xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision d831d0b83f205888f4be4dee0a074ad67ef809b3)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
73 
74 /* powerpc clocksource/clockevent code */
75 
76 #include <linux/clockchips.h>
77 #include <linux/clocksource.h>
78 
79 static cycle_t rtc_read(void);
80 static struct clocksource clocksource_rtc = {
81 	.name         = "rtc",
82 	.rating       = 400,
83 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
84 	.mask         = CLOCKSOURCE_MASK(64),
85 	.shift        = 22,
86 	.mult         = 0,	/* To be filled in */
87 	.read         = rtc_read,
88 };
89 
90 static cycle_t timebase_read(void);
91 static struct clocksource clocksource_timebase = {
92 	.name         = "timebase",
93 	.rating       = 400,
94 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
95 	.mask         = CLOCKSOURCE_MASK(64),
96 	.shift        = 22,
97 	.mult         = 0,	/* To be filled in */
98 	.read         = timebase_read,
99 };
100 
101 #define DECREMENTER_MAX	0x7fffffff
102 
103 static int decrementer_set_next_event(unsigned long evt,
104 				      struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 				 struct clock_event_device *dev);
107 
108 static struct clock_event_device decrementer_clockevent = {
109        .name           = "decrementer",
110        .rating         = 200,
111        .shift          = 32,
112        .mult           = 0,	/* To be filled in */
113        .irq            = 0,
114        .set_next_event = decrementer_set_next_event,
115        .set_mode       = decrementer_set_mode,
116        .features       = CLOCK_EVT_FEAT_ONESHOT,
117 };
118 
119 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120 void init_decrementer_clockevent(void);
121 
122 #ifdef CONFIG_PPC_ISERIES
123 static unsigned long __initdata iSeries_recal_titan;
124 static signed long __initdata iSeries_recal_tb;
125 
126 /* Forward declaration is only needed for iSereis compiles */
127 void __init clocksource_init(void);
128 #endif
129 
130 #define XSEC_PER_SEC (1024*1024)
131 
132 #ifdef CONFIG_PPC64
133 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
134 #else
135 /* compute ((xsec << 12) * max) >> 32 */
136 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
137 #endif
138 
139 unsigned long tb_ticks_per_jiffy;
140 unsigned long tb_ticks_per_usec = 100; /* sane default */
141 EXPORT_SYMBOL(tb_ticks_per_usec);
142 unsigned long tb_ticks_per_sec;
143 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
144 u64 tb_to_xs;
145 unsigned tb_to_us;
146 
147 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
148 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
149 u64 ticklen_to_xs;	/* 0.64 fraction */
150 
151 /* If last_tick_len corresponds to about 1/HZ seconds, then
152    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
153 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
154 
155 DEFINE_SPINLOCK(rtc_lock);
156 EXPORT_SYMBOL_GPL(rtc_lock);
157 
158 static u64 tb_to_ns_scale __read_mostly;
159 static unsigned tb_to_ns_shift __read_mostly;
160 static unsigned long boot_tb __read_mostly;
161 
162 struct gettimeofday_struct do_gtod;
163 
164 extern struct timezone sys_tz;
165 static long timezone_offset;
166 
167 unsigned long ppc_proc_freq;
168 EXPORT_SYMBOL(ppc_proc_freq);
169 unsigned long ppc_tb_freq;
170 
171 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
172 static DEFINE_PER_CPU(u64, last_jiffy);
173 
174 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
175 /*
176  * Factors for converting from cputime_t (timebase ticks) to
177  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
178  * These are all stored as 0.64 fixed-point binary fractions.
