1 /* 2 * Common time routines among all ppc machines. 3 * 4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5 * Paul Mackerras' version and mine for PReP and Pmac. 6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8 * 9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10 * to make clock more stable (2.4.0-test5). The only thing 11 * that this code assumes is that the timebases have been synchronized 12 * by firmware on SMP and are never stopped (never do sleep 13 * on SMP then, nap and doze are OK). 14 * 15 * Speeded up do_gettimeofday by getting rid of references to 16 * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17 * 18 * TODO (not necessarily in this file): 19 * - improve precision and reproducibility of timebase frequency 20 * measurement at boot time. (for iSeries, we calibrate the timebase 21 * against the Titan chip's clock.) 22 * - for astronomical applications: add a new function to get 23 * non ambiguous timestamps even around leap seconds. This needs 24 * a new timestamp format and a good name. 25 * 26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27 * "A Kernel Model for Precision Timekeeping" by Dave Mills 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35 #include <linux/errno.h> 36 #include <linux/module.h> 37 #include <linux/sched.h> 38 #include <linux/kernel.h> 39 #include <linux/param.h> 40 #include <linux/string.h> 41 #include <linux/mm.h> 42 #include <linux/interrupt.h> 43 #include <linux/timex.h> 44 #include <linux/kernel_stat.h> 45 #include <linux/time.h> 46 #include <linux/init.h> 47 #include <linux/profile.h> 48 #include <linux/cpu.h> 49 #include <linux/security.h> 50 #include <linux/percpu.h> 51 #include <linux/rtc.h> 52 #include <linux/jiffies.h> 53 #include <linux/posix-timers.h> 54 #include <linux/irq.h> 55 56 #include <asm/io.h> 57 #include <asm/processor.h> 58 #include <asm/nvram.h> 59 #include <asm/cache.h> 60 #include <asm/machdep.h> 61 #include <asm/uaccess.h> 62 #include <asm/time.h> 63 #include <asm/prom.h> 64 #include <asm/irq.h> 65 #include <asm/div64.h> 66 #include <asm/smp.h> 67 #include <asm/vdso_datapage.h> 68 #include <asm/firmware.h> 69 #ifdef CONFIG_PPC_ISERIES 70 #include <asm/iseries/it_lp_queue.h> 71 #include <asm/iseries/hv_call_xm.h> 72 #endif 73 74 /* powerpc clocksource/clockevent code */ 75 76 #include <linux/clockchips.h> 77 #include <linux/clocksource.h> 78 79 static cycle_t rtc_read(void); 80 static struct clocksource clocksource_rtc = { 81 .name = "rtc", 82 .rating = 400, 83 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 84 .mask = CLOCKSOURCE_MASK(64), 85 .shift = 22, 86 .mult = 0, /* To be filled in */ 87 .read = rtc_read, 88 }; 89 90 static cycle_t timebase_read(void); 91 static struct clocksource clocksource_timebase = { 92 .name = "timebase", 93 .rating = 400, 94 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 95 .mask = CLOCKSOURCE_MASK(64), 96 .shift = 22, 97 .mult = 0, /* To be filled in */ 98 .read = timebase_read, 99 }; 100 101 #define DECREMENTER_MAX 0x7fffffff 102 103 static int decrementer_set_next_event(unsigned long evt, 104 struct clock_event_device *dev); 105 static void decrementer_set_mode(enum clock_event_mode mode, 106 struct clock_event_device *dev); 107 108 static struct clock_event_device decrementer_clockevent = { 109 .name = "decrementer", 110 .rating = 200, 111 .shift = 32, 112 .mult = 0, /* To be filled in */ 113 .irq = 0, 114 .set_next_event = decrementer_set_next_event, 115 .set_mode = decrementer_set_mode, 116 .features = CLOCK_EVT_FEAT_ONESHOT, 117 }; 118 119 static DEFINE_PER_CPU(struct clock_event_device, decrementers); 120 void init_decrementer_clockevent(void); 121 122 #ifdef CONFIG_PPC_ISERIES 123 static unsigned long __initdata iSeries_recal_titan; 124 static signed long __initdata iSeries_recal_tb; 125 126 /* Forward declaration is only needed for iSereis compiles */ 127 void __init clocksource_init(void); 128 #endif 129 130 #define XSEC_PER_SEC (1024*1024) 131 132 #ifdef CONFIG_PPC64 133 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 134 #else 135 /* compute ((xsec << 12) * max) >> 32 */ 136 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 137 #endif 138 139 unsigned long tb_ticks_per_jiffy; 140 unsigned long tb_ticks_per_usec = 100; /* sane default */ 141 EXPORT_SYMBOL(tb_ticks_per_usec); 142 unsigned long tb_ticks_per_sec; 143 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */ 144 u64 tb_to_xs; 145 unsigned tb_to_us; 146 147 #define TICKLEN_SCALE TICK_LENGTH_SHIFT 148 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 149 u64 ticklen_to_xs; /* 0.64 fraction */ 150 151 /* If last_tick_len corresponds to about 1/HZ seconds, then 152 last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 153 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 154 155 DEFINE_SPINLOCK(rtc_lock); 156 EXPORT_SYMBOL_GPL(rtc_lock); 157 158 static u64 tb_to_ns_scale __read_mostly; 159 static unsigned tb_to_ns_shift __read_mostly; 160 static unsigned long boot_tb __read_mostly; 161 162 struct gettimeofday_struct do_gtod; 163 164 extern struct timezone sys_tz; 165 static long timezone_offset; 166 167 unsigned long ppc_proc_freq; 168 EXPORT_SYMBOL(ppc_proc_freq); 169 unsigned long ppc_tb_freq; 170 171 static u64 tb_last_jiffy __cacheline_aligned_in_smp; 172 static DEFINE_PER_CPU(u64, last_jiffy); 173 174 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 175 /* 176 * Factors for converting from cputime_t (timebase ticks) to 177 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). 178 * These are all stored as 0.64 fixed-point binary fractions. 179 */ 180 u64 __cputime_jiffies_factor; 181 EXPORT_SYMBOL(__cputime_jiffies_factor); 182 u64 __cputime_msec_factor; 183 EXPORT_SYMBOL(__cputime_msec_factor); 184 u64 __cputime_sec_factor; 185 EXPORT_SYMBOL(__cputime_sec_factor); 186 u64 __cputime_clockt_factor; 187 EXPORT_SYMBOL(__cputime_clockt_factor); 188 189 static void calc_cputime_factors(void) 190 { 191 struct div_result res; 192 193 div128_by_32(HZ, 0, tb_ticks_per_sec, &res); 194 __cputime_jiffies_factor = res.result_low; 195 div128_by_32(1000, 0, tb_ticks_per_sec, &res); 196 __cputime_msec_factor = res.result_low; 197 div128_by_32(1, 0, tb_ticks_per_sec, &res); 198 __cputime_sec_factor = res.result_low; 199 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); 200 __cputime_clockt_factor = res.result_low; 201 } 202 203 /* 204 * Read the PURR on systems that have it, otherwise the timebase. 205 */ 206 static u64 read_purr(void) 207 { 208 if (cpu_has_feature(CPU_FTR_PURR)) 209 return mfspr(SPRN_PURR); 210 return mftb(); 211 } 212 213 /* 214 * Account time for a transition between system, hard irq 215 * or soft irq state. 216 */ 217 void account_system_vtime(struct task_struct *tsk) 218 { 219 u64 now, delta; 220 unsigned long flags; 221 222 local_irq_save(flags); 223 now = read_purr(); 224 delta = now - get_paca()->startpurr; 225 get_paca()->startpurr = now; 226 if (!in_interrupt()) { 227 delta += get_paca()->system_time; 228 get_paca()->system_time = 0; 229 } 230 account_system_time(tsk, 0, delta); 231 local_irq_restore(flags); 232 } 233 234 /* 235 * Transfer the user and system times accumulated in the paca 236 * by the exception entry and exit code to the generic process 237 * user and system time records. 238 * Must be called with interrupts disabled. 239 */ 240 void account_process_vtime(struct task_struct *tsk) 241 { 242 cputime_t utime; 243 244 utime = get_paca()->user_time; 245 get_paca()->user_time = 0; 246 account_user_time(tsk, utime); 247 } 248 249 static void account_process_time(struct pt_regs *regs) 250 { 251 int cpu = smp_processor_id(); 252 253 account_process_vtime(current); 254 run_local_timers(); 255 if (rcu_pending(cpu)) 256 rcu_check_callbacks(cpu, user_mode(regs)); 257 scheduler_tick(); 258 run_posix_cpu_timers(current); 259 } 260 261 /* 262 * Stuff for accounting stolen time. 263 */ 264 struct cpu_purr_data { 265 int initialized; /* thread is running */ 266 u64 tb; /* last TB value read */ 267 u64 purr; /* last PURR value read */ 268 }; 269 270 /* 271 * Each entry in the cpu_purr_data array is manipulated only by its 272 * "owner" cpu -- usually in the timer interrupt but also occasionally 273 * in process context for cpu online. As long as cpus do not touch 274 * each others' cpu_purr_data, disabling local interrupts is 275 * sufficient to serialize accesses. 