xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 6e6b44e8223a01d35fceec3631be356fbdbcf004)
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
73 
74 /* powerpc clocksource/clockevent code */
75 
76 #include <linux/clockchips.h>
77 #include <linux/clocksource.h>
78 
79 static cycle_t rtc_read(void);
80 static struct clocksource clocksource_rtc = {
81 	.name         = "rtc",
82 	.rating       = 400,
83 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
84 	.mask         = CLOCKSOURCE_MASK(64),
85 	.shift        = 22,
86 	.mult         = 0,	/* To be filled in */
87 	.read         = rtc_read,
88 };
89 
90 static cycle_t timebase_read(void);
91 static struct clocksource clocksource_timebase = {
92 	.name         = "timebase",
93 	.rating       = 400,
94 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
95 	.mask         = CLOCKSOURCE_MASK(64),
96 	.shift        = 22,
97 	.mult         = 0,	/* To be filled in */
98 	.read         = timebase_read,
99 };
100 
101 #define DECREMENTER_MAX	0x7fffffff
102 
103 static int decrementer_set_next_event(unsigned long evt,
104 				      struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 				 struct clock_event_device *dev);
107 
108 static struct clock_event_device decrementer_clockevent = {
109        .name           = "decrementer",
110        .rating         = 200,
111        .shift          = 16,
112        .mult           = 0,	/* To be filled in */
113        .irq            = 0,
114        .set_next_event = decrementer_set_next_event,
115        .set_mode       = decrementer_set_mode,
116        .features       = CLOCK_EVT_FEAT_ONESHOT,
117 };
118 
119 struct decrementer_clock {
120 	struct clock_event_device event;
121 	u64 next_tb;
122 };
123 
124 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
125 
126 #ifdef CONFIG_PPC_ISERIES
127 static unsigned long __initdata iSeries_recal_titan;
128 static signed long __initdata iSeries_recal_tb;
129 
130 /* Forward declaration is only needed for iSereis compiles */
131 void __init clocksource_init(void);
132 #endif
133 
134 #define XSEC_PER_SEC (1024*1024)
135 
136 #ifdef CONFIG_PPC64
137 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
138 #else
139 /* compute ((xsec << 12) * max) >> 32 */
140 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
141 #endif
142 
143 unsigned long tb_ticks_per_jiffy;
144 unsigned long tb_ticks_per_usec = 100; /* sane default */
145 EXPORT_SYMBOL(tb_ticks_per_usec);
146 unsigned long tb_ticks_per_sec;
147 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
148 u64 tb_to_xs;
149 unsigned tb_to_us;
150 
151 #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
152 u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
153 u64 ticklen_to_xs;	/* 0.64 fraction */
154 
155 /* If last_tick_len corresponds to about 1/HZ seconds, then
156    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
157 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
158 
159 DEFINE_SPINLOCK(rtc_lock);
160 EXPORT_SYMBOL_GPL(rtc_lock);
161 
162 static u64 tb_to_ns_scale __read_mostly;
163 static unsigned tb_to_ns_shift __read_mostly;
164 static unsigned long boot_tb __read_mostly;
165 
166 struct gettimeofday_struct do_gtod;
167 
168 extern struct timezone sys_tz;
169 static long timezone_offset;
170 
171 unsigned long ppc_proc_freq;
172 EXPORT_SYMBOL(ppc_proc_freq);
173 unsigned long ppc_tb_freq;
174 
175 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
176 static DEFINE_PER_CPU(u64, last_jiffy);
177 
178 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
179 /*
180  * Factors for converting from cputime_t (timebase ticks) to
181  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
182  * These are all stored as 0.64 fixed-point binary fractions.