179  */
180 u64 __cputime_jiffies_factor;
181 EXPORT_SYMBOL(__cputime_jiffies_factor);
182 u64 __cputime_msec_factor;
183 EXPORT_SYMBOL(__cputime_msec_factor);
184 u64 __cputime_sec_factor;
185 EXPORT_SYMBOL(__cputime_sec_factor);
186 u64 __cputime_clockt_factor;
187 EXPORT_SYMBOL(__cputime_clockt_factor);
188 
189 static void calc_cputime_factors(void)
190 {
191 	struct div_result res;
192 
193 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
194 	__cputime_jiffies_factor = res.result_low;
195 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
196 	__cputime_msec_factor = res.result_low;
197 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
198 	__cputime_sec_factor = res.result_low;
199 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
200 	__cputime_clockt_factor = res.result_low;
201 }
202 
203 /*
204  * Read the PURR on systems that have it, otherwise the timebase.
205  */
206 static u64 read_purr(void)
207 {
208 	if (cpu_has_feature(CPU_FTR_PURR))
209 		return mfspr(SPRN_PURR);
210 	return mftb();
211 }
212 
213 /*
214  * Account time for a transition between system, hard irq
215  * or soft irq state.
216  */
217 void account_system_vtime(struct task_struct *tsk)
218 {
219 	u64 now, delta;
220 	unsigned long flags;
221 
222 	local_irq_save(flags);
223 	now = read_purr();
224 	delta = now - get_paca()->startpurr;
225 	get_paca()->startpurr = now;
226 	if (!in_interrupt()) {
227 		delta += get_paca()->system_time;
228 		get_paca()->system_time = 0;
229 	}
230 	account_system_time(tsk, 0, delta);
231 	local_irq_restore(flags);
232 }
233 
234 /*
235  * Transfer the user and system times accumulated in the paca
236  * by the exception entry and exit code to the generic process
237  * user and system time records.
238  * Must be called with interrupts disabled.
239  */
240 void account_process_vtime(struct task_struct *tsk)
241 {
242 	cputime_t utime;
243 
244 	utime = get_paca()->user_time;
245 	get_paca()->user_time = 0;
246 	account_user_time(tsk, utime);
247 }
248 
249 static void account_process_time(struct pt_regs *regs)
250 {
251 	int cpu = smp_processor_id();
252 
253 	account_process_vtime(current);
254 	run_local_timers();
255 	if (rcu_pending(cpu))
256 		rcu_check_callbacks(cpu, user_mode(regs));
257 	scheduler_tick();
258  	run_posix_cpu_timers(current);
259 }
260 
261 /*
262  * Stuff for accounting stolen time.
263  */
264 struct cpu_purr_data {
265 	int	initialized;			/* thread is running */
266 	u64	tb;			/* last TB value read */
267 	u64	purr;			/* last PURR value read */
268 };
269 
270 /*
271  * Each entry in the cpu_purr_data array is manipulated only by its
272  * "owner" cpu -- usually in the timer interrupt but also occasionally
273  * in process context for cpu online.  As long as cpus do not touch
274  * each others' cpu_purr_data, disabling local interrupts is
275  * sufficient to serialize accesses.
276  */
277 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
278 
279 static void snapshot_tb_and_purr(void *data)
280 {
281 	unsigned long flags;
282 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
283 
284 	local_irq_save(flags);
285 	p->tb = get_tb_or_rtc();
286 	p->purr = mfspr(SPRN_PURR);
287 	wmb();
288 	p->initialized = 1;
289 	local_irq_restore(flags);
290 }
291 
292 /*
293  * Called during boot when all cpus have come up.
294  */
295 void snapshot_timebases(void)
296 {
297 	if (!cpu_has_feature(CPU_FTR_PURR))
298 		return;
299 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
300 }
301 
302 /*
303  * Must be called with interrupts disabled.
304  */
305 void calculate_steal_time(void)
306 {
307 	u64 tb, purr;
308 	s64 stolen;
309 	struct cpu_purr_data *pme;
310 
311 	if (!cpu_has_feature(CPU_FTR_PURR))
312 		return;
313 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
314 	if (!pme->initialized)
315 		return;		/* this can happen in early boot */
316 	tb = mftb();
317 	purr = mfspr(SPRN_PURR);
318 	stolen = (tb - pme->tb) - (purr - pme->purr);
319 	if (stolen > 0)
320 		account_steal_time(current, stolen);
321 	pme->tb = tb;
322 	pme->purr = purr;
323 }
324 
325 #ifdef CONFIG_PPC_SPLPAR
326 /*
327  * Must be called before the cpu is added to the online map when
328  * a cpu is being brought up at runtime.
