1f2783c15SPaul Mackerras /* 2f2783c15SPaul Mackerras * Common time routines among all ppc machines. 3f2783c15SPaul Mackerras * 4f2783c15SPaul Mackerras * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5f2783c15SPaul Mackerras * Paul Mackerras' version and mine for PReP and Pmac. 6f2783c15SPaul Mackerras * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7f2783c15SPaul Mackerras * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8f2783c15SPaul Mackerras * 9f2783c15SPaul Mackerras * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10f2783c15SPaul Mackerras * to make clock more stable (2.4.0-test5). The only thing 11f2783c15SPaul Mackerras * that this code assumes is that the timebases have been synchronized 12f2783c15SPaul Mackerras * by firmware on SMP and are never stopped (never do sleep 13f2783c15SPaul Mackerras * on SMP then, nap and doze are OK). 14f2783c15SPaul Mackerras * 15f2783c15SPaul Mackerras * Speeded up do_gettimeofday by getting rid of references to 16f2783c15SPaul Mackerras * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17f2783c15SPaul Mackerras * 18f2783c15SPaul Mackerras * TODO (not necessarily in this file): 19f2783c15SPaul Mackerras * - improve precision and reproducibility of timebase frequency 20f2783c15SPaul Mackerras * measurement at boot time. (for iSeries, we calibrate the timebase 21f2783c15SPaul Mackerras * against the Titan chip's clock.) 22f2783c15SPaul Mackerras * - for astronomical applications: add a new function to get 23f2783c15SPaul Mackerras * non ambiguous timestamps even around leap seconds. This needs 24f2783c15SPaul Mackerras * a new timestamp format and a good name. 25f2783c15SPaul Mackerras * 26f2783c15SPaul Mackerras * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27f2783c15SPaul Mackerras * "A Kernel Model for Precision Timekeeping" by Dave Mills 28f2783c15SPaul Mackerras * 29f2783c15SPaul Mackerras * This program is free software; you can redistribute it and/or 30f2783c15SPaul Mackerras * modify it under the terms of the GNU General Public License 31f2783c15SPaul Mackerras * as published by the Free Software Foundation; either version 32f2783c15SPaul Mackerras * 2 of the License, or (at your option) any later version. 33f2783c15SPaul Mackerras */ 34f2783c15SPaul Mackerras 35f2783c15SPaul Mackerras #include <linux/config.h> 36f2783c15SPaul Mackerras #include <linux/errno.h> 37f2783c15SPaul Mackerras #include <linux/module.h> 38f2783c15SPaul Mackerras #include <linux/sched.h> 39f2783c15SPaul Mackerras #include <linux/kernel.h> 40f2783c15SPaul Mackerras #include <linux/param.h> 41f2783c15SPaul Mackerras #include <linux/string.h> 42f2783c15SPaul Mackerras #include <linux/mm.h> 43f2783c15SPaul Mackerras #include <linux/interrupt.h> 44f2783c15SPaul Mackerras #include <linux/timex.h> 45f2783c15SPaul Mackerras #include <linux/kernel_stat.h> 46f2783c15SPaul Mackerras #include <linux/time.h> 47f2783c15SPaul Mackerras #include <linux/init.h> 48f2783c15SPaul Mackerras #include <linux/profile.h> 49f2783c15SPaul Mackerras #include <linux/cpu.h> 50f2783c15SPaul Mackerras #include <linux/security.h> 51f2783c15SPaul Mackerras #include <linux/percpu.h> 52f2783c15SPaul Mackerras #include <linux/rtc.h> 53f2783c15SPaul Mackerras 54f2783c15SPaul Mackerras #include <asm/io.h> 55f2783c15SPaul Mackerras #include <asm/processor.h> 56f2783c15SPaul Mackerras #include <asm/nvram.h> 57f2783c15SPaul Mackerras #include <asm/cache.h> 58f2783c15SPaul Mackerras #include <asm/machdep.h> 59f2783c15SPaul Mackerras #include <asm/uaccess.h> 60f2783c15SPaul Mackerras #include <asm/time.h> 61f2783c15SPaul Mackerras #include <asm/prom.h> 62f2783c15SPaul Mackerras #include <asm/irq.h> 63f2783c15SPaul Mackerras #include <asm/div64.h> 64f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 65f2783c15SPaul Mackerras #include <asm/systemcfg.h> 66f2783c15SPaul Mackerras #include <asm/firmware.h> 67f2783c15SPaul Mackerras #endif 68f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 69f2783c15SPaul Mackerras #include <asm/iSeries/ItLpQueue.h> 70f2783c15SPaul Mackerras #include <asm/iSeries/HvCallXm.h> 71f2783c15SPaul Mackerras #endif 72f2783c15SPaul Mackerras 73f2783c15SPaul Mackerras u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 74f2783c15SPaul Mackerras 75f2783c15SPaul Mackerras EXPORT_SYMBOL(jiffies_64); 76f2783c15SPaul Mackerras 77f2783c15SPaul Mackerras /* keep track of when we need to update the rtc */ 78f2783c15SPaul Mackerras time_t last_rtc_update; 79f2783c15SPaul Mackerras extern int piranha_simulator; 80f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 81f2783c15SPaul Mackerras unsigned long iSeries_recal_titan = 0; 82f2783c15SPaul Mackerras unsigned long iSeries_recal_tb = 0; 83f2783c15SPaul Mackerras static unsigned long first_settimeofday = 1; 84f2783c15SPaul Mackerras #endif 85f2783c15SPaul Mackerras 86f2783c15SPaul Mackerras /* The decrementer counts down by 128 every 128ns on a 601. */ 87f2783c15SPaul Mackerras #define DECREMENTER_COUNT_601 (1000000000 / HZ) 88f2783c15SPaul Mackerras 89f2783c15SPaul Mackerras #define XSEC_PER_SEC (1024*1024) 90f2783c15SPaul Mackerras 91f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 92f2783c15SPaul Mackerras #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 93f2783c15SPaul Mackerras #else 94f2783c15SPaul Mackerras /* compute ((xsec << 12) * max) >> 32 */ 95f2783c15SPaul Mackerras #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 96f2783c15SPaul Mackerras #endif 97f2783c15SPaul Mackerras 98f2783c15SPaul Mackerras unsigned long tb_ticks_per_jiffy; 99f2783c15SPaul Mackerras unsigned long tb_ticks_per_usec = 100; /* sane default */ 100f2783c15SPaul Mackerras EXPORT_SYMBOL(tb_ticks_per_usec); 101f2783c15SPaul Mackerras unsigned long tb_ticks_per_sec; 102f2783c15SPaul Mackerras u64 tb_to_xs; 