183  */
184 u64 __cputime_jiffies_factor;
185 EXPORT_SYMBOL(__cputime_jiffies_factor);
186 u64 __cputime_msec_factor;
187 EXPORT_SYMBOL(__cputime_msec_factor);
188 u64 __cputime_sec_factor;
189 EXPORT_SYMBOL(__cputime_sec_factor);
190 u64 __cputime_clockt_factor;
191 EXPORT_SYMBOL(__cputime_clockt_factor);
192 
193 static void calc_cputime_factors(void)
194 {
195 	struct div_result res;
196 
197 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
198 	__cputime_jiffies_factor = res.result_low;
199 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
200 	__cputime_msec_factor = res.result_low;
201 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
202 	__cputime_sec_factor = res.result_low;
203 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
204 	__cputime_clockt_factor = res.result_low;
205 }
206 
207 /*
208  * Read the PURR on systems that have it, otherwise the timebase.
209  */
210 static u64 read_purr(void)
211 {
212 	if (cpu_has_feature(CPU_FTR_PURR))
213 		return mfspr(SPRN_PURR);
214 	return mftb();
215 }
216 
217 /*
218  * Read the SPURR on systems that have it, otherwise the purr
219  */
220 static u64 read_spurr(u64 purr)
221 {
222 	if (cpu_has_feature(CPU_FTR_SPURR))
223 		return mfspr(SPRN_SPURR);
224 	return purr;
225 }
226 
227 /*
228  * Account time for a transition between system, hard irq
229  * or soft irq state.
230  */
231 void account_system_vtime(struct task_struct *tsk)
232 {
233 	u64 now, nowscaled, delta, deltascaled;
234 	unsigned long flags;
235 
236 	local_irq_save(flags);
237 	now = read_purr();
238 	delta = now - get_paca()->startpurr;
239 	get_paca()->startpurr = now;
240 	nowscaled = read_spurr(now);
241 	deltascaled = nowscaled - get_paca()->startspurr;
242 	get_paca()->startspurr = nowscaled;
243 	if (!in_interrupt()) {
244 		/* deltascaled includes both user and system time.
245 		 * Hence scale it based on the purr ratio to estimate
246 		 * the system time */
247 		if (get_paca()->user_time)
248 			deltascaled = deltascaled * get_paca()->system_time /
249 			     (get_paca()->system_time + get_paca()->user_time);
250 		delta += get_paca()->system_time;
251 		get_paca()->system_time = 0;
252 	}
253 	account_system_time(tsk, 0, delta);
254 	get_paca()->purrdelta = delta;
255 	account_system_time_scaled(tsk, deltascaled);
256 	get_paca()->spurrdelta = deltascaled;
257 	local_irq_restore(flags);
258 }
259 
260 /*
261  * Transfer the user and system times accumulated in the paca
262  * by the exception entry and exit code to the generic process
263  * user and system time records.
264  * Must be called with interrupts disabled.
265  */
266 void account_process_tick(struct task_struct *tsk, int user_tick)
267 {
268 	cputime_t utime, utimescaled;
269 
270 	utime = get_paca()->user_time;
271 	get_paca()->user_time = 0;
272 	account_user_time(tsk, utime);
273 
274 	/* Estimate the scaled utime by scaling the real utime based
275 	 * on the last spurr to purr ratio */
276 	utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
277 	get_paca()->spurrdelta = get_paca()->purrdelta = 0;
278 	account_user_time_scaled(tsk, utimescaled);
279 }
280 
281 /*
282  * Stuff for accounting stolen time.
283  */
284 struct cpu_purr_data {
285 	int	initialized;			/* thread is running */
286 	u64	tb;			/* last TB value read */
287 	u64	purr;			/* last PURR value read */
288 	u64	spurr;			/* last SPURR value read */
289 };
290 
291 /*
292  * Each entry in the cpu_purr_data array is manipulated only by its
293  * "owner" cpu -- usually in the timer interrupt but also occasionally
294  * in process context for cpu online.  As long as cpus do not touch
295  * each others' cpu_purr_data, disabling local interrupts is
296  * sufficient to serialize accesses.
297  */
298 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
299 
300 static void snapshot_tb_and_purr(void *data)
301 {
302 	unsigned long flags;
303 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
304 
305 	local_irq_save(flags);
306 	p->tb = get_tb_or_rtc();
307 	p->purr = mfspr(SPRN_PURR);
308 	wmb();
309 	p->initialized = 1;
310 	local_irq_restore(flags);
311 }
312 
313 /*
314  * Called during boot when all cpus have come up.