329  */
330 static void snapshot_purr(void)
331 {
332 	struct cpu_purr_data *pme;
333 	unsigned long flags;
334 
335 	if (!cpu_has_feature(CPU_FTR_PURR))
336 		return;
337 	local_irq_save(flags);
338 	pme = &per_cpu(cpu_purr_data, smp_processor_id());
339 	pme->tb = mftb();
340 	pme->purr = mfspr(SPRN_PURR);
341 	pme->initialized = 1;
342 	local_irq_restore(flags);
343 }
344 
345 #endif /* CONFIG_PPC_SPLPAR */
346 
347 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
348 #define calc_cputime_factors()
349 #define account_process_time(regs)	update_process_times(user_mode(regs))
350 #define calculate_steal_time()		do { } while (0)
351 #endif
352 
353 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
354 #define snapshot_purr()			do { } while (0)
355 #endif
356 
357 /*
358  * Called when a cpu comes up after the system has finished booting,
359  * i.e. as a result of a hotplug cpu action.
360  */
361 void snapshot_timebase(void)
362 {
363 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
364 	snapshot_purr();
365 }
366 
367 void __delay(unsigned long loops)
368 {
369 	unsigned long start;
370 	int diff;
371 
372 	if (__USE_RTC()) {
373 		start = get_rtcl();
374 		do {
375 			/* the RTCL register wraps at 1000000000 */
376 			diff = get_rtcl() - start;
377 			if (diff < 0)
378 				diff += 1000000000;
379 		} while (diff < loops);
380 	} else {
381 		start = get_tbl();
382 		while (get_tbl() - start < loops)
383 			HMT_low();
384 		HMT_medium();
385 	}
386 }
387 EXPORT_SYMBOL(__delay);
388 
389 void udelay(unsigned long usecs)
390 {
391 	__delay(tb_ticks_per_usec * usecs);
392 }
393 EXPORT_SYMBOL(udelay);
394 
395 
396 /*
397  * There are two copies of tb_to_xs and stamp_xsec so that no
398  * lock is needed to access and use these values in
399  * do_gettimeofday.  We alternate the copies and as long as a
400  * reasonable time elapses between changes, there will never
401  * be inconsistent values.  ntpd has a minimum of one minute
402  * between updates.
403  */
404 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
405 			       u64 new_tb_to_xs)
406 {
407 	unsigned temp_idx;
408 	struct gettimeofday_vars *temp_varp;
409 
410 	temp_idx = (do_gtod.var_idx == 0);
411 	temp_varp = &do_gtod.vars[temp_idx];
412 
413 	temp_varp->tb_to_xs = new_tb_to_xs;
414 	temp_varp->tb_orig_stamp = new_tb_stamp;
415 	temp_varp->stamp_xsec = new_stamp_xsec;
416 	smp_mb();
417 	do_gtod.varp = temp_varp;
418 	do_gtod.var_idx = temp_idx;
419 
420 	/*
421 	 * tb_update_count is used to allow the userspace gettimeofday code
422 	 * to assure itself that it sees a consistent view of the tb_to_xs and
423 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
424 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
425 	 * the two values of tb_update_count match and are even then the
426 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
427 	 * loops back and reads them again until this criteria is met.
428 	 * We expect the caller to have done the first increment of
429 	 * vdso_data->tb_update_count already.
