr & MCSR_IB)
401 			printk("Instruction Read PLB Error\n");
402 		if (mcsr & MCSR_DRB)
403 			printk("Data Read PLB Error\n");
404 		if (mcsr & MCSR_DWB)
405 			printk("Data Write PLB Error\n");
406 		if (mcsr & MCSR_TLBP)
407 			printk("TLB Parity Error\n");
408 		if (mcsr & MCSR_ICP){
409 			flush_instruction_cache();
410 			printk("I-Cache Parity Error\n");
411 		}
412 		if (mcsr & MCSR_DCSP)
413 			printk("D-Cache Search Parity Error\n");
414 		if (mcsr & MCSR_DCFP)
415 			printk("D-Cache Flush Parity Error\n");
416 		if (mcsr & MCSR_IMPE)
417 			printk("Machine Check exception is imprecise\n");
418 
419 		/* Clear MCSR */
420 		mtspr(SPRN_MCSR, mcsr);
421 	}
422 	return 0;
423 }
424 
425 int machine_check_47x(struct pt_regs *regs)
426 {
427 	unsigned long reason = get_mc_reason(regs);
428 	u32 mcsr;
429 
430 	printk(KERN_ERR "Machine check in kernel mode.\n");
431 	if (reason & ESR_IMCP) {
432 		printk(KERN_ERR
433 		       "Instruction Synchronous Machine Check exception\n");
434 		mtspr(SPRN_ESR, reason & ~ESR_IMCP);
435 		return 0;
436 	}
437 	mcsr = mfspr(SPRN_MCSR);
438 	if (mcsr & MCSR_IB)
439 		printk(KERN_ERR "Instruction Read PLB Error\n");
440 	if (mcsr & MCSR_DRB)
441 		printk(KERN_ERR "Data Read PLB Error\n");
442 	if (mcsr & MCSR_DWB)
443 		printk(KERN_ERR "Data Write PLB Error\n");
444 	if (mcsr & MCSR_TLBP)
445 		printk(KERN_ERR "TLB Parity Error\n");
446 	if (mcsr & MCSR_ICP) {
447 		flush_instruction_cache();
448 		printk(KERN_ERR "I-Cache Parity Error\n");
449 	}
450 	if (mcsr & MCSR_DCSP)
451 		printk(KERN_ERR "D-Cache Search Parity Error\n");
452 	if (mcsr & PPC47x_MCSR_GPR)
453 		printk(KERN_ERR "GPR Parity Error\n");
454 	if (mcsr & PPC47x_MCSR_FPR)
455 		printk(KERN_ERR "FPR Parity Error\n");
456 	if (mcsr & PPC47x_MCSR_IPR)
457 		printk(KERN_ERR "Machine Check exception is imprecise\n");
458 
459 	/* Clear MCSR */
460 	mtspr(SPRN_MCSR, mcsr);
461 
462 	return 0;
463 }
464 #elif defined(CONFIG_E500)
465 int machine_check_e500mc(struct pt_regs *regs)
466 {
467 	unsigned long mcsr = mfspr(SPRN_MCSR);
468 	unsigned long reason = mcsr;
469 	int recoverable = 1;
470 
471 	if (reason & MCSR_LD) {
472 		recoverable = fsl_rio_mcheck_exception(regs);
473 		if (recoverable == 1)
474 			goto silent_out;
475 	}
476 
477 	printk("Machine check in kernel mode.\n");
478 	printk("Caused by (from MCSR=%lx): ", reason);
479 
480 	if (reason & MCSR_MCP)
481 		printk("Machine Check Signal\n");
482 
483 	if (reason & MCSR_ICPERR) {
484 		printk("Instruction Cache Parity Error\n");
485 
486 		/*
487 		 * This is recoverable by invalidating the i-cache.
488 		 */
489 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
490 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
491 			;
492 
493 		/*
494 		 * This will generally be accompanied by an instruction
495 		 * fetch error report -- only treat MCSR_IF as fatal
496 		 * if it wasn't due to an L1 parity error.
497 		 */
498 		reason &= ~MCSR_IF;
499 	}
500 
501 	if (reason & MCSR_DCPERR_MC) {
502 		printk("Data Cache Parity Error\n");
503 
504 		/*
505 		 * In write shadow mode we auto-recover from the error, but it
506 		 * may still get logged and cause a machine check.  We should
507 		 * only treat the non-write shadow case as non-recoverable.