315  */
316 void snapshot_timebases(void)
317 {
318 	if (!cpu_has_feature(CPU_FTR_PURR))
319 		return;
320 	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
321 }
322 
323 /*
324  * Must be called with interrupts disabled.
325  */
326 void calculate_steal_time(void)
327 {
328 	u64 tb, purr;
329 	s64 stolen;
330 	struct cpu_purr_data *pme;
331 
332 	if (!cpu_has_feature(CPU_FTR_PURR))
333 		return;
334 	pme = &__get_cpu_var(cpu_purr_data);
335 	if (!pme->initialized)
336 		return;		/* this can happen in early boot */
337 	tb = mftb();
338 	purr = mfspr(SPRN_PURR);
339 	stolen = (tb - pme->tb) - (purr - pme->purr);
340 	if (stolen > 0)
341 		account_steal_time(current, stolen);
342 	pme->tb = tb;
343 	pme->purr = purr;
344 }
345 
346 #ifdef CONFIG_PPC_SPLPAR
347 /*
348  * Must be called before the cpu is added to the online map when
349  * a cpu is being brought up at runtime.
350  */
351 static void snapshot_purr(void)
352 {
353 	struct cpu_purr_data *pme;
354 	unsigned long flags;
355 
356 	if (!cpu_has_feature(CPU_FTR_PURR))
357 		return;
358 	local_irq_save(flags);
359 	pme = &__get_cpu_var(cpu_purr_data);
360 	pme->tb = mftb();
361 	pme->purr = mfspr(SPRN_PURR);
362 	pme->initialized = 1;
363 	local_irq_restore(flags);
364 }
365 
366 #endif /* CONFIG_PPC_SPLPAR */
367 
368 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
369 #define calc_cputime_factors()
370 #define calculate_steal_time()		do { } while (0)
371 #endif
372 
373 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
374 #define snapshot_purr()			do { } while (0)
375 #endif
376 
377 /*
378  * Called when a cpu comes up after the system has finished booting,
379  * i.e. as a result of a hotplug cpu action.
380  */
381 void snapshot_timebase(void)
382 {
383 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
384 	snapshot_purr();
385 }
386 
387 void __delay(unsigned long loops)
388 {
389 	unsigned long start;
390 	int diff;
391 
392 	if (__USE_RTC()) {
393 		start = get_rtcl();
394 		do {
395 			/* the RTCL register wraps at 1000000000 */
396 			diff = get_rtcl() - start;
397 			if (diff < 0)
398 				diff += 1000000000;
399 		} while (diff < loops);
400 	} else {
401 		start = get_tbl();
402 		while (get_tbl() - start < loops)
403 			HMT_low();
404 		HMT_medium();
405 	}
406 }
407 EXPORT_SYMBOL(__delay);
408 
409 void udelay(unsigned long usecs)
410 {
411 	__delay(tb_ticks_per_usec * usecs);
412 }
413 EXPORT_SYMBOL(udelay);
414 
415 
416 /*
417  * There are two copies of tb_to_xs and stamp_xsec so that no
418  * lock is needed to access and use these values in
419  * do_gettimeofday.  We alternate the copies and as long as a
420  * reasonable time elapses between changes, there will never
421  * be inconsistent values.  ntpd has a minimum of one minute
422  * between updates.
423  */
424 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
425 			       u64 new_tb_to_xs)
426 {
427 	unsigned temp_idx;
428 	struct gettimeofday_vars *temp_varp;
429 
430 	temp_idx = (do_gtod.var_idx == 0);
431 	temp_varp = &do_gtod.vars[temp_idx];
432 
433 	temp_varp->tb_to_xs = new_tb_to_xs;
434 	temp_varp->tb_orig_stamp = new_tb_stamp;
435 	temp_varp->stamp_xsec = new_stamp_xsec;
436 	smp_mb();
437 	do_gtod.varp = temp_varp;
438 	do_gtod.var_idx = temp_idx;
439 
440 	/*
441 	 * tb_update_count is used to allow the userspace gettimeofday code
442 	 * to assure itself that it sees a consistent view of the tb_to_xs and
443 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
444 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
445 	 * the two values of tb_update_count match and are even then the
446 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
447 	 * loops back and reads them again until this criteria is met.