276 */ 277 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); 278 279 static void snapshot_tb_and_purr(void *data) 280 { 281 unsigned long flags; 282 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); 283 284 local_irq_save(flags); 285 p->tb = get_tb_or_rtc(); 286 p->purr = mfspr(SPRN_PURR); 287 wmb(); 288 p->initialized = 1; 289 local_irq_restore(flags); 290 } 291 292 /* 293 * Called during boot when all cpus have come up. 294 */ 295 void snapshot_timebases(void) 296 { 297 if (!cpu_has_feature(CPU_FTR_PURR)) 298 return; 299 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1); 300 } 301 302 /* 303 * Must be called with interrupts disabled. 304 */ 305 void calculate_steal_time(void) 306 { 307 u64 tb, purr; 308 s64 stolen; 309 struct cpu_purr_data *pme; 310 311 if (!cpu_has_feature(CPU_FTR_PURR)) 312 return; 313 pme = &per_cpu(cpu_purr_data, smp_processor_id()); 314 if (!pme->initialized) 315 return; /* this can happen in early boot */ 316 tb = mftb(); 317 purr = mfspr(SPRN_PURR); 318 stolen = (tb - pme->tb) - (purr - pme->purr); 319 if (stolen > 0) 320 account_steal_time(current, stolen); 321 pme->tb = tb; 322 pme->purr = purr; 323 } 324 325 #ifdef CONFIG_PPC_SPLPAR 326 /* 327 * Must be called before the cpu is added to the online map when 328 * a cpu is being brought up at runtime. 329 */ 330 static void snapshot_purr(void) 331 { 332 struct cpu_purr_data *pme; 333 unsigned long flags; 334 335 if (!cpu_has_feature(CPU_FTR_PURR)) 336 return; 337 local_irq_save(flags); 338 pme = &per_cpu(cpu_purr_data, smp_processor_id()); 339 pme->tb = mftb(); 340 pme->purr = mfspr(SPRN_PURR); 341 pme->initialized = 1; 342 local_irq_restore(flags); 343 } 344 345 #endif /* CONFIG_PPC_SPLPAR */ 346 347 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ 348 #define calc_cputime_factors() 349 #define account_process_time(regs) update_process_times(user_mode(regs)) 350 #define calculate_steal_time() do { } while (0) 351 #endif 352 353 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) 354 #define snapshot_purr() do { } while (0) 355 #endif 356 357 /* 358 * Called when a cpu comes up after the system has finished booting, 359 * i.e. as a result of a hotplug cpu action. 360 */ 361 void snapshot_timebase(void) 362 { 363 __get_cpu_var(last_jiffy) = get_tb_or_rtc(); 364 snapshot_purr(); 365 } 366 367 void __delay(unsigned long loops) 368 { 369 unsigned long start; 370 int diff; 371 372 if (__USE_RTC()) { 373 start = get_rtcl(); 374 do { 375 /* the RTCL register wraps at 1000000000 */ 376 diff = get_rtcl() - start; 377 if (diff < 0) 378 diff += 1000000000; 379 } while (diff < loops); 380 } else { 381 start = get_tbl(); 382 while (get_tbl() - start < loops) 383 HMT_low(); 384 HMT_medium(); 385 } 386 } 387 EXPORT_SYMBOL(__delay); 388 389 void udelay(unsigned long usecs) 390 { 391 __delay(tb_ticks_per_usec * usecs); 392 } 393 EXPORT_SYMBOL(udelay); 394 395 396 /* 397 * There are two copies of tb_to_xs and stamp_xsec so that no 398 * lock is needed to access and use these values in 399 * do_gettimeofday. We alternate the copies and as long as a 400 * reasonable time elapses between changes, there will never 401 * be inconsistent values. ntpd has a minimum of one minute 402 * between updates. 403 */ 404 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 405 u64 new_tb_to_xs) 406 { 407 unsigned temp_idx; 408 struct gettimeofday_vars *temp_varp; 409 410 temp_idx = (do_gtod.var_idx == 0); 411 temp_varp = &do_gtod.vars[temp_idx]; 412 413 temp_varp->tb_to_xs = new_tb_to_xs; 414 temp_varp->tb_orig_stamp = new_tb_stamp; 415 temp_varp->stamp_xsec = new_stamp_xsec; 416 smp_mb(); 417 do_gtod.varp = temp_varp; 418 do_gtod.var_idx = temp_idx; 419 420 /* 421 * tb_update_count is used to allow the userspace gettimeofday code 422 * to assure itself that it sees a consistent view of the tb_to_xs and 423 * stamp_xsec variables. It reads the tb_update_count, then reads 424 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 425 * the two values of tb_update_count match and are even then the 426 * tb_to_xs and stamp_xsec values are consistent. If not, then it 427 * loops back and reads them again until this criteria is met. 428 * We expect the caller to have done the first increment of 429 * vdso_data->tb_update_count already. 