508 		 */
509 		if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
510 			recoverable = 0;
511 	}
512 
513 	if (reason & MCSR_L2MMU_MHIT) {
514 		printk("Hit on multiple TLB entries\n");
515 		recoverable = 0;
516 	}
517 
518 	if (reason & MCSR_NMI)
519 		printk("Non-maskable interrupt\n");
520 
521 	if (reason & MCSR_IF) {
522 		printk("Instruction Fetch Error Report\n");
523 		recoverable = 0;
524 	}
525 
526 	if (reason & MCSR_LD) {
527 		printk("Load Error Report\n");
528 		recoverable = 0;
529 	}
530 
531 	if (reason & MCSR_ST) {
532 		printk("Store Error Report\n");
533 		recoverable = 0;
534 	}
535 
536 	if (reason & MCSR_LDG) {
537 		printk("Guarded Load Error Report\n");
538 		recoverable = 0;
539 	}
540 
541 	if (reason & MCSR_TLBSYNC)
542 		printk("Simultaneous tlbsync operations\n");
543 
544 	if (reason & MCSR_BSL2_ERR) {
545 		printk("Level 2 Cache Error\n");
546 		recoverable = 0;
547 	}
548 
549 	if (reason & MCSR_MAV) {
550 		u64 addr;
551 
552 		addr = mfspr(SPRN_MCAR);
553 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
554 
555 		printk("Machine Check %s Address: %#llx\n",
556 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
557 	}
558 
559 silent_out:
560 	mtspr(SPRN_MCSR, mcsr);
561 	return mfspr(SPRN_MCSR) == 0 && recoverable;
562 }
563 
564 int machine_check_e500(struct pt_regs *regs)
565 {
566 	unsigned long reason = get_mc_reason(regs);
567 
568 	if (reason & MCSR_BUS_RBERR) {
569 		if (fsl_rio_mcheck_exception(regs))
570 			return 1;
571 		if (fsl_pci_mcheck_exception(regs))
572 			return 1;
573 	}
574 
575 	printk("Machine check in kernel mode.\n");
576 	printk("Caused by (from MCSR=%lx): ", reason);
577 
578 	if (reason & MCSR_MCP)
579 		printk("Machine Check Signal\n");
580 	if (reason & MCSR_ICPERR)
581 		printk("Instruction Cache Parity Error\n");
582 	if (reason & MCSR_DCP_PERR)
583 		printk("Data Cache Push Parity Error\n");
584 	if (reason & MCSR_DCPERR)
585 		printk("Data Cache Parity Error\n");
586 	if (reason & MCSR_BUS_IAERR)
587 		printk("Bus - Instruction Address Error\n");
588 	if (reason & MCSR_BUS_RAERR)
589 		printk("Bus - Read Address Error\n");
590 	if (reason & MCSR_BUS_WAERR)
591 		printk("Bus - Write Address Error\n");
592 	if (reason & MCSR_BUS_IBERR)
593 		printk("Bus - Instruction Data Error\n");
594 	if (reason & MCSR_BUS_RBERR)
595 		printk("Bus - Read Data Bus Error\n");
596 	if (reason & MCSR_BUS_WBERR)
597 		printk("Bus - Read Data Bus Error\n");
598 	if (reason & MCSR_BUS_IPERR)
599 		printk("Bus - Instruction Parity Error\n");
600 	if (reason & MCSR_BUS_RPERR)
601 		printk("Bus - Read Parity Error\n");
602 
603 	return 0;
604 }
605 
606 int machine_check_generic(struct pt_regs *regs)
607 {
608 	return 0;
609 }
610 #elif defined(CONFIG_E200)
611 int machine_check_e200(struct pt_regs *regs)
612 {
613 	unsigned long reason = get_mc_reason(regs);
614 
615 	printk("Machine check in kernel mode.\n");
616 	printk("Caused by (from MCSR=%lx): ", reason);
617 
618 	if (reason & MCSR_MCP)
619 		printk("Machine Check Signal\n");
620 	if (reason & MCSR_CP_PERR)
621 		printk("Cache Push Parity Error\n");
622 	if (reason & MCSR_CPERR)
623 		printk("Cache Parity Error\n");
624 	if (reason & MCSR_EXCP_ERR)
625 		printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
626 	if (reason & MCSR_BUS_IRERR)
627 		printk("Bus - Read Bus Error on instruction fetch\n");
628 	if (reason & MCSR_BUS_DRERR)
629 		printk("Bus - Read Bus Error on data load\n");
630 	if (reason & MCSR_BUS_WRERR)
631 		printk("Bus - Write Bus Error on buffered store or cache line push\n");
632 
633 	return 0;
634 }
635 #else
636 int machine_check_generic(struct pt_regs *regs)
637 {
638 	unsigned long reason = get_mc_reason(regs);
639 
640 	printk("Machine check in kernel mode.\n");
641 	printk("Caused by (from SRR1=%lx): ", reason);
642 	switch (reason & 0x601F0000) {
643 	case 0x80000:
644 		printk("Machine check signal\n");
645 		break;
646 	case 0:		/* for 601 */
647 	case 0x40000:
648 	case 0x140000:	/* 7450 MSS error and TEA */
649 		printk("Transfer error ack signal\n");
650 		break;
651 	case 0x20000:
652 		printk("Data parity error signal\n");
653 		break;
654 	case 0x10000:
655 		printk("Address parity error signal\n");
656 		break;
657 	case 0x20000000:
658 		printk("L1 Data Cache error\n");
659 		break;
660 	case 0x40000000:
661 		printk("L1 Instruction Cache error\n");
662 		break;
663 	case 0x00100000:
664 		printk("L2 data cache parity error\n");
665 		break;
666 	default:
667 		printk("Unknown values in msr\n");
668 	}
669 	return 0;
670 }
671 #endif /* everything else */
672 
673 void machine_check_exception(struct pt_regs *regs)
674 {
675 	enum ctx_state prev_state = exception_enter();
676 	int recover = 0;
677 
678 	__get_cpu_var(irq_stat).mce_exceptions++;
679 
680 	/* See if any machine dependent calls. In theory, we would want
681 	 * to call the CPU first, and call the ppc_md. one if the CPU
682 	 * one returns a positive number. However there is existing code
683 	 * that assumes the board gets a first chance, so let's keep it
684 	 * that way for now and fix things later. --BenH.
685 	 */
686 	if (ppc_md.machine_check_exception)
687 		recover = ppc_md.machine_check_exception(regs);
688 	else if (cur_cpu_spec->machine_check)
689 		recover = cur_cpu_spec->machine_check(regs);
690 
691 	if (recover > 0)
692 		goto bail;
693 
694 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
695 	/* the qspan pci read routines can cause machine checks -- Cort
696 	 *
697 	 * yuck !!! that totally needs to go away ! There are better ways
698 	 * to deal with that than having a wart in the mcheck handler.