448 	 * We expect the caller to have done the first increment of
449 	 * vdso_data->tb_update_count already.
450 	 */
451 	vdso_data->tb_orig_stamp = new_tb_stamp;
452 	vdso_data->stamp_xsec = new_stamp_xsec;
453 	vdso_data->tb_to_xs = new_tb_to_xs;
454 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
455 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
456 	smp_wmb();
457 	++(vdso_data->tb_update_count);
458 }
459 
460 #ifdef CONFIG_SMP
461 unsigned long profile_pc(struct pt_regs *regs)
462 {
463 	unsigned long pc = instruction_pointer(regs);
464 
465 	if (in_lock_functions(pc))
466 		return regs->link;
467 
468 	return pc;
469 }
470 EXPORT_SYMBOL(profile_pc);
471 #endif
472 
473 #ifdef CONFIG_PPC_ISERIES
474 
475 /*
476  * This function recalibrates the timebase based on the 49-bit time-of-day
477  * value in the Titan chip.  The Titan is much more accurate than the value
478  * returned by the service processor for the timebase frequency.
479  */
480 
481 static int __init iSeries_tb_recal(void)
482 {
483 	struct div_result divres;
484 	unsigned long titan, tb;
485 
486 	/* Make sure we only run on iSeries */
487 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
488 		return -ENODEV;
489 
490 	tb = get_tb();
491 	titan = HvCallXm_loadTod();
492 	if ( iSeries_recal_titan ) {
493 		unsigned long tb_ticks = tb - iSeries_recal_tb;
494 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
495 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
496 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
497 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
498 		char sign = '+';
499 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
500 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
501 
502 		if ( tick_diff < 0 ) {
503 			tick_diff = -tick_diff;
504 			sign = '-';
505 		}
506 		if ( tick_diff ) {
507 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
508 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
509 						new_tb_ticks_per_jiffy, sign, tick_diff );
510 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
511 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
512 				calc_cputime_factors();
513 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
514 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
515 				tb_to_xs = divres.result_low;
516 				do_gtod.varp->tb_to_xs = tb_to_xs;
517 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
518 				vdso_data->tb_to_xs = tb_to_xs;
519 			}
520 			else {
521 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
522 					"                   new tb_ticks_per_jiffy = %lu\n"
523 					"                   old tb_ticks_per_jiffy = %lu\n",
524 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
525 			}
526 		}
527 	}
528 	iSeries_recal_titan = titan;
529 	iSeries_recal_tb = tb;
530 
531 	/* Called here as now we know accurate values for the timebase */
532 	clocksource_init();
533 	return 0;
534 }
535 late_initcall(iSeries_tb_recal);
536 
537 /* Called from platform early init */
538 void __init iSeries_time_init_early(void)
539 {
540 	iSeries_recal_tb = get_tb();
541 	iSeries_recal_titan = HvCallXm_loadTod();
542 }
543 #endif /* CONFIG_PPC_ISERIES */
544 
545 /*
546  * For iSeries shared processors, we have to let the hypervisor
547  * set the hardware decrementer.  We set a virtual decrementer
548  * in the lppaca and call the hypervisor if the virtual
549  * decrementer is less than the current value in the hardware
550  * decrementer. (almost always the new decrementer value will
551  * be greater than the current hardware decementer so the hypervisor
552  * call will not be needed)
553  */
554 
555 /*
556  * timer_interrupt - gets called when the decrementer overflows,
557  * with interrupts disabled.