430 */ 431 vdso_data->tb_orig_stamp = new_tb_stamp; 432 vdso_data->stamp_xsec = new_stamp_xsec; 433 vdso_data->tb_to_xs = new_tb_to_xs; 434 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 435 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 436 smp_wmb(); 437 ++(vdso_data->tb_update_count); 438 } 439 440 #ifdef CONFIG_SMP 441 unsigned long profile_pc(struct pt_regs *regs) 442 { 443 unsigned long pc = instruction_pointer(regs); 444 445 if (in_lock_functions(pc)) 446 return regs->link; 447 448 return pc; 449 } 450 EXPORT_SYMBOL(profile_pc); 451 #endif 452 453 #ifdef CONFIG_PPC_ISERIES 454 455 /* 456 * This function recalibrates the timebase based on the 49-bit time-of-day 457 * value in the Titan chip. The Titan is much more accurate than the value 458 * returned by the service processor for the timebase frequency. 459 */ 460 461 static int __init iSeries_tb_recal(void) 462 { 463 struct div_result divres; 464 unsigned long titan, tb; 465 466 /* Make sure we only run on iSeries */ 467 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 468 return -ENODEV; 469 470 tb = get_tb(); 471 titan = HvCallXm_loadTod(); 472 if ( iSeries_recal_titan ) { 473 unsigned long tb_ticks = tb - iSeries_recal_tb; 474 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 475 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 476 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 477 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 478 char sign = '+'; 479 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 480 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 481 482 if ( tick_diff < 0 ) { 483 tick_diff = -tick_diff; 484 sign = '-'; 485 } 486 if ( tick_diff ) { 487 if ( tick_diff < tb_ticks_per_jiffy/25 ) { 488 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 489 new_tb_ticks_per_jiffy, sign, tick_diff ); 490 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 491 tb_ticks_per_sec = new_tb_ticks_per_sec; 492 calc_cputime_factors(); 493 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 494 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 495 tb_to_xs = divres.result_low; 496 do_gtod.varp->tb_to_xs = tb_to_xs; 497 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 498 vdso_data->tb_to_xs = tb_to_xs; 499 } 500 else { 501 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 502 " new tb_ticks_per_jiffy = %lu\n" 503 " old tb_ticks_per_jiffy = %lu\n", 504 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 505 } 506 } 507 } 508 iSeries_recal_titan = titan; 509 iSeries_recal_tb = tb; 510 511 /* Called here as now we know accurate values for the timebase */ 512 clocksource_init(); 513 return 0; 514 } 515 late_initcall(iSeries_tb_recal); 516 517 /* Called from platform early init */ 518 void __init iSeries_time_init_early(void) 519 { 520 iSeries_recal_tb = get_tb(); 521 iSeries_recal_titan = HvCallXm_loadTod(); 522 } 523 #endif /* CONFIG_PPC_ISERIES */ 524 525 /* 526 * For iSeries shared processors, we have to let the hypervisor 527 * set the hardware decrementer. We set a virtual decrementer 528 * in the lppaca and call the hypervisor if the virtual 529 * decrementer is less than the current value in the hardware 530 * decrementer. (almost always the new decrementer value will 531 * be greater than the current hardware decementer so the hypervisor 532 * call will not be needed) 533 */ 534 535 /* 536 * timer_interrupt - gets called when the decrementer overflows, 537 * with interrupts disabled. 