699 	 * -- BenH
700 	 */
701 	bad_page_fault(regs, regs->dar, SIGBUS);
702 	goto bail;
703 #endif
704 
705 	if (debugger_fault_handler(regs))
706 		goto bail;
707 
708 	if (check_io_access(regs))
709 		goto bail;
710 
711 	die("Machine check", regs, SIGBUS);
712 
713 	/* Must die if the interrupt is not recoverable */
714 	if (!(regs->msr & MSR_RI))
715 		panic("Unrecoverable Machine check");
716 
717 bail:
718 	exception_exit(prev_state);
719 }
720 
721 void SMIException(struct pt_regs *regs)
722 {
723 	die("System Management Interrupt", regs, SIGABRT);
724 }
725 
726 void unknown_exception(struct pt_regs *regs)
727 {
728 	enum ctx_state prev_state = exception_enter();
729 
730 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
731 	       regs->nip, regs->msr, regs->trap);
732 
733 	_exception(SIGTRAP, regs, 0, 0);
734 
735 	exception_exit(prev_state);
736 }
737 
738 void instruction_breakpoint_exception(struct pt_regs *regs)
739 {
740 	enum ctx_state prev_state = exception_enter();
741 
742 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
743 					5, SIGTRAP) == NOTIFY_STOP)
744 		goto bail;
745 	if (debugger_iabr_match(regs))
746 		goto bail;
747 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
748 
749 bail:
750 	exception_exit(prev_state);
751 }
752 
753 void RunModeException(struct pt_regs *regs)
754 {
755 	_exception(SIGTRAP, regs, 0, 0);
756 }
757 
758 void __kprobes single_step_exception(struct pt_regs *regs)
759 {
760 	enum ctx_state prev_state = exception_enter();
761 
762 	clear_single_step(regs);
763 
764 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
765 					5, SIGTRAP) == NOTIFY_STOP)
766 		goto bail;
767 	if (debugger_sstep(regs))
768 		goto bail;
769 
770 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
771 
772 bail:
773 	exception_exit(prev_state);
774 }
775 
776 /*
777  * After we have successfully emulated an instruction, we have to
778  * check if the instruction was being single-stepped, and if so,
779  * pretend we got a single-step exception.  This was pointed out
780  * by Kumar Gala.  -- paulus
781  */
782 static void emulate_single_step(struct pt_regs *regs)
783 {
784 	if (single_stepping(regs))
785 		single_step_exception(regs);
786 }
787 
788 static inline int __parse_fpscr(unsigned long fpscr)
789 {
790 	int ret = 0;
791 
792 	/* Invalid operation */
793 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
794 		ret = FPE_FLTINV;
795 
796 	/* Overflow */
797 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
798 		ret = FPE_FLTOVF;
799 
800 	/* Underflow */
801 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
802 		ret = FPE_FLTUND;
803 
804 	/* Divide by zero */
805 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
806 		ret = FPE_FLTDIV;
807 
808 	/* Inexact result */
809 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
810 		ret = FPE_FLTRES;
811 
812 	return ret;
813 }
814 
815 static void parse_fpe(struct pt_regs *regs)
816 {
817 	int code = 0;
818 
819 	flush_fp_to_thread(current);
820 
821 	code = __parse_fpscr(current->thread.fpscr.val);
822 
823 	_exception(SIGFPE, regs, code, regs->nip);
824 }
825 
826 /*
827  * Illegal instruction emulation support.  Originally written to
828  * provide the PVR to user applications using the mfspr rd, PVR.
829  * Return non-zero if we can't emulate, or -EFAULT if the associated
830  * memory access caused an access fault.  Return zero on success.
831  *
832  * There are a couple of ways to do this, either "decode" the instruction
833  * or directly match lots of bits.  In this case, matching lots of
834  * bits is faster and easier.
835  *
836  */
837 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
838 {
839 	u8 rT = (instword >> 21) & 0x1f;
840 	u8 rA = (instword >> 16) & 0x1f;
841 	u8 NB_RB = (instword >> 11) & 0x1f;
842 	u32 num_bytes;
843 	unsigned long EA;
844 	int pos = 0;
845 
846 	/* Early out if we are an invalid form of lswx */
847 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
848 		if ((rT == rA) || (rT == NB_RB))
849 			return -EINVAL;
850 
851 	EA = (rA == 0) ? 0 : regs->gpr[rA];
852 
853 	switch (instword & PPC_INST_STRING_MASK) {
854 		case PPC_INST_LSWX:
855 		case PPC_INST_STSWX:
856 			EA += NB_RB;
857 			num_bytes = regs->xer & 0x7f;
858 			break;
859 		case PPC_INST_LSWI:
860 		case PPC_INST_STSWI:
861 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
862 			break;
863 		default:
864 			return -EINVAL;
865 	}
866 
867 	while (num_bytes != 0)
868 	{
869 		u8 val;
870 		u32 shift = 8 * (3 - (pos & 0x3));
871 
872 		/* if process is 32-bit, clear upper 32 bits of EA */
873 		if ((regs->msr & MSR_64BIT) == 0)
874 			EA &= 0xFFFFFFFF;
875 
876 		switch ((instword & PPC_INST_STRING_MASK)) {
877 			case PPC_INST_LSWX:
878 			case PPC_INST_LSWI:
879 				if (get_user(val, (u8 __user *)EA))
880 					return -EFAULT;
881 				/* first time updating this reg,
882 				 * zero it out */
883 				if (pos == 0)
884 					regs->gpr[rT] = 0;
885 				regs->gpr[rT] |= val << shift;
886 				break;
887 			case PPC_INST_STSWI:
888 			case PPC_INST_STSWX:
889 				val = regs->gpr[rT] >> shift;
890 				if (put_user(val, (u8 __user *)EA))
891 					return -EFAULT;
892 				break;
893 		}
894 		/* move EA to next address */
895 		EA += 1;
896 		num_bytes--;
897 
898 		/* manage our position within the register */
899 		if (++pos == 4) {
900 			pos = 0;
901 			if (++rT == 32)
902 				rT = 0;
903 		}
904 	}
905 
906 	return 0;
907 }
908 
909 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
910 {
911 	u32 ra,rs;
912 	unsigned long tmp;
913 
914 	ra = (instword >> 16) & 0x1f;
915 	rs = (instword >> 21) & 0x1f;
916 
917 	tmp = regs->gpr[rs];
918 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
919 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
920 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
921 	regs->gpr[ra] = tmp;
922 
923 	return 0;
924 }
925 
926 static int emulate_isel(struct pt_regs *regs, u32 instword)
927 {
928 	u8 rT = (instword >> 21) & 0x1f;
929 	u8 rA = (instword >> 16) & 0x1f;
930 	u8 rB = (instword >> 11) & 0x1f;
931 	u8 BC = (instword >> 6) & 0x1f;
932 	u8 bit;
933 	unsigned long tmp;
934 
935 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
936 	bit = (regs->ccr >> (31 - BC)) & 0x1;
937 
938 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
939 
940 	return 0;
941 }
942 
943 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
944 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
945 {
946         /* If we're emulating a load/store in an active transaction, we cannot
947          * emulate it as the kernel operates in transaction suspended context.