103f2783c15SPaul Mackerras unsigned tb_to_us; 104f2783c15SPaul Mackerras unsigned long processor_freq; 105f2783c15SPaul Mackerras DEFINE_SPINLOCK(rtc_lock); 106f2783c15SPaul Mackerras EXPORT_SYMBOL_GPL(rtc_lock); 107f2783c15SPaul Mackerras 108f2783c15SPaul Mackerras u64 tb_to_ns_scale; 109f2783c15SPaul Mackerras unsigned tb_to_ns_shift; 110f2783c15SPaul Mackerras 111f2783c15SPaul Mackerras struct gettimeofday_struct do_gtod; 112f2783c15SPaul Mackerras 113f2783c15SPaul Mackerras extern unsigned long wall_jiffies; 114f2783c15SPaul Mackerras 115f2783c15SPaul Mackerras extern struct timezone sys_tz; 116f2783c15SPaul Mackerras static long timezone_offset; 117f2783c15SPaul Mackerras 118f2783c15SPaul Mackerras void ppc_adjtimex(void); 119f2783c15SPaul Mackerras 120f2783c15SPaul Mackerras static unsigned adjusting_time = 0; 121f2783c15SPaul Mackerras 122f2783c15SPaul Mackerras unsigned long ppc_proc_freq; 123f2783c15SPaul Mackerras unsigned long ppc_tb_freq; 124f2783c15SPaul Mackerras 125f2783c15SPaul Mackerras #ifdef CONFIG_PPC32 /* XXX for now */ 126f2783c15SPaul Mackerras #define boot_cpuid 0 127f2783c15SPaul Mackerras #endif 128f2783c15SPaul Mackerras 129*96c44507SPaul Mackerras u64 tb_last_jiffy __cacheline_aligned_in_smp; 130*96c44507SPaul Mackerras unsigned long tb_last_stamp; 131*96c44507SPaul Mackerras 132*96c44507SPaul Mackerras /* 133*96c44507SPaul Mackerras * Note that on ppc32 this only stores the bottom 32 bits of 134*96c44507SPaul Mackerras * the timebase value, but that's enough to tell when a jiffy 135*96c44507SPaul Mackerras * has passed. 136*96c44507SPaul Mackerras */ 137*96c44507SPaul Mackerras DEFINE_PER_CPU(unsigned long, last_jiffy); 138*96c44507SPaul Mackerras 139f2783c15SPaul Mackerras static __inline__ void timer_check_rtc(void) 140f2783c15SPaul Mackerras { 141f2783c15SPaul Mackerras /* 142f2783c15SPaul Mackerras * update the rtc when needed, this should be performed on the 143f2783c15SPaul Mackerras * right fraction of a second. Half or full second ? 144f2783c15SPaul Mackerras * Full second works on mk48t59 clocks, others need testing. 145f2783c15SPaul Mackerras * Note that this update is basically only used through 146f2783c15SPaul Mackerras * the adjtimex system calls. Setting the HW clock in 147f2783c15SPaul Mackerras * any other way is a /dev/rtc and userland business. 148f2783c15SPaul Mackerras * This is still wrong by -0.5/+1.5 jiffies because of the 149f2783c15SPaul Mackerras * timer interrupt resolution and possible delay, but here we 150f2783c15SPaul Mackerras * hit a quantization limit which can only be solved by higher 151f2783c15SPaul Mackerras * resolution timers and decoupling time management from timer 152f2783c15SPaul Mackerras * interrupts. This is also wrong on the clocks 153f2783c15SPaul Mackerras * which require being written at the half second boundary. 154f2783c15SPaul Mackerras * We should have an rtc call that only sets the minutes and 155f2783c15SPaul Mackerras * seconds like on Intel to avoid problems with non UTC clocks. 156f2783c15SPaul Mackerras */ 157f2783c15SPaul Mackerras if (ntp_synced() && 158f2783c15SPaul Mackerras xtime.tv_sec - last_rtc_update >= 659 && 159f2783c15SPaul Mackerras abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ && 160f2783c15SPaul Mackerras jiffies - wall_jiffies == 1) { 161f2783c15SPaul Mackerras struct rtc_time tm; 162f2783c15SPaul Mackerras to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); 163f2783c15SPaul Mackerras tm.tm_year -= 1900; 164f2783c15SPaul Mackerras tm.tm_mon -= 1; 165f2783c15SPaul Mackerras if (ppc_md.set_rtc_time(&tm) == 0) 166f2783c15SPaul Mackerras last_rtc_update = xtime.tv_sec + 1; 167f2783c15SPaul Mackerras else 168f2783c15SPaul Mackerras /* Try again one minute later */ 169f2783c15SPaul Mackerras last_rtc_update += 60; 170f2783c15SPaul Mackerras } 171f2783c15SPaul Mackerras } 172f2783c15SPaul Mackerras 173f2783c15SPaul Mackerras /* 174f2783c15SPaul Mackerras * This version of gettimeofday has microsecond resolution. 175f2783c15SPaul Mackerras */ 176f2783c15SPaul Mackerras static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) 177f2783c15SPaul Mackerras { 178f2783c15SPaul Mackerras unsigned long sec, usec; 179f2783c15SPaul Mackerras u64 tb_ticks, xsec; 180f2783c15SPaul Mackerras struct gettimeofday_vars *temp_varp; 181f2783c15SPaul Mackerras u64 temp_tb_to_xs, temp_stamp_xsec; 182f2783c15SPaul Mackerras 183f2783c15SPaul Mackerras /* 184f2783c15SPaul Mackerras * These calculations are faster (gets rid of divides) 185f2783c15SPaul Mackerras * if done in units of 1/2^20 rather than microseconds. 186f2783c15SPaul Mackerras * The conversion to microseconds at the end is done 187f2783c15SPaul Mackerras * without a divide (and in fact, without a multiply) 188f2783c15SPaul Mackerras */ 189f2783c15SPaul Mackerras temp_varp = do_gtod.varp; 190f2783c15SPaul Mackerras tb_ticks = tb_val - temp_varp->tb_orig_stamp; 191f2783c15SPaul Mackerras temp_tb_to_xs = temp_varp->tb_to_xs; 192f2783c15SPaul Mackerras temp_stamp_xsec = temp_varp->stamp_xsec; 193f2783c15SPaul Mackerras xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); 194f2783c15SPaul Mackerras sec = xsec / XSEC_PER_SEC; 195f2783c15SPaul Mackerras usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); 196f2783c15SPaul Mackerras usec = SCALE_XSEC(usec, 1000000); 197f2783c15SPaul Mackerras 198f2783c15SPaul Mackerras tv->tv_sec = sec; 199f2783c15SPaul Mackerras tv->tv_usec = usec; 200f2783c15SPaul Mackerras } 201f2783c15SPaul Mackerras 202f2783c15SPaul Mackerras void do_gettimeofday(struct timeval *tv) 203f2783c15SPaul Mackerras { 204*96c44507SPaul Mackerras if (__USE_RTC()) { 205*96c44507SPaul Mackerras /* do this the old way */ 206*96c44507SPaul Mackerras unsigned long flags, seq; 207*96c44507SPaul Mackerras unsigned int sec, nsec, usec, lost; 