430 	 */
431 	vdso_data->tb_orig_stamp = new_tb_stamp;
432 	vdso_data->stamp_xsec = new_stamp_xsec;
433 	vdso_data->tb_to_xs = new_tb_to_xs;
434 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
435 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
436 	smp_wmb();
437 	++(vdso_data->tb_update_count);
438 }
439 
440 #ifdef CONFIG_SMP
441 unsigned long profile_pc(struct pt_regs *regs)
442 {
443 	unsigned long pc = instruction_pointer(regs);
444 
445 	if (in_lock_functions(pc))
446 		return regs->link;
447 
448 	return pc;
449 }
450 EXPORT_SYMBOL(profile_pc);
451 #endif
452 
453 #ifdef CONFIG_PPC_ISERIES
454 
455 /*
456  * This function recalibrates the timebase based on the 49-bit time-of-day
457  * value in the Titan chip.  The Titan is much more accurate than the value
458  * returned by the service processor for the timebase frequency.
459  */
460 
461 static int __init iSeries_tb_recal(void)
462 {
463 	struct div_result divres;
464 	unsigned long titan, tb;
465 
466 	/* Make sure we only run on iSeries */
467 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
468 		return -ENODEV;
469 
470 	tb = get_tb();
471 	titan = HvCallXm_loadTod();
472 	if ( iSeries_recal_titan ) {
473 		unsigned long tb_ticks = tb - iSeries_recal_tb;
474 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
475 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
476 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
477 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
478 		char sign = '+';
479 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
480 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
481 
482 		if ( tick_diff < 0 ) {
483 			tick_diff = -tick_diff;
484 			sign = '-';
485 		}
486 		if ( tick_diff ) {
487 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
488 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
489 						new_tb_ticks_per_jiffy, sign, tick_diff );
490 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
491 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
492 				calc_cputime_factors();
493 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
494 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
495 				tb_to_xs = divres.result_low;
496 				do_gtod.varp->tb_to_xs = tb_to_xs;
497 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
498 				vdso_data->tb_to_xs = tb_to_xs;
499 			}
500 			else {
501 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
502 					"                   new tb_ticks_per_jiffy = %lu\n"
503 					"                   old tb_ticks_per_jiffy = %lu\n",
504 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
505 			}
506 		}
507 	}
508 	iSeries_recal_titan = titan;
509 	iSeries_recal_tb = tb;
510 
511 	/* Called here as now we know accurate values for the timebase */
512 	clocksource_init();
513 	return 0;
514 }
515 late_initcall(iSeries_tb_recal);
516 
517 /* Called from platform early init */
518 void __init iSeries_time_init_early(void)
519 {
520 	iSeries_recal_tb = get_tb();
521 	iSeries_recal_titan = HvCallXm_loadTod();
522 }
523 #endif /* CONFIG_PPC_ISERIES */
524 
525 /*
526  * For iSeries shared processors, we have to let the hypervisor
527  * set the hardware decrementer.  We set a virtual decrementer
528  * in the lppaca and call the hypervisor if the virtual
529  * decrementer is less than the current value in the hardware
530  * decrementer. (almost always the new decrementer value will
531  * be greater than the current hardware decementer so the hypervisor
532  * call will not be needed)
533  */
534 
535 /*
536  * timer_interrupt - gets called when the decrementer overflows,
537  * with interrupts disabled.
538  */
539 void timer_interrupt(struct pt_regs * regs)
540 {
541 	struct pt_regs *old_regs;
542 	int cpu = smp_processor_id();
543 	struct clock_event_device *evt = &per_cpu(decrementers, cpu);
544 
545 	/* Ensure a positive value is written to the decrementer, or else
546 	 * some CPUs will continuue to take decrementer exceptions */
547 	set_dec(DECREMENTER_MAX);
548 
549 #ifdef CONFIG_PPC32
550 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
551 		do_IRQ(regs);
552 #endif
553 
554 	old_regs = set_irq_regs(regs);
555 	irq_enter();
556 
557 	calculate_steal_time();
558 
559 #ifdef CONFIG_PPC_ISERIES
560 	if (firmware_has_feature(FW_FEATURE_ISERIES))
561 		get_lppaca()->int_dword.fields.decr_int = 0;
562 #endif
563 
564 	/*
565 	 * We cannot disable the decrementer, so in the period
566 	 * between this cpu's being marked offline in cpu_online_map
567 	 * and calling stop-self, it is taking timer interrupts.