558  */
559 void timer_interrupt(struct pt_regs * regs)
560 {
561 	struct pt_regs *old_regs;
562 	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
563 	struct clock_event_device *evt = &decrementer->event;
564 	u64 now;
565 
566 	/* Ensure a positive value is written to the decrementer, or else
567 	 * some CPUs will continuue to take decrementer exceptions */
568 	set_dec(DECREMENTER_MAX);
569 
570 #ifdef CONFIG_PPC32
571 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
572 		do_IRQ(regs);
573 #endif
574 
575 	now = get_tb_or_rtc();
576 	if (now < decrementer->next_tb) {
577 		/* not time for this event yet */
578 		now = decrementer->next_tb - now;
579 		if (now <= DECREMENTER_MAX)
580 			set_dec((int)now);
581 		return;
582 	}
583 	old_regs = set_irq_regs(regs);
584 	irq_enter();
585 
586 	calculate_steal_time();
587 
588 #ifdef CONFIG_PPC_ISERIES
589 	if (firmware_has_feature(FW_FEATURE_ISERIES))
590 		get_lppaca()->int_dword.fields.decr_int = 0;
591 #endif
592 
593 	if (evt->event_handler)
594 		evt->event_handler(evt);
595 
596 #ifdef CONFIG_PPC_ISERIES
597 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
598 		process_hvlpevents();
599 #endif
600 
601 #ifdef CONFIG_PPC64
602 	/* collect purr register values often, for accurate calculations */
603 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
604 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
605 		cu->current_tb = mfspr(SPRN_PURR);
606 	}
607 #endif
608 
609 	irq_exit();
610 	set_irq_regs(old_regs);
611 }
612 
613 void wakeup_decrementer(void)
614 {
615 	unsigned long ticks;
616 
617 	/*
618 	 * The timebase gets saved on sleep and restored on wakeup,
619 	 * so all we need to do is to reset the decrementer.
620 	 */
621 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
622 	if (ticks < tb_ticks_per_jiffy)
623 		ticks = tb_ticks_per_jiffy - ticks;
624 	else
625 		ticks = 1;
626 	set_dec(ticks);
627 }
628 
629 #ifdef CONFIG_SMP
630 void __init smp_space_timers(unsigned int max_cpus)
631 {
632 	int i;
633 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
634 
635 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
636 	previous_tb -= tb_ticks_per_jiffy;
637 
638 	for_each_possible_cpu(i) {
639 		if (i == boot_cpuid)
640 			continue;
641 		per_cpu(last_jiffy, i) = previous_tb;
642 	}
643 }
644 #endif
645 
646 /*
647  * Scheduler clock - returns current time in nanosec units.
648  *
649  * Note: mulhdu(a, b) (multiply high double unsigned) returns
650  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
651  * are 64-bit unsigned numbers.
652  */
653 unsigned long long sched_clock(void)
654 {
655 	if (__USE_RTC())
656 		return get_rtc();
657 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
658 }
659 
660 static int __init get_freq(char *name, int cells, unsigned long *val)
661 {
662 	struct device_node *cpu;
663 	const unsigned int *fp;
664 	int found = 0;
665 
666 	/* The cpu node should have timebase and clock frequency properties */
667 	cpu = of_find_node_by_type(NULL, "cpu");
668 
669 	if (cpu) {
670 		fp = of_get_property(cpu, name, NULL);
671 		if (fp) {
672 			found = 1;
673 			*val = of_read_ulong(fp, cells);
674 		}
675 
676 		of_node_put(cpu);
677 	}
678 
679 	return found;
680 }
681 
682 void __init generic_calibrate_decr(void)
683 {
684 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
685 
686 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
687 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
688 
689 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
690 				"(not found)\n");
691 	}
692 
693 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
694 
695 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
696 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
697 
698 		printk(KERN_ERR "WARNING: Estimating processor frequency "
699 				"(not found)\n");
700 	}
701 
702 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
703 	/* Set the time base to zero */
704 	mtspr(SPRN_TBWL, 0);
705 	mtspr(SPRN_TBWU, 0);
706 
707 	/* Clear any pending timer interrupts */
708 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
709 
710 	/* Enable decrementer interrupt */
711 	mtspr(SPRN_TCR, TCR_DIE);
712 #endif
713 }
714 
715 int update_persistent_clock(struct timespec now)
716 {
717 	struct rtc_time tm;
718 
719 	if (!ppc_md.set_rtc_time)
720 		return 0;
721 
722 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
723 	tm.tm_year -= 1900;
724 	tm.tm_mon -= 1;
725 
726 	return ppc_md.set_rtc_time(&tm);
727 }
728 
729 unsigned long read_persistent_clock(void)
730 {
731 	struct rtc_time tm;
732 	static int first = 1;
733 
734 	/* XXX this is a litle fragile but will work okay in the short term */
735 	if (first) {
736 		first = 0;
737 		if (ppc_md.time_init)