948          * We need to abort the transaction.  This creates a persistent TM
949          * abort so tell the user what caused it with a new code.
950 	 */
951 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
952 		tm_enable();
953 		tm_abort(cause);
954 		return true;
955 	}
956 	return false;
957 }
958 #else
959 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
960 {
961 	return false;
962 }
963 #endif
964 
965 static int emulate_instruction(struct pt_regs *regs)
966 {
967 	u32 instword;
968 	u32 rd;
969 
970 	if (!user_mode(regs) || (regs->msr & MSR_LE))
971 		return -EINVAL;
972 	CHECK_FULL_REGS(regs);
973 
974 	if (get_user(instword, (u32 __user *)(regs->nip)))
975 		return -EFAULT;
976 
977 	/* Emulate the mfspr rD, PVR. */
978 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
979 		PPC_WARN_EMULATED(mfpvr, regs);
980 		rd = (instword >> 21) & 0x1f;
981 		regs->gpr[rd] = mfspr(SPRN_PVR);
982 		return 0;
983 	}
984 
985 	/* Emulating the dcba insn is just a no-op.  */
986 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
987 		PPC_WARN_EMULATED(dcba, regs);
988 		return 0;
989 	}
990 
991 	/* Emulate the mcrxr insn.  */
992 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
993 		int shift = (instword >> 21) & 0x1c;
994 		unsigned long msk = 0xf0000000UL >> shift;
995 
996 		PPC_WARN_EMULATED(mcrxr, regs);
997 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
998 		regs->xer &= ~0xf0000000UL;
999 		return 0;
1000 	}
1001 
1002 	/* Emulate load/store string insn. */
1003 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1004 		if (tm_abort_check(regs,
1005 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1006 			return -EINVAL;
1007 		PPC_WARN_EMULATED(string, regs);
1008 		return emulate_string_inst(regs, instword);
1009 	}
1010 
1011 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1012 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1013 		PPC_WARN_EMULATED(popcntb, regs);
1014 		return emulate_popcntb_inst(regs, instword);
1015 	}
1016 
1017 	/* Emulate isel (Integer Select) instruction */
1018 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1019 		PPC_WARN_EMULATED(isel, regs);
1020 		return emulate_isel(regs, instword);
1021 	}
1022 
1023 #ifdef CONFIG_PPC64
1024 	/* Emulate the mfspr rD, DSCR. */
1025 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1026 		PPC_INST_MFSPR_DSCR_USER) ||
1027 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1028 		PPC_INST_MFSPR_DSCR)) &&
1029 			cpu_has_feature(CPU_FTR_DSCR)) {
1030 		PPC_WARN_EMULATED(mfdscr, regs);
1031 		rd = (instword >> 21) & 0x1f;
1032 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1033 		return 0;
1034 	}
1035 	/* Emulate the mtspr DSCR, rD. */
1036 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1037 		PPC_INST_MTSPR_DSCR_USER) ||
1038 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1039 		PPC_INST_MTSPR_DSCR)) &&
1040 			cpu_has_feature(CPU_FTR_DSCR)) {
1041 		PPC_WARN_EMULATED(mtdscr, regs);
1042 		rd = (instword >> 21) & 0x1f;
1043 		current->thread.dscr = regs->gpr[rd];
1044 		current->thread.dscr_inherit = 1;
1045 		mtspr(SPRN_DSCR, current->thread.dscr);
1046 		return 0;
1047 	}
1048 #endif
1049 
1050 	return -EINVAL;
1051 }
1052 
1053 int is_valid_bugaddr(unsigned long addr)
1054 {
1055 	return is_kernel_addr(addr);
1056 }
1057 
1058 #ifdef CONFIG_MATH_EMULATION
1059 static int emulate_math(struct pt_regs *regs)
1060 {
1061 	int ret;
1062 	extern int do_mathemu(struct pt_regs *regs);
1063 
1064 	ret = do_mathemu(regs);
1065 	if (ret >= 0)
1066 		PPC_WARN_EMULATED(math, regs);
1067 
1068 	switch (ret) {
1069 	case 0:
1070 		emulate_single_step(regs);
1071 		return 0;
1072 	case 1: {
1073 			int code = 0;
1074 			code = __parse_fpscr(current->thread.fpscr.val);
1075 			_exception(SIGFPE, regs, code, regs->nip);
1076 			return 0;
1077 		}
1078 	case -EFAULT:
1079 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1080 		return 0;
1081 	}
1082 
1083 	return -1;
1084 }
1085 #else
1086 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1087 #endif
1088 
1089 void __kprobes program_check_exception(struct pt_regs *regs)
1090 {
1091 	enum ctx_state prev_state = exception_enter();
1092 	unsigned int reason = get_reason(regs);
1093 
1094 	/* We can now get here via a FP Unavailable exception if the core
1095 	 * has no FPU, in that case the reason flags will be 0 */
1096 
1097 	if (reason & REASON_FP) {
1098 		/* IEEE FP exception */
1099 		parse_fpe(regs);
1100 		goto bail;
1101 	}
1102 	if (reason & REASON_TRAP) {
1103 		/* Debugger is first in line to stop recursive faults in
1104 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1105 		if (debugger_bpt(regs))
1106 			goto bail;
1107 
1108 		/* trap exception */
1109 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1110 				== NOTIFY_STOP)
1111 			goto bail;
1112 
1113 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1114 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1115 			regs->nip += 4;
1116 			goto bail;
1117 		}
1118 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1119 		goto bail;
1120 	}
1121 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1122 	if (reason & REASON_TM) {
1123 		/* This is a TM "Bad Thing Exception" program check.