568 	 * Avoid calling into the scheduler rebalancing code if this
569 	 * is the case.
570 	 */
571 	if (!cpu_is_offline(cpu))
572 		account_process_time(regs);
573 
574 	if (evt->event_handler)
575 		evt->event_handler(evt);
576 	else
577 		evt->set_next_event(DECREMENTER_MAX, evt);
578 
579 #ifdef CONFIG_PPC_ISERIES
580 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
581 		process_hvlpevents();
582 #endif
583 
584 #ifdef CONFIG_PPC64
585 	/* collect purr register values often, for accurate calculations */
586 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
587 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
588 		cu->current_tb = mfspr(SPRN_PURR);
589 	}
590 #endif
591 
592 	irq_exit();
593 	set_irq_regs(old_regs);
594 }
595 
596 void wakeup_decrementer(void)
597 {
598 	unsigned long ticks;
599 
600 	/*
601 	 * The timebase gets saved on sleep and restored on wakeup,
602 	 * so all we need to do is to reset the decrementer.
603 	 */
604 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
605 	if (ticks < tb_ticks_per_jiffy)
606 		ticks = tb_ticks_per_jiffy - ticks;
607 	else
608 		ticks = 1;
609 	set_dec(ticks);
610 }
611 
612 #ifdef CONFIG_SMP
613 void __init smp_space_timers(unsigned int max_cpus)
614 {
615 	int i;
616 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
617 
618 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
619 	previous_tb -= tb_ticks_per_jiffy;
620 
621 	for_each_possible_cpu(i) {
622 		if (i == boot_cpuid)
623 			continue;
624 		per_cpu(last_jiffy, i) = previous_tb;
625 	}
626 }
627 #endif
628 
629 /*
630  * Scheduler clock - returns current time in nanosec units.
631  *
632  * Note: mulhdu(a, b) (multiply high double unsigned) returns
633  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
634  * are 64-bit unsigned numbers.
635  */
636 unsigned long long sched_clock(void)
637 {
638 	if (__USE_RTC())
639 		return get_rtc();
640 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
641 }
642 
643 static int __init get_freq(char *name, int cells, unsigned long *val)
644 {
645 	struct device_node *cpu;
646 	const unsigned int *fp;
647 	int found = 0;
648 
649 	/* The cpu node should have timebase and clock frequency properties */
650 	cpu = of_find_node_by_type(NULL, "cpu");
651 
652 	if (cpu) {
653 		fp = of_get_property(cpu, name, NULL);
654 		if (fp) {
655 			found = 1;
656 			*val = of_read_ulong(fp, cells);
657 		}
658 
659 		of_node_put(cpu);
660 	}
661 
662 	return found;
663 }
664 
665 void __init generic_calibrate_decr(void)
666 {
667 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
668 
669 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
670 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
671 
672 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
673 				"(not found)\n");
674 	}
675 
676 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
677 
678 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
679 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
680 
681 		printk(KERN_ERR "WARNING: Estimating processor frequency "
682 				"(not found)\n");
683 	}
684 
685 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
686 	/* Set the time base to zero */
687 	mtspr(SPRN_TBWL, 0);
688 	mtspr(SPRN_TBWU, 0);
689 
690 	/* Clear any pending timer interrupts */
691 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
692 
693 	/* Enable decrementer interrupt */
694 	mtspr(SPRN_TCR, TCR_DIE);
695 #endif
696 }
697 
698 int update_persistent_clock(struct timespec now)
699 {
700 	struct rtc_time tm;
701 
702 	if (!ppc_md.set_rtc_time)
703 		return 0;
704 
705 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
706 	tm.tm_year -= 1900;
707 	tm.tm_mon -= 1;
708 
709 	return ppc_md.set_rtc_time(&tm);
710 }
711 
712 unsigned long read_persistent_clock(void)
713 {
714 	struct rtc_time tm;
715 	static int first = 1;
716 
717 	/* XXX this is a litle fragile but will work okay in the short term */
718 	if (first) {
719 		first = 0;
720 		if (ppc_md.time_init)
721 			timezone_offset = ppc_md.time_init();
722 
723 		/* get_boot_time() isn't guaranteed to be safe to call late */
724 		if (ppc_md.get_boot_time)
725 			return ppc_md.get_boot_time() -timezone_offset;
726 	}
727 	if (!ppc_md.get_rtc_time)
728 		return 0;
729 	ppc_md.get_rtc_time(&tm);
730 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