738 			timezone_offset = ppc_md.time_init();
739 
740 		/* get_boot_time() isn't guaranteed to be safe to call late */
741 		if (ppc_md.get_boot_time)
742 			return ppc_md.get_boot_time() -timezone_offset;
743 	}
744 	if (!ppc_md.get_rtc_time)
745 		return 0;
746 	ppc_md.get_rtc_time(&tm);
747 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
748 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
749 }
750 
751 /* clocksource code */
752 static cycle_t rtc_read(void)
753 {
754 	return (cycle_t)get_rtc();
755 }
756 
757 static cycle_t timebase_read(void)
758 {
759 	return (cycle_t)get_tb();
760 }
761 
762 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
763 {
764 	u64 t2x, stamp_xsec;
765 
766 	if (clock != &clocksource_timebase)
767 		return;
768 
769 	/* Make userspace gettimeofday spin until we're done. */
770 	++vdso_data->tb_update_count;
771 	smp_mb();
772 
773 	/* XXX this assumes clock->shift == 22 */
774 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
775 	t2x = (u64) clock->mult * 4611686018ULL;
776 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
777 	do_div(stamp_xsec, 1000000000);
778 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
779 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
780 }
781 
782 void update_vsyscall_tz(void)
783 {
784 	/* Make userspace gettimeofday spin until we're done. */
785 	++vdso_data->tb_update_count;
786 	smp_mb();
787 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
788 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
789 	smp_mb();
790 	++vdso_data->tb_update_count;
791 }
792 
793 void __init clocksource_init(void)
794 {
795 	struct clocksource *clock;
796 
797 	if (__USE_RTC())
798 		clock = &clocksource_rtc;
799 	else
800 		clock = &clocksource_timebase;
801 
802 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
803 
804 	if (clocksource_register(clock)) {
805 		printk(KERN_ERR "clocksource: %s is already registered\n",
806 		       clock->name);
807 		return;
808 	}
809 
810 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
811 	       clock->name, clock->mult, clock->shift);
812 }
813 
814 static int decrementer_set_next_event(unsigned long evt,
815 				      struct clock_event_device *dev)
816 {
817 	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
818 	set_dec(evt);
819 	return 0;
820 }
821 
822 static void decrementer_set_mode(enum clock_event_mode mode,
823 				 struct clock_event_device *dev)
824 {
825 	if (mode != CLOCK_EVT_MODE_ONESHOT)
826 		decrementer_set_next_event(DECREMENTER_MAX, dev);
827 }
828 
829 static void register_decrementer_clockevent(int cpu)
830 {
831 	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
832 
833 	*dec = decrementer_clockevent;
834 	dec->cpumask = cpumask_of_cpu(cpu);
835 
836 	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
837 	       dec->name, dec->mult, dec->shift, cpu);
838 
839 	clockevents_register_device(dec);
840 }
841 
842 static void __init init_decrementer_clockevent(void)
843 {
844 	int cpu = smp_processor_id();
845 
846 	decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
847 					     decrementer_clockevent.shift);
848 	decrementer_clockevent.max_delta_ns =
849 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
850 	decrementer_clockevent.min_delta_ns =
851 		clockevent_delta2ns(2, &decrementer_clockevent);
852 
853 	register_decrementer_clockevent(cpu);
854 }
855 
856 void secondary_cpu_time_init(void)
857 {
858 	/* FIME: Should make unrelatred change to move snapshot_timebase
859 	 * call here ! */
860 	register_decrementer_clockevent(smp_processor_id());
861 }
862 
863 /* This function is only called on the boot processor */
864 void __init time_init(void)
865 {
866 	unsigned long flags;
867 	struct div_result res;
868 	u64 scale, x;
869 	unsigned shift;
870 
871 	if (__USE_RTC()) {
872 		/* 601 processor: dec counts down by 128 every 128ns */
873 		ppc_tb_freq = 1000000000;
874 		tb_last_jiffy = get_rtcl();
875 	} else {
876 		/* Normal PowerPC with timebase register */
877 		ppc_md.calibrate_decr();
878 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
879 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
880 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
881 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
882 		tb_last_jiffy = get_tb();
883 	}
884 
885 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
886 	tb_ticks_per_sec = ppc_tb_freq;
887 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
888 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
889 	calc_cputime_factors();
890 
891 	/*
892 	 * Calculate the length of each tick in ns.  It will not be
893 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
894 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
895 	 * rounded up.