208*96c44507SPaul Mackerras 209*96c44507SPaul Mackerras do { 210*96c44507SPaul Mackerras seq = read_seqbegin_irqsave(&xtime_lock, flags); 211*96c44507SPaul Mackerras sec = xtime.tv_sec; 212*96c44507SPaul Mackerras nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp); 213*96c44507SPaul Mackerras lost = jiffies - wall_jiffies; 214*96c44507SPaul Mackerras } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 215*96c44507SPaul Mackerras usec = nsec / 1000 + lost * (1000000 / HZ); 216*96c44507SPaul Mackerras while (usec >= 1000000) { 217*96c44507SPaul Mackerras usec -= 1000000; 218*96c44507SPaul Mackerras ++sec; 219*96c44507SPaul Mackerras } 220*96c44507SPaul Mackerras tv->tv_sec = sec; 221*96c44507SPaul Mackerras tv->tv_usec = usec; 222*96c44507SPaul Mackerras return; 223*96c44507SPaul Mackerras } 224f2783c15SPaul Mackerras __do_gettimeofday(tv, get_tb()); 225f2783c15SPaul Mackerras } 226f2783c15SPaul Mackerras 227f2783c15SPaul Mackerras EXPORT_SYMBOL(do_gettimeofday); 228f2783c15SPaul Mackerras 229f2783c15SPaul Mackerras /* Synchronize xtime with do_gettimeofday */ 230f2783c15SPaul Mackerras 231f2783c15SPaul Mackerras static inline void timer_sync_xtime(unsigned long cur_tb) 232f2783c15SPaul Mackerras { 233f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 234f2783c15SPaul Mackerras /* why do we do this? */ 235f2783c15SPaul Mackerras struct timeval my_tv; 236f2783c15SPaul Mackerras 237f2783c15SPaul Mackerras __do_gettimeofday(&my_tv, cur_tb); 238f2783c15SPaul Mackerras 239f2783c15SPaul Mackerras if (xtime.tv_sec <= my_tv.tv_sec) { 240f2783c15SPaul Mackerras xtime.tv_sec = my_tv.tv_sec; 241f2783c15SPaul Mackerras xtime.tv_nsec = my_tv.tv_usec * 1000; 242f2783c15SPaul Mackerras } 243f2783c15SPaul Mackerras #endif 244f2783c15SPaul Mackerras } 245f2783c15SPaul Mackerras 246f2783c15SPaul Mackerras /* 247f2783c15SPaul Mackerras * There are two copies of tb_to_xs and stamp_xsec so that no 248f2783c15SPaul Mackerras * lock is needed to access and use these values in 249f2783c15SPaul Mackerras * do_gettimeofday. We alternate the copies and as long as a 250f2783c15SPaul Mackerras * reasonable time elapses between changes, there will never 251f2783c15SPaul Mackerras * be inconsistent values. ntpd has a minimum of one minute 252f2783c15SPaul Mackerras * between updates. 253f2783c15SPaul Mackerras */ 254f2783c15SPaul Mackerras static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 2555d14a18dSPaul Mackerras u64 new_tb_to_xs) 256f2783c15SPaul Mackerras { 257f2783c15SPaul Mackerras unsigned temp_idx; 258f2783c15SPaul Mackerras struct gettimeofday_vars *temp_varp; 259f2783c15SPaul Mackerras 260f2783c15SPaul Mackerras temp_idx = (do_gtod.var_idx == 0); 261f2783c15SPaul Mackerras temp_varp = &do_gtod.vars[temp_idx]; 262f2783c15SPaul Mackerras 263f2783c15SPaul Mackerras temp_varp->tb_to_xs = new_tb_to_xs; 264f2783c15SPaul Mackerras temp_varp->tb_orig_stamp = new_tb_stamp; 265f2783c15SPaul Mackerras temp_varp->stamp_xsec = new_stamp_xsec; 266f2783c15SPaul Mackerras smp_mb(); 267f2783c15SPaul Mackerras do_gtod.varp = temp_varp; 268f2783c15SPaul Mackerras do_gtod.var_idx = temp_idx; 269f2783c15SPaul Mackerras 270f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 271f2783c15SPaul Mackerras /* 272f2783c15SPaul Mackerras * tb_update_count is used to allow the userspace gettimeofday code 273f2783c15SPaul Mackerras * to assure itself that it sees a consistent view of the tb_to_xs and 274f2783c15SPaul Mackerras * stamp_xsec variables. It reads the tb_update_count, then reads 275f2783c15SPaul Mackerras * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 276f2783c15SPaul Mackerras * the two values of tb_update_count match and are even then the 277f2783c15SPaul Mackerras * tb_to_xs and stamp_xsec values are consistent. If not, then it 278f2783c15SPaul Mackerras * loops back and reads them again until this criteria is met. 279f2783c15SPaul Mackerras */ 280f2783c15SPaul Mackerras ++(systemcfg->tb_update_count); 281f2783c15SPaul Mackerras smp_wmb(); 282f2783c15SPaul Mackerras systemcfg->tb_orig_stamp = new_tb_stamp; 283f2783c15SPaul Mackerras systemcfg->stamp_xsec = new_stamp_xsec; 284f2783c15SPaul Mackerras systemcfg->tb_to_xs = new_tb_to_xs; 285f2783c15SPaul Mackerras smp_wmb(); 286f2783c15SPaul Mackerras ++(systemcfg->tb_update_count); 287f2783c15SPaul Mackerras #endif 288f2783c15SPaul Mackerras } 289f2783c15SPaul Mackerras 290f2783c15SPaul Mackerras /* 291f2783c15SPaul Mackerras * When the timebase - tb_orig_stamp gets too big, we do a manipulation 292f2783c15SPaul Mackerras * between tb_orig_stamp and stamp_xsec. The goal here is to keep the 293f2783c15SPaul Mackerras * difference tb - tb_orig_stamp small enough to always fit inside a 294f2783c15SPaul Mackerras * 32 bits number. This is a requirement of our fast 32 bits userland 295f2783c15SPaul Mackerras * implementation in the vdso. If we "miss" a call to this function 296f2783c15SPaul Mackerras * (interrupt latency, CPU locked in a spinlock, ...) and we end up 297f2783c15SPaul Mackerras * with a too big difference, then the vdso will fallback to calling 298f2783c15SPaul Mackerras * the syscall 299f2783c15SPaul Mackerras */ 300f2783c15SPaul Mackerras static __inline__ void timer_recalc_offset(u64 cur_tb) 301f2783c15SPaul Mackerras { 302f2783c15SPaul Mackerras unsigned long offset; 303f2783c15SPaul Mackerras u64 new_stamp_xsec; 304f2783c15SPaul Mackerras 305*96c44507SPaul Mackerras if (__USE_RTC()) 306*96c44507SPaul Mackerras return; 307f2783c15SPaul Mackerras offset = cur_tb - do_gtod.varp->tb_orig_stamp; 308f2783c15SPaul Mackerras if ((offset & 0x80000000u) == 0) 309f2783c15SPaul Mackerras return; 310f2783c15SPaul Mackerras new_stamp_xsec = do_gtod.varp->stamp_xsec 311f2783c15SPaul Mackerras + mulhdu(offset, do_gtod.varp->tb_to_xs); 