1124 		 * This occurs when:
1125 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1126 		 *    transition in TM states.
1127 		 * -  A trechkpt is attempted when transactional.
1128 		 * -  A treclaim is attempted when non transactional.
1129 		 * -  A tend is illegally attempted.
1130 		 * -  writing a TM SPR when transactional.
1131 		 */
1132 		if (!user_mode(regs) &&
1133 		    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1134 			regs->nip += 4;
1135 			goto bail;
1136 		}
1137 		/* If usermode caused this, it's done something illegal and
1138 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1139 		 * operand to distinguish from the instruction just being bad
1140 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1141 		 * illegal /placement/ of a valid instruction.
1142 		 */
1143 		if (user_mode(regs)) {
1144 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1145 			goto bail;
1146 		} else {
1147 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1148 			       "at %lx (msr 0x%x)\n", regs->nip, reason);
1149 			die("Unrecoverable exception", regs, SIGABRT);
1150 		}
1151 	}
1152 #endif
1153 
1154 	/* We restore the interrupt state now */
1155 	if (!arch_irq_disabled_regs(regs))
1156 		local_irq_enable();
1157 
1158 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1159 	 * but there seems to be a hardware bug on the 405GP (RevD)
1160 	 * that means ESR is sometimes set incorrectly - either to
1161 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1162 	 * hardware people - not sure if it can happen on any illegal
1163 	 * instruction or only on FP instructions, whether there is a
1164 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1165 	 */
1166 	if (!emulate_math(regs))
1167 		goto bail;
1168 
1169 	/* Try to emulate it if we should. */
1170 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1171 		switch (emulate_instruction(regs)) {
1172 		case 0:
1173 			regs->nip += 4;
1174 			emulate_single_step(regs);
1175 			goto bail;
1176 		case -EFAULT:
1177 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1178 			goto bail;
1179 		}
1180 	}
1181 
1182 	if (reason & REASON_PRIVILEGED)
1183 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1184 	else
1185 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1186 
1187 bail:
1188 	exception_exit(prev_state);
1189 }
1190 
1191 /*
1192  * This occurs when running in hypervisor mode on POWER6 or later
1193  * and an illegal instruction is encountered.
1194  */
1195 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1196 {
1197 	regs->msr |= REASON_ILLEGAL;
1198 	program_check_exception(regs);
1199 }
1200 
1201 void alignment_exception(struct pt_regs *regs)
1202 {
1203 	enum ctx_state prev_state = exception_enter();
1204 	int sig, code, fixed = 0;
1205 
1206 	/* We restore the interrupt state now */
1207 	if (!arch_irq_disabled_regs(regs))
1208 		local_irq_enable();
1209 
1210 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1211 		goto bail;
1212 
1213 	/* we don't implement logging of alignment exceptions */
1214 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1215 		fixed = fix_alignment(regs);
1216 
1217 	if (fixed == 1) {
1218 		regs->nip += 4;	/* skip over emulated instruction */
1219 		emulate_single_step(regs);
1220 		goto bail;
1221 	}
1222 
1223 	/* Operand address was bad */
1224 	if (fixed == -EFAULT) {
1225 		sig = SIGSEGV;
1226 		code = SEGV_ACCERR;
1227 	} else {
1228 		sig = SIGBUS;
1229 		code = BUS_ADRALN;
1230 	}
1231 	if (user_mode(regs))
1232 		_exception(sig, regs, code, regs->dar);
1233 	else
1234 		bad_page_fault(regs, regs->dar, sig);
1235 
1236 bail:
1237 	exception_exit(prev_state);
1238 }
1239 
1240 void StackOverflow(struct pt_regs *regs)
1241 {
1242 	printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1243 	       current, regs->gpr[1]);
1244 	debugger(regs);
1245 	show_regs(regs);
1246 	panic("kernel stack overflow");
1247 }
1248 
1249 void nonrecoverable_exception(struct pt_regs *regs)
1250 {
1251 	printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1252 	       regs->nip, regs->msr);
1253 	debugger(regs);
1254 	die("nonrecoverable exception", regs, SIGKILL);
1255 }
1256 
1257 void trace_syscall(struct pt_regs *regs)
1258 {
1259 	printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld    %s\n",
1260 	       current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1261 	       regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1262 }
1263 
1264 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1265 {
1266 	enum ctx_state prev_state = exception_enter();
1267 
1268 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1269 			  "%lx at %lx\n", regs->trap, regs->nip);
1270 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1271 
1272 	exception_exit(prev_state);
1273 }
1274 
1275 void altivec_unavailable_exception(struct pt_regs *regs)
1276 {
1277 	enum ctx_state prev_state = exception_enter();
1278 
1279 	if (user_mode(regs)) {
1280 		/* A user program has executed an altivec instruction,
1281 		   but this kernel doesn't support altivec. */
1282 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1283 		goto bail;
1284 	}
1285 
1286 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1287 			"%lx at %lx\n", regs->trap, regs->nip);
1288 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1289 
1290 bail:
1291 	exception_exit(prev_state);
1292 }
1293 
1294 void vsx_unavailable_exception(struct pt_regs *regs)
1295 {
1296 	if (user_mode(regs)) {
1297 		/* A user program has executed an vsx instruction,
1298 		   but this kernel doesn't support vsx. */
1299 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1300 		return;
1301 	}
1302 
1303 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1304 			"%lx at %lx\n", regs->trap, regs->nip);
1305 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1306 }
1307 
1308 void facility_unavailable_exception(struct pt_regs *regs)
1309 {
1310 	static char *facility_strings[] = {
1311 		"FPU",
1312 		"VMX/VSX",
1313 		"DSCR",
1314 		"PMU SPRs",
1315 		"BHRB",
1316 		"TM",
1317 		"AT",
1318 		"EBB",
1319 		"TAR",
1320 	};