896 	 */
897 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
898 	do_div(x, ppc_tb_freq);
899 	tick_nsec = x;
900 	last_tick_len = x << TICKLEN_SCALE;
901 
902 	/*
903 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
904 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
905 	 * It is computed as:
906 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
907 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
908 	 * which turns out to be N = 51 - SHIFT_HZ.
909 	 * This gives the result as a 0.64 fixed-point fraction.
910 	 * That value is reduced by an offset amounting to 1 xsec per
911 	 * 2^31 timebase ticks to avoid problems with time going backwards
912 	 * by 1 xsec when we do timer_recalc_offset due to losing the
913 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
914 	 * since there are 2^20 xsec in a second.
915 	 */
916 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
917 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
918 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
919 	ticklen_to_xs = res.result_low;
920 
921 	/* Compute tb_to_xs from tick_nsec */
922 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
923 
924 	/*
925 	 * Compute scale factor for sched_clock.
926 	 * The calibrate_decr() function has set tb_ticks_per_sec,
927 	 * which is the timebase frequency.
928 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
929 	 * the 128-bit result as a 64.64 fixed-point number.
930 	 * We then shift that number right until it is less than 1.0,
931 	 * giving us the scale factor and shift count to use in
932 	 * sched_clock().
933 	 */
934 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
935 	scale = res.result_low;
936 	for (shift = 0; res.result_high != 0; ++shift) {
937 		scale = (scale >> 1) | (res.result_high << 63);
938 		res.result_high >>= 1;
939 	}
940 	tb_to_ns_scale = scale;
941 	tb_to_ns_shift = shift;
942 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
943 	boot_tb = get_tb_or_rtc();
944 
945 	write_seqlock_irqsave(&xtime_lock, flags);
946 
947 	/* If platform provided a timezone (pmac), we correct the time */
948         if (timezone_offset) {
949 		sys_tz.tz_minuteswest = -timezone_offset / 60;
950 		sys_tz.tz_dsttime = 0;
951         }
952 
953 	do_gtod.varp = &do_gtod.vars[0];
954 	do_gtod.var_idx = 0;
955 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
956 	__get_cpu_var(last_jiffy) = tb_last_jiffy;
957 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
958 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
959 	do_gtod.varp->tb_to_xs = tb_to_xs;
960 	do_gtod.tb_to_us = tb_to_us;
961 
962 	vdso_data->tb_orig_stamp = tb_last_jiffy;
963 	vdso_data->tb_update_count = 0;
964 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
965 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
966 	vdso_data->tb_to_xs = tb_to_xs;
967 
968 	time_freq = 0;
969 
970 	write_sequnlock_irqrestore(&xtime_lock, flags);
971 
972 	/* Register the clocksource, if we're not running on iSeries */
973 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
974 		clocksource_init();
975 
976 	init_decrementer_clockevent();
977 }
978 
979 
980 #define FEBRUARY	2
981 #define	STARTOFTIME	1970
982 #define SECDAY		86400L
983 #define SECYR		(SECDAY * 365)
984 #define	leapyear(year)		((year) % 4 == 0 && \
985 				 ((year) % 100 != 0 || (year) % 400 == 0))
986 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
987 #define	days_in_month(a) 	(month_days[(a) - 1])
988 
989 static int month_days[12] = {
990 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
991 };
992 
993 /*
994  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
995  */
996 void GregorianDay(struct rtc_time * tm)
997 {
998 	int leapsToDate;
999 	int lastYear;
1000 	int day;