312f2783c15SPaul Mackerras update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs); 313f2783c15SPaul Mackerras } 314f2783c15SPaul Mackerras 315f2783c15SPaul Mackerras #ifdef CONFIG_SMP 316f2783c15SPaul Mackerras unsigned long profile_pc(struct pt_regs *regs) 317f2783c15SPaul Mackerras { 318f2783c15SPaul Mackerras unsigned long pc = instruction_pointer(regs); 319f2783c15SPaul Mackerras 320f2783c15SPaul Mackerras if (in_lock_functions(pc)) 321f2783c15SPaul Mackerras return regs->link; 322f2783c15SPaul Mackerras 323f2783c15SPaul Mackerras return pc; 324f2783c15SPaul Mackerras } 325f2783c15SPaul Mackerras EXPORT_SYMBOL(profile_pc); 326f2783c15SPaul Mackerras #endif 327f2783c15SPaul Mackerras 328f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 329f2783c15SPaul Mackerras 330f2783c15SPaul Mackerras /* 331f2783c15SPaul Mackerras * This function recalibrates the timebase based on the 49-bit time-of-day 332f2783c15SPaul Mackerras * value in the Titan chip. The Titan is much more accurate than the value 333f2783c15SPaul Mackerras * returned by the service processor for the timebase frequency. 334f2783c15SPaul Mackerras */ 335f2783c15SPaul Mackerras 336f2783c15SPaul Mackerras static void iSeries_tb_recal(void) 337f2783c15SPaul Mackerras { 338f2783c15SPaul Mackerras struct div_result divres; 339f2783c15SPaul Mackerras unsigned long titan, tb; 340f2783c15SPaul Mackerras tb = get_tb(); 341f2783c15SPaul Mackerras titan = HvCallXm_loadTod(); 342f2783c15SPaul Mackerras if ( iSeries_recal_titan ) { 343f2783c15SPaul Mackerras unsigned long tb_ticks = tb - iSeries_recal_tb; 344f2783c15SPaul Mackerras unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 345f2783c15SPaul Mackerras unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 346f2783c15SPaul Mackerras unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 347f2783c15SPaul Mackerras long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 348f2783c15SPaul Mackerras char sign = '+'; 349f2783c15SPaul Mackerras /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 350f2783c15SPaul Mackerras new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 351f2783c15SPaul Mackerras 352f2783c15SPaul Mackerras if ( tick_diff < 0 ) { 353f2783c15SPaul Mackerras tick_diff = -tick_diff; 354f2783c15SPaul Mackerras sign = '-'; 355f2783c15SPaul Mackerras } 356f2783c15SPaul Mackerras if ( tick_diff ) { 357f2783c15SPaul Mackerras if ( tick_diff < tb_ticks_per_jiffy/25 ) { 358f2783c15SPaul Mackerras printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 359f2783c15SPaul Mackerras new_tb_ticks_per_jiffy, sign, tick_diff ); 360f2783c15SPaul Mackerras tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 361f2783c15SPaul Mackerras tb_ticks_per_sec = new_tb_ticks_per_sec; 362f2783c15SPaul Mackerras div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 363f2783c15SPaul Mackerras do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 364f2783c15SPaul Mackerras tb_to_xs = divres.result_low; 365f2783c15SPaul Mackerras do_gtod.varp->tb_to_xs = tb_to_xs; 366f2783c15SPaul Mackerras systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; 367f2783c15SPaul Mackerras systemcfg->tb_to_xs = tb_to_xs; 368f2783c15SPaul Mackerras } 369f2783c15SPaul Mackerras else { 370f2783c15SPaul Mackerras printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 371f2783c15SPaul Mackerras " new tb_ticks_per_jiffy = %lu\n" 372f2783c15SPaul Mackerras " old tb_ticks_per_jiffy = %lu\n", 373f2783c15SPaul Mackerras new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 374f2783c15SPaul Mackerras } 375f2783c15SPaul Mackerras } 376f2783c15SPaul Mackerras } 377f2783c15SPaul Mackerras iSeries_recal_titan = titan; 378f2783c15SPaul Mackerras iSeries_recal_tb = tb; 379f2783c15SPaul Mackerras } 380f2783c15SPaul Mackerras #endif 381f2783c15SPaul Mackerras 382f2783c15SPaul Mackerras /* 383f2783c15SPaul Mackerras * For iSeries shared processors, we have to let the hypervisor 384f2783c15SPaul Mackerras * set the hardware decrementer. We set a virtual decrementer 385f2783c15SPaul Mackerras * in the lppaca and call the hypervisor if the virtual 386f2783c15SPaul Mackerras * decrementer is less than the current value in the hardware 387f2783c15SPaul Mackerras * decrementer. (almost always the new decrementer value will 388f2783c15SPaul Mackerras * be greater than the current hardware decementer so the hypervisor 389f2783c15SPaul Mackerras * call will not be needed) 390f2783c15SPaul Mackerras */ 391f2783c15SPaul Mackerras 392f2783c15SPaul Mackerras /* 393f2783c15SPaul Mackerras * timer_interrupt - gets called when the decrementer overflows, 394f2783c15SPaul Mackerras * with interrupts disabled. 395f2783c15SPaul Mackerras */ 396f2783c15SPaul Mackerras void timer_interrupt(struct pt_regs * regs) 397f2783c15SPaul Mackerras { 398f2783c15SPaul Mackerras int next_dec; 399f2783c15SPaul Mackerras int cpu = smp_processor_id(); 400f2783c15SPaul Mackerras unsigned long ticks; 401f2783c15SPaul Mackerras 402f2783c15SPaul Mackerras #ifdef CONFIG_PPC32 403f2783c15SPaul Mackerras if (atomic_read(&ppc_n_lost_interrupts) != 0) 404f2783c15SPaul Mackerras do_IRQ(regs); 405f2783c15SPaul Mackerras #endif 406f2783c15SPaul Mackerras 407f2783c15SPaul Mackerras irq_enter(); 408f2783c15SPaul Mackerras 409f2783c15SPaul Mackerras profile_tick(CPU_PROFILING, regs); 410f2783c15SPaul Mackerras 411f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 412f2783c15SPaul Mackerras get_paca()->lppaca.int_dword.fields.decr_int = 0; 413f2783c15SPaul Mackerras #endif 414f2783c15SPaul Mackerras 415f2783c15SPaul Mackerras while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) 416f2783c15SPaul Mackerras >= tb_ticks_per_jiffy) { 417f2783c15SPaul Mackerras /* Update last_jiffy */ 418f2783c15SPaul Mackerras per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; 419f2783c15SPaul Mackerras /* Handle RTCL overflow on 601 */ 420f2783c15SPaul Mackerras if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) 421f2783c15SPaul Mackerras per_cpu(last_jiffy, cpu) -= 1000000000; 422f2783c15SPaul Mackerras 423f2783c15SPaul Mackerras /* 424f2783c15SPaul Mackerras * We cannot disable the decrementer, so in the period 425f2783c15SPaul Mackerras * between this cpu's being marked offline in cpu_online_map 426f2783c15SPaul Mackerras * and calling stop-self, it is taking timer interrupts. 