538 */ 539 void timer_interrupt(struct pt_regs * regs) 540 { 541 struct pt_regs *old_regs; 542 int cpu = smp_processor_id(); 543 struct clock_event_device *evt = &per_cpu(decrementers, cpu); 544 545 /* Ensure a positive value is written to the decrementer, or else 546 * some CPUs will continuue to take decrementer exceptions */ 547 set_dec(DECREMENTER_MAX); 548 549 #ifdef CONFIG_PPC32 550 if (atomic_read(&ppc_n_lost_interrupts) != 0) 551 do_IRQ(regs); 552 #endif 553 554 old_regs = set_irq_regs(regs); 555 irq_enter(); 556 557 calculate_steal_time(); 558 559 #ifdef CONFIG_PPC_ISERIES 560 if (firmware_has_feature(FW_FEATURE_ISERIES)) 561 get_lppaca()->int_dword.fields.decr_int = 0; 562 #endif 563 564 /* 565 * We cannot disable the decrementer, so in the period 566 * between this cpu's being marked offline in cpu_online_map 567 * and calling stop-self, it is taking timer interrupts. 568 * Avoid calling into the scheduler rebalancing code if this 569 * is the case. 570 */ 571 if (!cpu_is_offline(cpu)) 572 account_process_time(regs); 573 574 if (evt->event_handler) 575 evt->event_handler(evt); 576 else 577 evt->set_next_event(DECREMENTER_MAX, evt); 578 579 #ifdef CONFIG_PPC_ISERIES 580 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending()) 581 process_hvlpevents(); 582 #endif 583 584 #ifdef CONFIG_PPC64 585 /* collect purr register values often, for accurate calculations */ 586 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 587 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 588 cu->current_tb = mfspr(SPRN_PURR); 589 } 590 #endif 591 592 irq_exit(); 593 set_irq_regs(old_regs); 594 } 595 596 void wakeup_decrementer(void) 597 { 598 unsigned long ticks; 599 600 /* 601 * The timebase gets saved on sleep and restored on wakeup, 602 * so all we need to do is to reset the decrementer. 603 */ 604 ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 605 if (ticks < tb_ticks_per_jiffy) 606 ticks = tb_ticks_per_jiffy - ticks; 607 else 608 ticks = 1; 609 set_dec(ticks); 610 } 611 612 #ifdef CONFIG_SMP 613 void __init smp_space_timers(unsigned int max_cpus) 614 { 615 int i; 616 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid); 617 618 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 619 previous_tb -= tb_ticks_per_jiffy; 620 621 for_each_possible_cpu(i) { 622 if (i == boot_cpuid) 623 continue; 624 per_cpu(last_jiffy, i) = previous_tb; 625 } 626 } 627 #endif 628 629 /* 630 * Scheduler clock - returns current time in nanosec units. 631 * 632 * Note: mulhdu(a, b) (multiply high double unsigned) returns 633 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 634 * are 64-bit unsigned numbers. 635 */ 636 unsigned long long sched_clock(void) 637 { 638 if (__USE_RTC()) 639 return get_rtc(); 640 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; 641 } 642 643 static int __init get_freq(char *name, int cells, unsigned long *val) 644 { 645 struct device_node *cpu; 646 const unsigned int *fp; 647 int found = 0; 648 649 /* The cpu node should have timebase and clock frequency properties */ 650 cpu = of_find_node_by_type(NULL, "cpu"); 651 652 if (cpu) { 653 fp = of_get_property(cpu, name, NULL); 654 if (fp) { 655 found = 1; 656 *val = of_read_ulong(fp, cells); 657 } 658 659 of_node_put(cpu); 660 } 661 662 return found; 663 } 664 665 void __init generic_calibrate_decr(void) 666 { 667 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 668 669 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && 670 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { 671 672 printk(KERN_ERR "WARNING: Estimating decrementer frequency " 673 "(not found)\n"); 674 } 675 676 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */ 677 678 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && 679 !get_freq("clock-frequency", 1, &ppc_proc_freq)) { 680 681 printk(KERN_ERR "WARNING: Estimating processor frequency " 682 "(not found)\n"); 683 } 684 685 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) 686 /* Set the time base to zero */ 687 mtspr(SPRN_TBWL, 0); 688 mtspr(SPRN_TBWU, 0); 689 690 /* Clear any pending timer interrupts */ 691 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 692 693 /* Enable decrementer