731 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
732 }
733 
734 /* clocksource code */
735 static cycle_t rtc_read(void)
736 {
737 	return (cycle_t)get_rtc();
738 }
739 
740 static cycle_t timebase_read(void)
741 {
742 	return (cycle_t)get_tb();
743 }
744 
745 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
746 {
747 	u64 t2x, stamp_xsec;
748 
749 	if (clock != &clocksource_timebase)
750 		return;
751 
752 	/* Make userspace gettimeofday spin until we're done. */
753 	++vdso_data->tb_update_count;
754 	smp_mb();
755 
756 	/* XXX this assumes clock->shift == 22 */
757 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
758 	t2x = (u64) clock->mult * 4611686018ULL;
759 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
760 	do_div(stamp_xsec, 1000000000);
761 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
762 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
763 }
764 
765 void update_vsyscall_tz(void)
766 {
767 	/* Make userspace gettimeofday spin until we're done. */
768 	++vdso_data->tb_update_count;
769 	smp_mb();
770 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
771 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
772 	smp_mb();
773 	++vdso_data->tb_update_count;
774 }
775 
776 void __init clocksource_init(void)
777 {
778 	struct clocksource *clock;
779 
780 	if (__USE_RTC())
781 		clock = &clocksource_rtc;
782 	else
783 		clock = &clocksource_timebase;
784 
785 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
786 
787 	if (clocksource_register(clock)) {
788 		printk(KERN_ERR "clocksource: %s is already registered\n",
789 		       clock->name);
790 		return;
791 	}
792 
793 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
794 	       clock->name, clock->mult, clock->shift);
795 }
796 
797 static int decrementer_set_next_event(unsigned long evt,
798 				      struct clock_event_device *dev)
799 {
800 	set_dec(evt);
801 	return 0;
802 }
803 
804 static void decrementer_set_mode(enum clock_event_mode mode,
805 				 struct clock_event_device *dev)
806 {
807 	if (mode != CLOCK_EVT_MODE_ONESHOT)
808 		decrementer_set_next_event(DECREMENTER_MAX, dev);
809 }
810 
811 static void register_decrementer_clockevent(int cpu)
812 {
813 	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
814 
815 	*dec = decrementer_clockevent;
816 	dec->cpumask = cpumask_of_cpu(cpu);
817 
818 	printk(KERN_ERR "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
819 	       dec->name, dec->mult, dec->shift, cpu);
820 
821 	clockevents_register_device(dec);
822 }
823 
824 void init_decrementer_clockevent(void)
825 {
826 	int cpu = smp_processor_id();
827 
828 	decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
829 					     decrementer_clockevent.shift);
830 	decrementer_clockevent.max_delta_ns =
831 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
832 	decrementer_clockevent.min_delta_ns = 1000;
833 
834 	register_decrementer_clockevent(cpu);
835 }
836 
837 void secondary_cpu_time_init(void)
838 {
839 	/* FIME: Should make unrelatred change to move snapshot_timebase
840 	 * call here ! */
841 	register_decrementer_clockevent(smp_processor_id());
842 }
843 
844 /* This function is only called on the boot processor */
845 void __init time_init(void)
846 {
847 	unsigned long flags;
848 	struct div_result res;
849 	u64 scale, x;
850 	unsigned shift;
851 
852 	if (__USE_RTC()) {
853 		/* 601 processor: dec counts down by 128 every 128ns */
854 		ppc_tb_freq = 1000000000;
855 		tb_last_jiffy = get_rtcl();
856 	} else {
857 		/* Normal PowerPC with timebase register */
858 		ppc_md.calibrate_decr();
859 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
860 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
861 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
862 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
863 		tb_last_jiffy = get_tb();
864 	}
865 
866 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
867 	tb_ticks_per_sec = ppc_tb_freq;
868 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
869 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
870 	calc_cputime_factors();
871 
872 	/*
873 	 * Calculate the length of each tick in ns.  It will not be
874 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
875 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
876 	 * rounded up.