427f2783c15SPaul Mackerras * Avoid calling into the scheduler rebalancing code if this 428f2783c15SPaul Mackerras * is the case. 429f2783c15SPaul Mackerras */ 430f2783c15SPaul Mackerras if (!cpu_is_offline(cpu)) 431f2783c15SPaul Mackerras update_process_times(user_mode(regs)); 432f2783c15SPaul Mackerras 433f2783c15SPaul Mackerras /* 434f2783c15SPaul Mackerras * No need to check whether cpu is offline here; boot_cpuid 435f2783c15SPaul Mackerras * should have been fixed up by now. 436f2783c15SPaul Mackerras */ 437f2783c15SPaul Mackerras if (cpu != boot_cpuid) 438f2783c15SPaul Mackerras continue; 439f2783c15SPaul Mackerras 440f2783c15SPaul Mackerras write_seqlock(&xtime_lock); 441*96c44507SPaul Mackerras tb_last_jiffy += tb_ticks_per_jiffy; 442*96c44507SPaul Mackerras tb_last_stamp = per_cpu(last_jiffy, cpu); 443*96c44507SPaul Mackerras timer_recalc_offset(tb_last_jiffy); 444f2783c15SPaul Mackerras do_timer(regs); 445*96c44507SPaul Mackerras timer_sync_xtime(tb_last_jiffy); 446f2783c15SPaul Mackerras timer_check_rtc(); 447f2783c15SPaul Mackerras write_sequnlock(&xtime_lock); 448f2783c15SPaul Mackerras if (adjusting_time && (time_adjust == 0)) 449f2783c15SPaul Mackerras ppc_adjtimex(); 450f2783c15SPaul Mackerras } 451f2783c15SPaul Mackerras 452f2783c15SPaul Mackerras next_dec = tb_ticks_per_jiffy - ticks; 453f2783c15SPaul Mackerras set_dec(next_dec); 454f2783c15SPaul Mackerras 455f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 456f2783c15SPaul Mackerras if (hvlpevent_is_pending()) 457f2783c15SPaul Mackerras process_hvlpevents(regs); 458f2783c15SPaul Mackerras #endif 459f2783c15SPaul Mackerras 460f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 461f2783c15SPaul Mackerras /* collect purr register values often, for accurate calculations */ 462f2783c15SPaul Mackerras if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 463f2783c15SPaul Mackerras struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 464f2783c15SPaul Mackerras cu->current_tb = mfspr(SPRN_PURR); 465f2783c15SPaul Mackerras } 466f2783c15SPaul Mackerras #endif 467f2783c15SPaul Mackerras 468f2783c15SPaul Mackerras irq_exit(); 469f2783c15SPaul Mackerras } 470f2783c15SPaul Mackerras 471f2783c15SPaul Mackerras void wakeup_decrementer(void) 472f2783c15SPaul Mackerras { 473f2783c15SPaul Mackerras int i; 474f2783c15SPaul Mackerras 475f2783c15SPaul Mackerras set_dec(tb_ticks_per_jiffy); 476f2783c15SPaul Mackerras /* 477f2783c15SPaul Mackerras * We don't expect this to be called on a machine with a 601, 478f2783c15SPaul Mackerras * so using get_tbl is fine. 479f2783c15SPaul Mackerras */ 480*96c44507SPaul Mackerras tb_last_stamp = tb_last_jiffy = get_tb(); 481f2783c15SPaul Mackerras for_each_cpu(i) 482f2783c15SPaul Mackerras per_cpu(last_jiffy, i) = tb_last_stamp; 483f2783c15SPaul Mackerras } 484f2783c15SPaul Mackerras 485a5b518edSPaul Mackerras #ifdef CONFIG_SMP 486f2783c15SPaul Mackerras void __init smp_space_timers(unsigned int max_cpus) 487f2783c15SPaul Mackerras { 488f2783c15SPaul Mackerras int i; 489f2783c15SPaul Mackerras unsigned long offset = tb_ticks_per_jiffy / max_cpus; 490f2783c15SPaul Mackerras unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); 491f2783c15SPaul Mackerras 492f2783c15SPaul Mackerras for_each_cpu(i) { 493f2783c15SPaul Mackerras if (i != boot_cpuid) { 494f2783c15SPaul Mackerras previous_tb += offset; 495f2783c15SPaul Mackerras per_cpu(last_jiffy, i) = previous_tb; 496f2783c15SPaul Mackerras } 497f2783c15SPaul Mackerras } 498f2783c15SPaul Mackerras } 499f2783c15SPaul Mackerras #endif 500f2783c15SPaul Mackerras 501f2783c15SPaul Mackerras /* 502f2783c15SPaul Mackerras * Scheduler clock - returns current time in nanosec units. 503f2783c15SPaul Mackerras * 504f2783c15SPaul Mackerras * Note: mulhdu(a, b) (multiply high double unsigned) returns 505f2783c15SPaul Mackerras * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 506f2783c15SPaul Mackerras * are 64-bit unsigned numbers. 507f2783c15SPaul Mackerras */ 508f2783c15SPaul Mackerras unsigned long long sched_clock(void) 509f2783c15SPaul Mackerras { 510*96c44507SPaul Mackerras if (__USE_RTC()) 511*96c44507SPaul Mackerras return get_rtc(); 512f2783c15SPaul Mackerras return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; 513f2783c15SPaul Mackerras } 514f2783c15SPaul Mackerras 515f2783c15SPaul Mackerras int do_settimeofday(struct timespec *tv) 516f2783c15SPaul Mackerras { 517f2783c15SPaul Mackerras time_t wtm_sec, new_sec = tv->tv_sec; 518f2783c15SPaul Mackerras long wtm_nsec, new_nsec = tv->tv_nsec; 519f2783c15SPaul Mackerras unsigned long flags; 520f2783c15SPaul Mackerras long int tb_delta; 521f2783c15SPaul Mackerras u64 new_xsec; 522f2783c15SPaul Mackerras 523f2783c15SPaul Mackerras if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 524f2783c15SPaul Mackerras return -EINVAL; 525f2783c15SPaul Mackerras 526f2783c15SPaul Mackerras write_seqlock_irqsave(&xtime_lock, flags); 527f2783c15SPaul Mackerras 528f2783c15SPaul Mackerras /* 529f2783c15SPaul Mackerras * Updating the RTC is not the job of this code. If the time is 530f2783c15SPaul Mackerras * stepped under NTP, the RTC will be updated after STA_UNSYNC 531f2783c15SPaul Mackerras * is cleared. Tools like clock/hwclock either copy the RTC 532f2783c15SPaul Mackerras * to the system time, in which case there is no point in writing 533f2783c15SPaul Mackerras * to the RTC again, or write to the RTC but then they don't call 534f2783c15SPaul Mackerras * settimeofday to perform this operation. 