interrupt */ 694 mtspr(SPRN_TCR, TCR_DIE); 695 #endif 696 } 697 698 int update_persistent_clock(struct timespec now) 699 { 700 struct rtc_time tm; 701 702 if (!ppc_md.set_rtc_time) 703 return 0; 704 705 to_tm(now.tv_sec + 1 + timezone_offset, &tm); 706 tm.tm_year -= 1900; 707 tm.tm_mon -= 1; 708 709 return ppc_md.set_rtc_time(&tm); 710 } 711 712 unsigned long read_persistent_clock(void) 713 { 714 struct rtc_time tm; 715 static int first = 1; 716 717 /* XXX this is a litle fragile but will work okay in the short term */ 718 if (first) { 719 first = 0; 720 if (ppc_md.time_init) 721 timezone_offset = ppc_md.time_init(); 722 723 /* get_boot_time() isn't guaranteed to be safe to call late */ 724 if (ppc_md.get_boot_time) 725 return ppc_md.get_boot_time() -timezone_offset; 726 } 727 if (!ppc_md.get_rtc_time) 728 return 0; 729 ppc_md.get_rtc_time(&tm); 730 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 731 tm.tm_hour, tm.tm_min, tm.tm_sec); 732 } 733 734 /* clocksource code */ 735 static cycle_t rtc_read(void) 736 { 737 return (cycle_t)get_rtc(); 738 } 739 740 static cycle_t timebase_read(void) 741 { 742 return (cycle_t)get_tb(); 743 } 744 745 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock) 746 { 747 u64 t2x, stamp_xsec; 748 749 if (clock != &clocksource_timebase) 750 return; 751 752 /* Make userspace gettimeofday spin until we're done. */ 753 ++vdso_data->tb_update_count; 754 smp_mb(); 755 756 /* XXX this assumes clock->shift == 22 */ 757 /* 4611686018 ~= 2^(20+64-22) / 1e9 */ 758 t2x = (u64) clock->mult * 4611686018ULL; 759 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 760 do_div(stamp_xsec, 1000000000); 761 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 762 update_gtod(clock->cycle_last, stamp_xsec, t2x); 763 } 764 765 void update_vsyscall_tz(void) 766 { 767 /* Make userspace gettimeofday spin until we're done. */ 768 ++vdso_data->tb_update_count; 769 smp_mb(); 770 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 771 vdso_data->tz_dsttime = sys_tz.tz_dsttime; 772 smp_mb(); 773 ++vdso_data->tb_update_count; 774 } 775 776 void __init clocksource_init(void) 777 { 778 struct clocksource *clock; 779 780 if (__USE_RTC()) 781 clock = &clocksource_rtc; 782 else 783 clock = &clocksource_timebase; 784 785 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift); 786 787 if (clocksource_register(clock)) { 788 printk(KERN_ERR "clocksource: %s is already registered\n", 789 clock->name); 790 return; 791 } 792 793 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", 794 clock->name, clock->mult, clock->shift); 795 } 796 797 static int decrementer_set_next_event(unsigned long evt, 798 struct clock_event_device *dev) 799 { 800 set_dec(evt); 801 return 0; 802 } 803 804 static void decrementer_set_mode(enum clock_event_mode mode, 805 struct clock_event_device *dev) 806 { 807 if (mode != CLOCK_EVT_MODE_ONESHOT) 808 decrementer_set_next_event(DECREMENTER_MAX, dev); 809 } 810 811 static void register_decrementer_clockevent(int cpu) 812 { 813 struct clock_event_device *dec = &per_cpu(decrementers, cpu); 814 815 *dec = decrementer_clockevent; 816 dec->cpumask = cpumask_of_cpu(cpu); 817 818 printk(KERN_ERR "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n", 819 dec->name, dec->mult, dec->shift, cpu); 820 821 clockevents_register_device(dec); 822 } 823 824 void init_decrementer_clockevent(void) 825 { 826 int cpu = smp_processor_id(); 827 828 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC, 829 decrementer_clockevent.shift); 830 decrementer_clockevent.max_delta_ns = 831 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); 832 decrementer_clockevent.min_delta_ns = 1000; 833 834 register_decrementer_clockevent(cpu); 835 } 836 837 void secondary_cpu_time_init(void) 838 { 839 /* FIME: Should make unrelatred change to move snapshot_timebase 840 * call here ! */ 841 register_decrementer_clockevent(smp_processor_id()); 842 } 843 844 /* This function is only called on the boot processor */ 845 void __init time_init(void) 846 { 847 unsigned long flags; 848 struct div_result