1321 	char *facility, *prefix;
1322 	u64 value;
1323 
1324 	if (regs->trap == 0xf60) {
1325 		value = mfspr(SPRN_FSCR);
1326 		prefix = "";
1327 	} else {
1328 		value = mfspr(SPRN_HFSCR);
1329 		prefix = "Hypervisor ";
1330 	}
1331 
1332 	value = value >> 56;
1333 
1334 	/* We restore the interrupt state now */
1335 	if (!arch_irq_disabled_regs(regs))
1336 		local_irq_enable();
1337 
1338 	if (value < ARRAY_SIZE(facility_strings))
1339 		facility = facility_strings[value];
1340 	else
1341 		facility = "unknown";
1342 
1343 	pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1344 		prefix, facility, regs->nip, regs->msr);
1345 
1346 	if (user_mode(regs)) {
1347 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1348 		return;
1349 	}
1350 
1351 	die("Unexpected facility unavailable exception", regs, SIGABRT);
1352 }
1353 
1354 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1355 
1356 extern void do_load_up_fpu(struct pt_regs *regs);
1357 
1358 void fp_unavailable_tm(struct pt_regs *regs)
1359 {
1360 	/* Note:  This does not handle any kind of FP laziness. */
1361 
1362 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1363 		 regs->nip, regs->msr);
1364 	tm_enable();
1365 
1366         /* We can only have got here if the task started using FP after
1367          * beginning the transaction.  So, the transactional regs are just a
1368          * copy of the checkpointed ones.  But, we still need to recheckpoint
1369          * as we're enabling FP for the process; it will return, abort the
1370          * transaction, and probably retry but now with FP enabled.  So the
1371          * checkpointed FP registers need to be loaded.
1372 	 */
1373 	tm_reclaim(&current->thread, current->thread.regs->msr,
1374 		   TM_CAUSE_FAC_UNAV);
1375 	/* Reclaim didn't save out any FPRs to transact_fprs. */
1376 
1377 	/* Enable FP for the task: */
1378 	regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1379 
1380 	/* This loads and recheckpoints the FP registers from
1381 	 * thread.fpr[].  They will remain in registers after the
1382 	 * checkpoint so we don't need to reload them after.
1383 	 */
1384 	tm_recheckpoint(&current->thread, regs->msr);
1385 }
1386 
1387 #ifdef CONFIG_ALTIVEC
1388 extern void do_load_up_altivec(struct pt_regs *regs);
1389 
1390 void altivec_unavailable_tm(struct pt_regs *regs)
1391 {
1392 	/* See the comments in fp_unavailable_tm().  This function operates
1393 	 * the same way.
1394 	 */
1395 
1396 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1397 		 "MSR=%lx\n",
1398 		 regs->nip, regs->msr);
1399 	tm_enable();
1400 	tm_reclaim(&current->thread, current->thread.regs->msr,
1401 		   TM_CAUSE_FAC_UNAV);
1402 	regs->msr |= MSR_VEC;
1403 	tm_recheckpoint(&current->thread, regs->msr);
1404 	current->thread.used_vr = 1;
1405 }
1406 #endif
1407 
1408 #ifdef CONFIG_VSX
1409 void vsx_unavailable_tm(struct pt_regs *regs)
1410 {
1411 	/* See the comments in fp_unavailable_tm().  This works similarly,
1412 	 * though we're loading both FP and VEC registers in here.
1413 	 *
1414 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1415 	 * regs.  Either way, set MSR_VSX.
1416 	 */
1417 
1418 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1419 		 "MSR=%lx\n",
1420 		 regs->nip, regs->msr);
1421 
1422 	tm_enable();
1423 	/* This reclaims FP and/or VR regs if they're already enabled */
1424 	tm_reclaim(&current->thread, current->thread.regs->msr,
1425 		   TM_CAUSE_FAC_UNAV);
1426 
1427 	regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1428 		MSR_VSX;
1429 	/* This loads & recheckpoints FP and VRs. */
1430 	tm_recheckpoint(&current->thread, regs->msr);
1431 	current->thread.used_vsr = 1;
1432 }
1433 #endif
1434 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1435 
1436 void performance_monitor_exception(struct pt_regs *regs)
1437 {
1438 	__get_cpu_var(irq_stat).pmu_irqs++;
1439 
1440 	perf_irq(regs);
1441 }
1442 
1443 #ifdef CONFIG_8xx
1444 void SoftwareEmulation(struct pt_regs *regs)
1445 {
1446 	CHECK_FULL_REGS(regs);
1447 
1448 	if (!user_mode(regs)) {
1449 		debugger(regs);
1450 		die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1451 	}
1452 
1453 	if (!emulate_math(regs))
1454 		return;
1455 
1456 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1457 }
1458 #endif /* CONFIG_8xx */
1459 
1460 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1461 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1462 {
1463 	int changed = 0;
1464 	/*
1465 	 * Determine the cause of the debug event, clear the
1466 	 * event flags and send a trap to the handler. Torez
1467 	 */
1468 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1469 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1470 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1471 		current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1472 #endif
1473 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1474 			     5);
1475 		changed |= 0x01;
1476 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1477 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1478 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1479 			     6);
1480 		changed |= 0x01;
1481 	}  else if (debug_status & DBSR_IAC1) {
1482 		current->thread.dbcr0 &= ~DBCR0_IAC1;
1483 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1484 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1485 			     1);
1486 		changed |= 0x01;
1487 	}  else if (debug_status & DBSR_IAC2) {
1488 		current->thread.dbcr0 &= ~DBCR0_IAC2;
1489 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1490 			     2);
1491 		changed |= 0x01;
1492 	}  else if (debug_status & DBSR_IAC3) {
1493 		current->thread.dbcr0 &= ~DBCR0_IAC3;
1494 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1495 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1496 			     3);
1497 		changed |= 0x01;
1498 	}  else if (debug_status & DBSR_IAC4) {
1499 		current->thread.dbcr0 &= ~DBCR0_IAC4;
1500 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1501 			     4);
1502 		changed |= 0x01;
1503 	}
1504 	/*
1505 	 * At the point this routine was called, the MSR(DE) was turned off.