535f2783c15SPaul Mackerras */ 536f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 537f2783c15SPaul Mackerras if (first_settimeofday) { 538f2783c15SPaul Mackerras iSeries_tb_recal(); 539f2783c15SPaul Mackerras first_settimeofday = 0; 540f2783c15SPaul Mackerras } 541f2783c15SPaul Mackerras #endif 542f2783c15SPaul Mackerras tb_delta = tb_ticks_since(tb_last_stamp); 543f2783c15SPaul Mackerras tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; 544f2783c15SPaul Mackerras 545f2783c15SPaul Mackerras new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta); 546f2783c15SPaul Mackerras 547f2783c15SPaul Mackerras wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); 548f2783c15SPaul Mackerras wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); 549f2783c15SPaul Mackerras 550f2783c15SPaul Mackerras set_normalized_timespec(&xtime, new_sec, new_nsec); 551f2783c15SPaul Mackerras set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 552f2783c15SPaul Mackerras 553f2783c15SPaul Mackerras /* In case of a large backwards jump in time with NTP, we want the 554f2783c15SPaul Mackerras * clock to be updated as soon as the PLL is again in lock. 555f2783c15SPaul Mackerras */ 556f2783c15SPaul Mackerras last_rtc_update = new_sec - 658; 557f2783c15SPaul Mackerras 558f2783c15SPaul Mackerras ntp_clear(); 559f2783c15SPaul Mackerras 560f2783c15SPaul Mackerras new_xsec = (u64)new_nsec * XSEC_PER_SEC; 561f2783c15SPaul Mackerras do_div(new_xsec, NSEC_PER_SEC); 562f2783c15SPaul Mackerras new_xsec += (u64)new_sec * XSEC_PER_SEC; 563*96c44507SPaul Mackerras update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs); 564f2783c15SPaul Mackerras 565f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 566f2783c15SPaul Mackerras systemcfg->tz_minuteswest = sys_tz.tz_minuteswest; 567f2783c15SPaul Mackerras systemcfg->tz_dsttime = sys_tz.tz_dsttime; 568f2783c15SPaul Mackerras #endif 569f2783c15SPaul Mackerras 570f2783c15SPaul Mackerras write_sequnlock_irqrestore(&xtime_lock, flags); 571f2783c15SPaul Mackerras clock_was_set(); 572f2783c15SPaul Mackerras return 0; 573f2783c15SPaul Mackerras } 574f2783c15SPaul Mackerras 575f2783c15SPaul Mackerras EXPORT_SYMBOL(do_settimeofday); 576f2783c15SPaul Mackerras 577f2783c15SPaul Mackerras void __init generic_calibrate_decr(void) 578f2783c15SPaul Mackerras { 579f2783c15SPaul Mackerras struct device_node *cpu; 580f2783c15SPaul Mackerras unsigned int *fp; 581f2783c15SPaul Mackerras int node_found; 582f2783c15SPaul Mackerras 583f2783c15SPaul Mackerras /* 584f2783c15SPaul Mackerras * The cpu node should have a timebase-frequency property 585f2783c15SPaul Mackerras * to tell us the rate at which the decrementer counts. 586f2783c15SPaul Mackerras */ 587f2783c15SPaul Mackerras cpu = of_find_node_by_type(NULL, "cpu"); 588f2783c15SPaul Mackerras 589f2783c15SPaul Mackerras ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 590f2783c15SPaul Mackerras node_found = 0; 591f2783c15SPaul Mackerras if (cpu != 0) { 592f2783c15SPaul Mackerras fp = (unsigned int *)get_property(cpu, "timebase-frequency", 593f2783c15SPaul Mackerras NULL); 594f2783c15SPaul Mackerras if (fp != 0) { 595f2783c15SPaul Mackerras node_found = 1; 596f2783c15SPaul Mackerras ppc_tb_freq = *fp; 597f2783c15SPaul Mackerras } 598f2783c15SPaul Mackerras } 599f2783c15SPaul Mackerras if (!node_found) 600f2783c15SPaul Mackerras printk(KERN_ERR "WARNING: Estimating decrementer frequency " 601f2783c15SPaul Mackerras "(not found)\n"); 602f2783c15SPaul Mackerras 603f2783c15SPaul Mackerras ppc_proc_freq = DEFAULT_PROC_FREQ; 604f2783c15SPaul Mackerras node_found = 0; 605f2783c15SPaul Mackerras if (cpu != 0) { 606f2783c15SPaul Mackerras fp = (unsigned int *)get_property(cpu, "clock-frequency", 607f2783c15SPaul Mackerras NULL); 608f2783c15SPaul Mackerras if (fp != 0) { 609f2783c15SPaul Mackerras node_found = 1; 610f2783c15SPaul Mackerras ppc_proc_freq = *fp; 611f2783c15SPaul Mackerras } 612f2783c15SPaul Mackerras } 613f2783c15SPaul Mackerras if (!node_found) 614f2783c15SPaul Mackerras printk(KERN_ERR "WARNING: Estimating processor frequency " 615f2783c15SPaul Mackerras "(not found)\n"); 616f2783c15SPaul Mackerras 617f2783c15SPaul Mackerras of_node_put(cpu); 618f2783c15SPaul Mackerras } 619f2783c15SPaul Mackerras 620f2783c15SPaul Mackerras unsigned long get_boot_time(void) 621f2783c15SPaul Mackerras { 622f2783c15SPaul Mackerras struct rtc_time tm; 623f2783c15SPaul Mackerras 624f2783c15SPaul Mackerras if (ppc_md.get_boot_time) 625f2783c15SPaul Mackerras return ppc_md.get_boot_time(); 626f2783c15SPaul Mackerras if (!ppc_md.get_rtc_time) 627f2783c15SPaul Mackerras return 0; 628f2783c15SPaul Mackerras ppc_md.get_rtc_time(&tm); 629f2783c15SPaul Mackerras return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 630f2783c15SPaul Mackerras tm.tm_hour, tm.tm_min, tm.tm_sec); 631f2783c15SPaul Mackerras } 632f2783c15SPaul Mackerras 633f2783c15SPaul Mackerras /* This function is only called on the boot processor */ 634f2783c15SPaul Mackerras void __init time_init(void) 635f2783c15SPaul Mackerras { 636f2783c15SPaul Mackerras unsigned long flags; 637f2783c15SPaul Mackerras unsigned long tm = 0; 638f2783c15SPaul Mackerras struct div_result res; 639f2783c15SPaul Mackerras u64 scale; 640f2783c15SPaul Mackerras unsigned shift; 641f2783c15SPaul Mackerras 642f2783c15SPaul Mackerras if (ppc_md.time_init != NULL) 643f2783c15SPaul Mackerras timezone_offset = ppc_md.time_init(); 644f2783c15SPaul Mackerras 645*96c44507SPaul Mackerras if (__USE_RTC()) { 646*96c44507SPaul Mackerras /* 601 processor: dec counts down by 128 every 128ns */ 