res; 849 u64 scale, x; 850 unsigned shift; 851 852 if (__USE_RTC()) { 853 /* 601 processor: dec counts down by 128 every 128ns */ 854 ppc_tb_freq = 1000000000; 855 tb_last_jiffy = get_rtcl(); 856 } else { 857 /* Normal PowerPC with timebase register */ 858 ppc_md.calibrate_decr(); 859 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", 860 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 861 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n", 862 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 863 tb_last_jiffy = get_tb(); 864 } 865 866 tb_ticks_per_jiffy = ppc_tb_freq / HZ; 867 tb_ticks_per_sec = ppc_tb_freq; 868 tb_ticks_per_usec = ppc_tb_freq / 1000000; 869 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 870 calc_cputime_factors(); 871 872 /* 873 * Calculate the length of each tick in ns. It will not be 874 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 875 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 876 * rounded up. 877 */ 878 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 879 do_div(x, ppc_tb_freq); 880 tick_nsec = x; 881 last_tick_len = x << TICKLEN_SCALE; 882 883 /* 884 * Compute ticklen_to_xs, which is a factor which gets multiplied 885 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 886 * It is computed as: 887 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 888 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 889 * which turns out to be N = 51 - SHIFT_HZ. 890 * This gives the result as a 0.64 fixed-point fraction. 891 * That value is reduced by an offset amounting to 1 xsec per 892 * 2^31 timebase ticks to avoid problems with time going backwards 893 * by 1 xsec when we do timer_recalc_offset due to losing the 894 * fractional xsec. That offset is equal to ppc_tb_freq/2^51 895 * since there are 2^20 xsec in a second. 896 */ 897 div128_by_32((1ULL << 51) - ppc_tb_freq, 0, 898 tb_ticks_per_jiffy << SHIFT_HZ, &res); 899 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 900 ticklen_to_xs = res.result_low; 901 902 /* Compute tb_to_xs from tick_nsec */ 903 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 904 905 /* 906 * Compute scale factor for sched_clock. 907 * The calibrate_decr() function has set tb_ticks_per_sec, 908 * which is the timebase frequency. 909 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 910 * the 128-bit result as a 64.64 fixed-point number. 911 * We then shift that number right until it is less than 1.0, 912 * giving us the scale factor and shift count to use in 913 * sched_clock(). 914 */ 915 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 916 scale = res.result_low; 917 for (shift = 0; res.result_high != 0; ++shift) { 918 scale = (scale >> 1) | (res.result_high << 63); 919 res.result_high >>= 1; 920 } 921 tb_to_ns_scale = scale; 922 tb_to_ns_shift = shift; 923 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ 924 boot_tb = get_tb_or_rtc(); 925 926 write_seqlock_irqsave(&xtime_lock, flags); 927 928 /* If platform provided a timezone (pmac), we correct the time */ 929 if (timezone_offset) { 930 sys_tz.tz_minuteswest = -timezone_offset / 60; 931 sys_tz.tz_dsttime = 0; 932 } 933 934 do_gtod.varp = &do_gtod.vars[0]; 935 do_gtod.var_idx = 0; 936 do_gtod.varp->tb_orig_stamp = tb_last_jiffy; 937 __get_cpu_var(last_jiffy) = tb_last_jiffy; 938 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 939 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 940 do_gtod.varp->tb_to_xs = tb_to_xs; 941 do_gtod.tb_to_us = tb_to_us; 942 943 vdso_data->tb_orig_stamp = tb_last_jiffy; 944 vdso_data->tb_update_count = 0; 945 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 946 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 947 vdso_data->tb_to_xs = tb_to_xs; 948 949 time_freq = 0; 950 951 write_sequnlock_irqrestore(&xtime_lock, flags); 952 953 /* Register the clocksource, if we're not running on iSeries */ 954 if (!firmware_has_feature(FW_FEATURE_ISERIES)) 955 clocksource_init(); 956 957 init_decrementer_clockevent(); 958 } 959 960 961 #define FEBRUARY 2 962 #define STARTOFTIME 1970 963 #define SECDAY 86400L 964 #define SECYR (SECDAY * 365) 965 #define leapyear(year) ((year) % 4 == 0 && \ 966 ((year) % 100 != 0 || (year) % 400 == 0)) 967 #define days_in_year(a) (leapyear(a) ? 