1506 	 * Check all other debug flags and see if that bit needs to be turned
1507 	 * back on or not.
1508 	 */
1509 	if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1510 		regs->msr |= MSR_DE;
1511 	else
1512 		/* Make sure the IDM flag is off */
1513 		current->thread.dbcr0 &= ~DBCR0_IDM;
1514 
1515 	if (changed & 0x01)
1516 		mtspr(SPRN_DBCR0, current->thread.dbcr0);
1517 }
1518 
1519 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1520 {
1521 	current->thread.dbsr = debug_status;
1522 
1523 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1524 	 * on server, it stops on the target of the branch. In order to simulate
1525 	 * the server behaviour, we thus restart right away with a single step
1526 	 * instead of stopping here when hitting a BT
1527 	 */
1528 	if (debug_status & DBSR_BT) {
1529 		regs->msr &= ~MSR_DE;
1530 
1531 		/* Disable BT */
1532 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1533 		/* Clear the BT event */
1534 		mtspr(SPRN_DBSR, DBSR_BT);
1535 
1536 		/* Do the single step trick only when coming from userspace */
1537 		if (user_mode(regs)) {
1538 			current->thread.dbcr0 &= ~DBCR0_BT;
1539 			current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1540 			regs->msr |= MSR_DE;
1541 			return;
1542 		}
1543 
1544 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1545 			       5, SIGTRAP) == NOTIFY_STOP) {
1546 			return;
1547 		}
1548 		if (debugger_sstep(regs))
1549 			return;
1550 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
1551 		regs->msr &= ~MSR_DE;
1552 
1553 		/* Disable instruction completion */
1554 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1555 		/* Clear the instruction completion event */
1556 		mtspr(SPRN_DBSR, DBSR_IC);
1557 
1558 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1559 			       5, SIGTRAP) == NOTIFY_STOP) {
1560 			return;
1561 		}
1562 
1563 		if (debugger_sstep(regs))
1564 			return;
1565 
1566 		if (user_mode(regs)) {
1567 			current->thread.dbcr0 &= ~DBCR0_IC;
1568 			if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1569 					       current->thread.dbcr1))
1570 				regs->msr |= MSR_DE;
1571 			else
1572 				/* Make sure the IDM bit is off */
1573 				current->thread.dbcr0 &= ~DBCR0_IDM;
1574 		}
1575 
1576 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1577 	} else
1578 		handle_debug(regs, debug_status);
1579 }
1580 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1581 
1582 #if !defined(CONFIG_TAU_INT)
1583 void TAUException(struct pt_regs *regs)
1584 {
1585 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1586 	       regs->nip, regs->msr, regs->trap, print_tainted());
1587 }
1588 #endif /* CONFIG_INT_TAU */
1589 
1590 #ifdef CONFIG_ALTIVEC
1591 void altivec_assist_exception(struct pt_regs *regs)
1592 {
1593 	int err;
1594 
1595 	if (!user_mode(regs)) {
1596 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1597 		       " at %lx\n", regs->nip);
1598 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1599 	}
1600 
1601 	flush_altivec_to_thread(current);
1602 
1603 	PPC_WARN_EMULATED(altivec, regs);
1604 	err = emulate_altivec(regs);
1605 	if (err == 0) {
1606 		regs->nip += 4;		/* skip emulated instruction */
1607 		emulate_single_step(regs);
1608 		return;
1609 	}
1610 
1611 	if (err == -EFAULT) {
1612 		/* got an error reading the instruction */
1613 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1614 	} else {
1615 		/* didn't recognize the instruction */
1616 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
1617 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1618 				   "in %s at %lx\n", current->comm, regs->nip);
1619 		current->thread.vscr.u[3] |= 0x10000;
1620 	}
1621 }
1622 #endif /* CONFIG_ALTIVEC */
1623 
1624 #ifdef CONFIG_VSX
1625 void vsx_assist_exception(struct pt_regs *regs)
1626 {
1627 	if (!user_mode(regs)) {
1628 		printk(KERN_EMERG "VSX assist exception in kernel mode"
1629 		       " at %lx\n", regs->nip);
1630 		die("Kernel VSX assist exception", regs, SIGILL);
1631 	}
1632 
1633 	flush_vsx_to_thread(current);
1634 	printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1635 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1636 }
1637 #endif /* CONFIG_VSX */
1638 
1639 #ifdef CONFIG_FSL_BOOKE
1640 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1641 			   unsigned long error_code)
1642 {
1643 	/* We treat cache locking instructions from the user
1644 	 * as priv ops, in the future we could try to do
1645 	 * something smarter
1646 	 */
1647 	if (error_code & (ESR_DLK|ESR_ILK))
1648 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1649 	return;
1650 }
1651 #endif /* CONFIG_FSL_BOOKE */
1652 
1653 #ifdef CONFIG_SPE
1654 void SPEFloatingPointException(struct pt_regs *regs)
1655 {
1656 	extern int do_spe_mathemu(struct pt_regs *regs);
1657 	unsigned long spefscr;
1658 	int fpexc_mode;
1659 	int code = 0;
1660 	int err;
1661 
1662 	flush_spe_to_thread(current);
1663 
1664 	spefscr = current->thread.spefscr;
1665 	fpexc_mode = current->thread.fpexc_mode;
1666 
1667 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1668 		code = FPE_FLTOVF;
1669 	}
1670 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1671 		code = FPE_FLTUND;
1672 	}