647*96c44507SPaul Mackerras ppc_tb_freq = 1000000000; 648*96c44507SPaul Mackerras tb_last_stamp = get_rtcl(); 649*96c44507SPaul Mackerras tb_last_jiffy = tb_last_stamp; 650*96c44507SPaul Mackerras } else { 651*96c44507SPaul Mackerras /* Normal PowerPC with timebase register */ 652f2783c15SPaul Mackerras ppc_md.calibrate_decr(); 653374e99d4SPaul Mackerras printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", 654374e99d4SPaul Mackerras ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 655374e99d4SPaul Mackerras printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n", 656374e99d4SPaul Mackerras ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 657*96c44507SPaul Mackerras tb_last_stamp = tb_last_jiffy = get_tb(); 658*96c44507SPaul Mackerras } 659374e99d4SPaul Mackerras 660374e99d4SPaul Mackerras tb_ticks_per_jiffy = ppc_tb_freq / HZ; 661374e99d4SPaul Mackerras tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; 662374e99d4SPaul Mackerras tb_ticks_per_usec = ppc_tb_freq / 1000000; 663374e99d4SPaul Mackerras tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 664374e99d4SPaul Mackerras div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res); 665374e99d4SPaul Mackerras tb_to_xs = res.result_low; 666374e99d4SPaul Mackerras 667f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 668f2783c15SPaul Mackerras get_paca()->default_decr = tb_ticks_per_jiffy; 669f2783c15SPaul Mackerras #endif 670f2783c15SPaul Mackerras 671f2783c15SPaul Mackerras /* 672f2783c15SPaul Mackerras * Compute scale factor for sched_clock. 673f2783c15SPaul Mackerras * The calibrate_decr() function has set tb_ticks_per_sec, 674f2783c15SPaul Mackerras * which is the timebase frequency. 675f2783c15SPaul Mackerras * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 676f2783c15SPaul Mackerras * the 128-bit result as a 64.64 fixed-point number. 677f2783c15SPaul Mackerras * We then shift that number right until it is less than 1.0, 678f2783c15SPaul Mackerras * giving us the scale factor and shift count to use in 679f2783c15SPaul Mackerras * sched_clock(). 680f2783c15SPaul Mackerras */ 681f2783c15SPaul Mackerras div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 682f2783c15SPaul Mackerras scale = res.result_low; 683f2783c15SPaul Mackerras for (shift = 0; res.result_high != 0; ++shift) { 684f2783c15SPaul Mackerras scale = (scale >> 1) | (res.result_high << 63); 685f2783c15SPaul Mackerras res.result_high >>= 1; 686f2783c15SPaul Mackerras } 687f2783c15SPaul Mackerras tb_to_ns_scale = scale; 688f2783c15SPaul Mackerras tb_to_ns_shift = shift; 689f2783c15SPaul Mackerras 690f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 691f2783c15SPaul Mackerras if (!piranha_simulator) 692f2783c15SPaul Mackerras #endif 693f2783c15SPaul Mackerras tm = get_boot_time(); 694f2783c15SPaul Mackerras 695f2783c15SPaul Mackerras write_seqlock_irqsave(&xtime_lock, flags); 696f2783c15SPaul Mackerras xtime.tv_sec = tm; 697f2783c15SPaul Mackerras xtime.tv_nsec = 0; 698f2783c15SPaul Mackerras do_gtod.varp = &do_gtod.vars[0]; 699f2783c15SPaul Mackerras do_gtod.var_idx = 0; 700*96c44507SPaul Mackerras do_gtod.varp->tb_orig_stamp = tb_last_jiffy; 701f2783c15SPaul Mackerras __get_cpu_var(last_jiffy) = tb_last_stamp; 702f2783c15SPaul Mackerras do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 703f2783c15SPaul Mackerras do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 704f2783c15SPaul Mackerras do_gtod.varp->tb_to_xs = tb_to_xs; 705f2783c15SPaul Mackerras do_gtod.tb_to_us = tb_to_us; 706f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 707*96c44507SPaul Mackerras systemcfg->tb_orig_stamp = tb_last_jiffy; 708f2783c15SPaul Mackerras systemcfg->tb_update_count = 0; 709f2783c15SPaul Mackerras systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; 710f2783c15SPaul Mackerras systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; 711f2783c15SPaul Mackerras systemcfg->tb_to_xs = tb_to_xs; 712f2783c15SPaul Mackerras #endif 713f2783c15SPaul Mackerras 714f2783c15SPaul Mackerras time_freq = 0; 715f2783c15SPaul Mackerras 716f2783c15SPaul Mackerras /* If platform provided a timezone (pmac), we correct the time */ 717f2783c15SPaul Mackerras if (timezone_offset) { 718f2783c15SPaul Mackerras sys_tz.tz_minuteswest = -timezone_offset / 60; 719f2783c15SPaul Mackerras sys_tz.tz_dsttime = 0; 720f2783c15SPaul Mackerras xtime.tv_sec -= timezone_offset; 721f2783c15SPaul Mackerras } 722f2783c15SPaul Mackerras 723f2783c15SPaul Mackerras last_rtc_update = xtime.tv_sec; 724f2783c15SPaul Mackerras set_normalized_timespec(&wall_to_monotonic, 725f2783c15SPaul Mackerras -xtime.tv_sec, -xtime.tv_nsec); 726f2783c15SPaul Mackerras write_sequnlock_irqrestore(&xtime_lock, flags); 727f2783c15SPaul Mackerras 728f2783c15SPaul Mackerras /* Not exact, but the timer interrupt takes care of this */ 729f2783c15SPaul Mackerras set_dec(tb_ticks_per_jiffy); 730f2783c15SPaul Mackerras } 731f2783c15SPaul Mackerras 732f2783c15SPaul Mackerras /* 733f2783c15SPaul Mackerras * After adjtimex is called, adjust the conversion of tb ticks 734f2783c15SPaul Mackerras * to microseconds to keep do_gettimeofday synchronized 735f2783c15SPaul Mackerras * with ntpd. 736f2783c15SPaul Mackerras * 737f2783c15SPaul Mackerras * Use the time_adjust, time_freq and time_offset computed by adjtimex to 738f2783c15SPaul Mackerras * adjust the frequency. 