877 	 */
878 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
879 	do_div(x, ppc_tb_freq);
880 	tick_nsec = x;
881 	last_tick_len = x << TICKLEN_SCALE;
882 
883 	/*
884 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
885 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
886 	 * It is computed as:
887 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
888 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
889 	 * which turns out to be N = 51 - SHIFT_HZ.
890 	 * This gives the result as a 0.64 fixed-point fraction.
891 	 * That value is reduced by an offset amounting to 1 xsec per
892 	 * 2^31 timebase ticks to avoid problems with time going backwards
893 	 * by 1 xsec when we do timer_recalc_offset due to losing the
894 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
895 	 * since there are 2^20 xsec in a second.
896 	 */
897 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
898 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
899 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
900 	ticklen_to_xs = res.result_low;
901 
902 	/* Compute tb_to_xs from tick_nsec */
903 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
904 
905 	/*
906 	 * Compute scale factor for sched_clock.
907 	 * The calibrate_decr() function has set tb_ticks_per_sec,
908 	 * which is the timebase frequency.
909 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
910 	 * the 128-bit result as a 64.64 fixed-point number.
911 	 * We then shift that number right until it is less than 1.0,
912 	 * giving us the scale factor and shift count to use in
913 	 * sched_clock().
914 	 */
915 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
916 	scale = res.result_low;
917 	for (shift = 0; res.result_high != 0; ++shift) {
918 		scale = (scale >> 1) | (res.result_high << 63);
919 		res.result_high >>= 1;
920 	}
921 	tb_to_ns_scale = scale;
922 	tb_to_ns_shift = shift;
923 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
924 	boot_tb = get_tb_or_rtc();
925 
926 	write_seqlock_irqsave(&xtime_lock, flags);
927 
928 	/* If platform provided a timezone (pmac), we correct the time */
929         if (timezone_offset) {
930 		sys_tz.tz_minuteswest = -timezone_offset / 60;
931 		sys_tz.tz_dsttime = 0;
932         }
933 
934 	do_gtod.varp = &do_gtod.vars[0];
935 	do_gtod.var_idx = 0;
936 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
937 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
938 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
939 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
940 	do_gtod.varp->tb_to_xs = tb_to_xs;
941 	do_gtod.tb_to_us = tb_to_us;
942 
943 	vdso_data->tb_orig_stamp = tb_last_jiffy;
944 	vdso_data->tb_update_count = 0;
945 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
946 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
947 	vdso_data->tb_to_xs = tb_to_xs;
948 
949 	time_freq = 0;
950 
951 	write_sequnlock_irqrestore(&xtime_lock, flags);
952 
953 	/* Register the clocksource, if we're not running on iSeries */
954 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
955 		clocksource_init();
956 
957 	init_decrementer_clockevent();
958 }
959 
960 
961 #define FEBRUARY	2
962 #define	STARTOFTIME	1970
963 #define SECDAY		86400L
964 #define SECYR		(SECDAY * 365)
965 #define	leapyear(year)		((year) % 4 == 0 && \
966 				 ((year) % 100 != 0 || (year) % 400 == 0))
967 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
968 #define	days_in_month(a) 	(month_days[(a) - 1])
969 
970 static int month_days[12] = {
971 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
972 };
973 
974 /*
975  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
976  */
977 void GregorianDay(struct rtc_time * tm)
978 {
979 	int leapsToDate;
980 	int lastYear;
981 	int day;