1673 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1674 		code = FPE_FLTDIV;
1675 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1676 		code = FPE_FLTINV;
1677 	}
1678 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1679 		code = FPE_FLTRES;
1680 
1681 	err = do_spe_mathemu(regs);
1682 	if (err == 0) {
1683 		regs->nip += 4;		/* skip emulated instruction */
1684 		emulate_single_step(regs);
1685 		return;
1686 	}
1687 
1688 	if (err == -EFAULT) {
1689 		/* got an error reading the instruction */
1690 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1691 	} else if (err == -EINVAL) {
1692 		/* didn't recognize the instruction */
1693 		printk(KERN_ERR "unrecognized spe instruction "
1694 		       "in %s at %lx\n", current->comm, regs->nip);
1695 	} else {
1696 		_exception(SIGFPE, regs, code, regs->nip);
1697 	}
1698 
1699 	return;
1700 }
1701 
1702 void SPEFloatingPointRoundException(struct pt_regs *regs)
1703 {
1704 	extern int speround_handler(struct pt_regs *regs);
1705 	int err;
1706 
1707 	preempt_disable();
1708 	if (regs->msr & MSR_SPE)
1709 		giveup_spe(current);
1710 	preempt_enable();
1711 
1712 	regs->nip -= 4;
1713 	err = speround_handler(regs);
1714 	if (err == 0) {
1715 		regs->nip += 4;		/* skip emulated instruction */
1716 		emulate_single_step(regs);
1717 		return;
1718 	}
1719 
1720 	if (err == -EFAULT) {
1721 		/* got an error reading the instruction */
1722 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1723 	} else if (err == -EINVAL) {
1724 		/* didn't recognize the instruction */
1725 		printk(KERN_ERR "unrecognized spe instruction "
1726 		       "in %s at %lx\n", current->comm, regs->nip);
1727 	} else {
1728 		_exception(SIGFPE, regs, 0, regs->nip);
1729 		return;
1730 	}
1731 }
1732 #endif
1733 
1734 /*
1735  * We enter here if we get an unrecoverable exception, that is, one
1736  * that happened at a point where the RI (recoverable interrupt) bit
1737  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1738  * we therefore lost state by taking this exception.
1739  */
1740 void unrecoverable_exception(struct pt_regs *regs)
1741 {
1742 	printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1743 	       regs->trap, regs->nip);
1744 	die("Unrecoverable exception", regs, SIGABRT);
1745 }
1746 
1747 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1748 /*
1749  * Default handler for a Watchdog exception,
1750  * spins until a reboot occurs
1751  */
1752 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1753 {
1754 	/* Generic WatchdogHandler, implement your own */
1755 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1756 	return;
1757 }
1758 
1759 void WatchdogException(struct pt_regs *regs)
1760 {
1761 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1762 	WatchdogHandler(regs);
1763 }
1764 #endif
1765 
1766 /*
1767  * We enter here if we discover during exception entry that we are
1768  * running in supervisor mode with a userspace value in the stack pointer.
1769  */
1770 void kernel_bad_stack(struct pt_regs *regs)
1771 {
1772 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1773 	       regs->gpr[1], regs->nip);
1774 	die("Bad kernel stack pointer", regs, SIGABRT);
1775 }
1776 
1777 void __init trap_init(void)
1778 {
1779 }
1780 
1781 
1782 #ifdef CONFIG_PPC_EMULATED_STATS
1783 
1784 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
1785 
1786 struct ppc_emulated ppc_emulated = {
1787 #ifdef CONFIG_ALTIVEC
1788 	WARN_EMULATED_SETUP(altivec),
1789 #endif
1790 	WARN_EMULATED_SETUP(dcba),
1791 	WARN_EMULATED_SETUP(dcbz),
1792 	WARN_EMULATED_SETUP(fp_pair),
1793 	WARN_EMULATED_SETUP(isel),
1794 	WARN_EMULATED_SETUP(mcrxr),
1795 	WARN_EMULATED_SETUP(mfpvr),
1796 	WARN_EMULATED_SETUP(multiple),
1797 	WARN_EMULATED_SETUP(popcntb),
1798 	WARN_EMULATED_SETUP(spe),
1799 	WARN_EMULATED_SETUP(string),
1800 	WARN_EMULATED_SETUP(unaligned),
1801 #ifdef CONFIG_MATH_EMULATION
1802 	WARN_EMULATED_SETUP(math),
1803 #endif
1804 #ifdef CONFIG_VSX
1805 	WARN_EMULATED_SETUP(vsx),
1806 #endif
1807 #ifdef CONFIG_PPC64
1808 	WARN_EMULATED_SETUP(mfdscr),
1809 	WARN_EMULATED_SETUP(mtdscr),
1810 #endif
1811 };
1812 
1813 u32 ppc_warn_emulated;
1814 
1815 void ppc_warn_emulated_print(const char *type)
1816 {
1817 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1818 			    type);
1819 }
1820 
1821 static int __init ppc_warn_emulated_init(void)
1822 {
1823 	struct dentry *dir, *d;
1824 	unsigned int i;
1825 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1826 
1827 	if (!powerpc_debugfs_root)
1828 		return -ENODEV;
1829 
1830 	dir = debugfs_create_dir("emulated_instructions",
1831 				 powerpc_debugfs_root);
1832 	if (!dir)
1833 		return -ENOMEM;
1834 
1835 	d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1836 			       &ppc_warn_emulated);
1837 	if (!d)
1838 		goto fail;
1839 
1840 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1841 		d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1842 				       (u32 *)&entries[i].val.counter);
1843 		if (!d)
1844 			goto fail;
1845 	}
1846 
1847 	return 0;
1848 
1849 fail:
1850 	debugfs_remove_recursive(dir);
1851 	return -ENOMEM;
1852 }
1853 
1854 device_initcall(ppc_warn_emulated_init);
1855 
1856 #endif /* CONFIG_PPC_EMULATED_STATS */
1857