366 : 365) 968 #define days_in_month(a) (month_days[(a) - 1]) 969 970 static int month_days[12] = { 971 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 972 }; 973 974 /* 975 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 976 */ 977 void GregorianDay(struct rtc_time * tm) 978 { 979 int leapsToDate; 980 int lastYear; 981 int day; 982 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 983 984 lastYear = tm->tm_year - 1; 985 986 /* 987 * Number of leap corrections to apply up to end of last year 988 */ 989 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 990 991 /* 992 * This year is a leap year if it is divisible by 4 except when it is 993 * divisible by 100 unless it is divisible by 400 994 * 995 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 996 */ 997 day = tm->tm_mon > 2 && leapyear(tm->tm_year); 998 999 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 1000 tm->tm_mday; 1001 1002 tm->tm_wday = day % 7; 1003 } 1004 1005 void to_tm(int tim, struct rtc_time * tm) 1006 { 1007 register int i; 1008 register long hms, day; 1009 1010 day = tim / SECDAY; 1011 hms = tim % SECDAY; 1012 1013 /* Hours, minutes, seconds are easy */ 1014 tm->tm_hour = hms / 3600; 1015 tm->tm_min = (hms % 3600) / 60; 1016 tm->tm_sec = (hms % 3600) % 60; 1017 1018 /* Number of years in days */ 1019 for (i = STARTOFTIME; day >= days_in_year(i); i++) 1020 day -= days_in_year(i); 1021 tm->tm_year = i; 1022 1023 /* Number of months in days left */ 1024 if (leapyear(tm->tm_year)) 1025 days_in_month(FEBRUARY) = 29; 1026 for (i = 1; day >= days_in_month(i); i++) 1027 day -= days_in_month(i); 1028 days_in_month(FEBRUARY) = 28; 1029 tm->tm_mon = i; 1030 1031 /* Days are what is left over (+1) from all that. */ 1032 tm->tm_mday = day + 1; 1033 1034 /* 1035 * Determine the day of week 1036 */ 1037 GregorianDay(tm); 1038 } 1039 1040 /* Auxiliary function to compute scaling factors */ 1041 /* Actually the choice of a timebase running at 1/4 the of the bus 1042 * frequency giving resolution of a few tens of nanoseconds is quite nice. 1043 * It makes this computation very precise (27-28 bits typically) which 1044 * is optimistic considering the stability of most processor clock 1045 * oscillators and the precision with which the timebase frequency 1046 * is measured but does not harm. 1047 */ 1048 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 1049 { 1050 unsigned mlt=0, tmp, err; 1051 /* No concern for performance, it's done once: use a stupid 1052 * but safe and compact method to find the multiplier. 1053 */ 1054 1055 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 1056 if (mulhwu(inscale, mlt|tmp) < outscale) 1057 mlt |= tmp; 1058 } 1059 1060 /* We might still be off by 1 for the best approximation. 1061 * A side effect of this is that if outscale is too large 1062 * the returned value will be zero. 1063 * Many corner cases have been checked and seem to work, 1064 * some might have been forgotten in the test however. 1065 */ 1066 1067 err = inscale * (mlt+1); 1068 if (err <= inscale/2) 1069 mlt++; 1070 return mlt; 1071 } 1072 1073 /* 1074 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 1075 * result. 1076 */ 1077 void div128_by_32(u64 dividend_high, u64 dividend_low, 1078 unsigned divisor, struct div_result *dr) 1079 { 1080 unsigned long a, b, c, d; 1081 unsigned long w, x, y, z; 1082 u64 ra, rb, rc; 1083 1084 a = dividend_high >> 32; 1085 b = dividend_high & 0xffffffff; 1086 c = dividend_low >> 32; 1087 d = dividend_low & 0xffffffff; 1088 1089 w = a / divisor; 1090 ra = ((u64)(a - (w * divisor)) << 32) + b; 1091 1092 rb = ((u64) do_div(ra, divisor) << 32) + c; 1093 x = ra; 1094 1095 rc = ((u64) do_div(rb, divisor) << 32) + d; 1096 y = rb; 1097 1098 do_div(rc, divisor); 1099 z = rc; 1100 1101 dr->result_high = ((u64)w << 32) + x; 1102 dr->result_low = ((u64)y << 32) + z; 1103 1104 } 1105