982 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
983 
984 	lastYear = tm->tm_year - 1;
985 
986 	/*
987 	 * Number of leap corrections to apply up to end of last year
988 	 */
989 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
990 
991 	/*
992 	 * This year is a leap year if it is divisible by 4 except when it is
993 	 * divisible by 100 unless it is divisible by 400
994 	 *
995 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
996 	 */
997 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
998 
999 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1000 		   tm->tm_mday;
1001 
1002 	tm->tm_wday = day % 7;
1003 }
1004 
1005 void to_tm(int tim, struct rtc_time * tm)
1006 {
1007 	register int    i;
1008 	register long   hms, day;
1009 
1010 	day = tim / SECDAY;
1011 	hms = tim % SECDAY;
1012 
1013 	/* Hours, minutes, seconds are easy */
1014 	tm->tm_hour = hms / 3600;
1015 	tm->tm_min = (hms % 3600) / 60;
1016 	tm->tm_sec = (hms % 3600) % 60;
1017 
1018 	/* Number of years in days */
1019 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1020 		day -= days_in_year(i);
1021 	tm->tm_year = i;
1022 
1023 	/* Number of months in days left */
1024 	if (leapyear(tm->tm_year))
1025 		days_in_month(FEBRUARY) = 29;
1026 	for (i = 1; day >= days_in_month(i); i++)
1027 		day -= days_in_month(i);
1028 	days_in_month(FEBRUARY) = 28;
1029 	tm->tm_mon = i;
1030 
1031 	/* Days are what is left over (+1) from all that. */
1032 	tm->tm_mday = day + 1;
1033 
1034 	/*
1035 	 * Determine the day of week
1036 	 */
1037 	GregorianDay(tm);
1038 }
1039 
1040 /* Auxiliary function to compute scaling factors */
1041 /* Actually the choice of a timebase running at 1/4 the of the bus
1042  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1043  * It makes this computation very precise (27-28 bits typically) which
1044  * is optimistic considering the stability of most processor clock
1045  * oscillators and the precision with which the timebase frequency
1046  * is measured but does not harm.
1047  */
1048 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1049 {
1050         unsigned mlt=0, tmp, err;
1051         /* No concern for performance, it's done once: use a stupid
1052          * but safe and compact method to find the multiplier.
1053          */
1054 
1055         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1056                 if (mulhwu(inscale, mlt|tmp) < outscale)
1057 			mlt |= tmp;
1058         }
1059 
1060         /* We might still be off by 1 for the best approximation.
1061          * A side effect of this is that if outscale is too large
1062          * the returned value will be zero.
1063          * Many corner cases have been checked and seem to work,
1064          * some might have been forgotten in the test however.
1065          */
1066 
1067         err = inscale * (mlt+1);
1068         if (err <= inscale/2)
1069 		mlt++;
1070         return mlt;
1071 }
1072 
1073 /*
1074  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1075  * result.
1076  */
1077 void div128_by_32(u64 dividend_high, u64 dividend_low,
1078 		  unsigned divisor, struct div_result *dr)
1079 {
1080 	unsigned long a, b, c, d;
1081 	unsigned long w, x, y, z;
1082 	u64 ra, rb, rc;
1083 
1084 	a = dividend_high >> 32;
1085 	b = dividend_high & 0xffffffff;
1086 	c = dividend_low >> 32;
1087 	d = dividend_low & 0xffffffff;
1088 
1089 	w = a / divisor;
1090 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1091 
1092 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1093 	x = ra;
1094 
1095 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1096 	y = rb;
1097 
1098 	do_div(rc, divisor);
1099 	z = rc;
1100 
1101 	dr->result_high = ((u64)w << 32) + x;
1102 	dr->result_low  = ((u64)y << 32) + z;
1103 
1104 }
1105