1001 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1002 
1003 	lastYear = tm->tm_year - 1;
1004 
1005 	/*
1006 	 * Number of leap corrections to apply up to end of last year
1007 	 */
1008 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1009 
1010 	/*
1011 	 * This year is a leap year if it is divisible by 4 except when it is
1012 	 * divisible by 100 unless it is divisible by 400
1013 	 *
1014 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1015 	 */
1016 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1017 
1018 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1019 		   tm->tm_mday;
1020 
1021 	tm->tm_wday = day % 7;
1022 }
1023 
1024 void to_tm(int tim, struct rtc_time * tm)
1025 {
1026 	register int    i;
1027 	register long   hms, day;
1028 
1029 	day = tim / SECDAY;
1030 	hms = tim % SECDAY;
1031 
1032 	/* Hours, minutes, seconds are easy */
1033 	tm->tm_hour = hms / 3600;
1034 	tm->tm_min = (hms % 3600) / 60;
1035 	tm->tm_sec = (hms % 3600) % 60;
1036 
1037 	/* Number of years in days */
1038 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1039 		day -= days_in_year(i);
1040 	tm->tm_year = i;
1041 
1042 	/* Number of months in days left */
1043 	if (leapyear(tm->tm_year))
1044 		days_in_month(FEBRUARY) = 29;
1045 	for (i = 1; day >= days_in_month(i); i++)
1046 		day -= days_in_month(i);
1047 	days_in_month(FEBRUARY) = 28;
1048 	tm->tm_mon = i;
1049 
1050 	/* Days are what is left over (+1) from all that. */
1051 	tm->tm_mday = day + 1;
1052 
1053 	/*
1054 	 * Determine the day of week
1055 	 */
1056 	GregorianDay(tm);
1057 }
1058 
1059 /* Auxiliary function to compute scaling factors */
1060 /* Actually the choice of a timebase running at 1/4 the of the bus
1061  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1062  * It makes this computation very precise (27-28 bits typically) which
1063  * is optimistic considering the stability of most processor clock
1064  * oscillators and the precision with which the timebase frequency
1065  * is measured but does not harm.
1066  */
1067 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1068 {
1069         unsigned mlt=0, tmp, err;
1070         /* No concern for performance, it's done once: use a stupid
1071          * but safe and compact method to find the multiplier.
1072          */
1073 
1074         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1075                 if (mulhwu(inscale, mlt|tmp) < outscale)
1076 			mlt |= tmp;
1077         }
1078 
1079         /* We might still be off by 1 for the best approximation.
1080          * A side effect of this is that if outscale is too large
1081          * the returned value will be zero.
1082          * Many corner cases have been checked and seem to work,
1083          * some might have been forgotten in the test however.
1084          */
1085 
1086         err = inscale * (mlt+1);
1087         if (err <= inscale/2)
1088 		mlt++;
1089         return mlt;
1090 }
1091 
1092 /*
1093  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1094  * result.
1095  */
1096 void div128_by_32(u64 dividend_high, u64 dividend_low,
1097 		  unsigned divisor, struct div_result *dr)
1098 {
1099 	unsigned long a, b, c, d;
1100 	unsigned long w, x, y, z;
1101 	u64 ra, rb, rc;
1102 
1103 	a = dividend_high >> 32;
1104 	b = dividend_high & 0xffffffff;
1105 	c = dividend_low >> 32;
1106 	d = dividend_low & 0xffffffff;
1107 
1108 	w = a / divisor;
1109 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1110 
1111 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1112 	x = ra;
1113 
1114 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1115 	y = rb;
1116 
1117 	do_div(rc, divisor);
1118 	z = rc;
1119 
1120 	dr->result_high = ((u64)w << 32) + x;
1121 	dr->result_low  = ((u64)y << 32) + z;
1122 
1123 }
1124