739f2783c15SPaul Mackerras */ 740f2783c15SPaul Mackerras 741f2783c15SPaul Mackerras /* #define DEBUG_PPC_ADJTIMEX 1 */ 742f2783c15SPaul Mackerras 743f2783c15SPaul Mackerras void ppc_adjtimex(void) 744f2783c15SPaul Mackerras { 745f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 746f2783c15SPaul Mackerras unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec, 747f2783c15SPaul Mackerras new_tb_to_xs, new_xsec, new_stamp_xsec; 748f2783c15SPaul Mackerras unsigned long tb_ticks_per_sec_delta; 749f2783c15SPaul Mackerras long delta_freq, ltemp; 750f2783c15SPaul Mackerras struct div_result divres; 751f2783c15SPaul Mackerras unsigned long flags; 752f2783c15SPaul Mackerras long singleshot_ppm = 0; 753f2783c15SPaul Mackerras 754f2783c15SPaul Mackerras /* 755f2783c15SPaul Mackerras * Compute parts per million frequency adjustment to 756f2783c15SPaul Mackerras * accomplish the time adjustment implied by time_offset to be 757f2783c15SPaul Mackerras * applied over the elapsed time indicated by time_constant. 758f2783c15SPaul Mackerras * Use SHIFT_USEC to get it into the same units as 759f2783c15SPaul Mackerras * time_freq. 760f2783c15SPaul Mackerras */ 761f2783c15SPaul Mackerras if ( time_offset < 0 ) { 762f2783c15SPaul Mackerras ltemp = -time_offset; 763f2783c15SPaul Mackerras ltemp <<= SHIFT_USEC - SHIFT_UPDATE; 764f2783c15SPaul Mackerras ltemp >>= SHIFT_KG + time_constant; 765f2783c15SPaul Mackerras ltemp = -ltemp; 766f2783c15SPaul Mackerras } else { 767f2783c15SPaul Mackerras ltemp = time_offset; 768f2783c15SPaul Mackerras ltemp <<= SHIFT_USEC - SHIFT_UPDATE; 769f2783c15SPaul Mackerras ltemp >>= SHIFT_KG + time_constant; 770f2783c15SPaul Mackerras } 771f2783c15SPaul Mackerras 772f2783c15SPaul Mackerras /* If there is a single shot time adjustment in progress */ 773f2783c15SPaul Mackerras if ( time_adjust ) { 774f2783c15SPaul Mackerras #ifdef DEBUG_PPC_ADJTIMEX 775f2783c15SPaul Mackerras printk("ppc_adjtimex: "); 776f2783c15SPaul Mackerras if ( adjusting_time == 0 ) 777f2783c15SPaul Mackerras printk("starting "); 778f2783c15SPaul Mackerras printk("single shot time_adjust = %ld\n", time_adjust); 779f2783c15SPaul Mackerras #endif 780f2783c15SPaul Mackerras 781f2783c15SPaul Mackerras adjusting_time = 1; 782f2783c15SPaul Mackerras 783f2783c15SPaul Mackerras /* 784f2783c15SPaul Mackerras * Compute parts per million frequency adjustment 785f2783c15SPaul Mackerras * to match time_adjust 786f2783c15SPaul Mackerras */ 787f2783c15SPaul Mackerras singleshot_ppm = tickadj * HZ; 788f2783c15SPaul Mackerras /* 789f2783c15SPaul Mackerras * The adjustment should be tickadj*HZ to match the code in 790f2783c15SPaul Mackerras * linux/kernel/timer.c, but experiments show that this is too 791f2783c15SPaul Mackerras * large. 3/4 of tickadj*HZ seems about right 792f2783c15SPaul Mackerras */ 793f2783c15SPaul Mackerras singleshot_ppm -= singleshot_ppm / 4; 794f2783c15SPaul Mackerras /* Use SHIFT_USEC to get it into the same units as time_freq */ 795f2783c15SPaul Mackerras singleshot_ppm <<= SHIFT_USEC; 796f2783c15SPaul Mackerras if ( time_adjust < 0 ) 797f2783c15SPaul Mackerras singleshot_ppm = -singleshot_ppm; 798f2783c15SPaul Mackerras } 799f2783c15SPaul Mackerras else { 800f2783c15SPaul Mackerras #ifdef DEBUG_PPC_ADJTIMEX 801f2783c15SPaul Mackerras if ( adjusting_time ) 802f2783c15SPaul Mackerras printk("ppc_adjtimex: ending single shot time_adjust\n"); 803f2783c15SPaul Mackerras #endif 804f2783c15SPaul Mackerras adjusting_time = 0; 805f2783c15SPaul Mackerras } 806f2783c15SPaul Mackerras 807f2783c15SPaul Mackerras /* Add up all of the frequency adjustments */ 808f2783c15SPaul Mackerras delta_freq = time_freq + ltemp + singleshot_ppm; 809f2783c15SPaul Mackerras 810f2783c15SPaul Mackerras /* 811f2783c15SPaul Mackerras * Compute a new value for tb_ticks_per_sec based on 812f2783c15SPaul Mackerras * the frequency adjustment 813f2783c15SPaul Mackerras */ 814f2783c15SPaul Mackerras den = 1000000 * (1 << (SHIFT_USEC - 8)); 815f2783c15SPaul Mackerras if ( delta_freq < 0 ) { 816f2783c15SPaul Mackerras tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den; 817f2783c15SPaul Mackerras new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta; 818f2783c15SPaul Mackerras } 819f2783c15SPaul Mackerras else { 820f2783c15SPaul Mackerras tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den; 821f2783c15SPaul Mackerras new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta; 822f2783c15SPaul Mackerras } 823f2783c15SPaul Mackerras 824f2783c15SPaul Mackerras #ifdef DEBUG_PPC_ADJTIMEX 825f2783c15SPaul Mackerras printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm); 826f2783c15SPaul Mackerras printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec); 827f2783c15SPaul Mackerras #endif 828f2783c15SPaul Mackerras 829f2783c15SPaul Mackerras /* 830f2783c15SPaul Mackerras * Compute a new value of tb_to_xs (used to convert tb to 831f2783c15SPaul Mackerras * microseconds) and a new value of stamp_xsec which is the 832f2783c15SPaul Mackerras * time (in 1/2^20 second units) corresponding to 833f2783c15SPaul Mackerras * tb_orig_stamp. This new value of stamp_xsec compensates 834f2783c15SPaul Mackerras * for the change in frequency (implied by the new tb_to_xs) 835f2783c15SPaul Mackerras * which guarantees that the current time remains the same. 836f2783c15SPaul Mackerras */ 837f2783c15SPaul Mackerras write_seqlock_irqsave( &xtime_lock, flags ); 838f2783c15SPaul Mackerras tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp; 839f2783c15SPaul Mackerras div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres); 840f2783c15SPaul Mackerras new_tb_to_xs = divres.result_low; 841f2783c15SPaul Mackerras new_xsec = mulhdu(tb_ticks, new_tb_to_xs); 842f2783c15SPaul Mackerras 843f2783c15SPaul Mackerras old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs); 844f2783c15SPaul Mackerras new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec; 845f2783c15SPaul Mackerras 846f2783c15SPaul Mackerras update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs); 847f2783c15SPaul Mackerras 848f2783c15SPaul Mackerras write_sequnlock_irqrestore( &xtime_lock, flags ); 849f2783c15SPaul Mackerras #endif /* CONFIG_PPC64 */ 850f2783c15SPaul Mackerras } 851f2783c15SPaul Mackerras 852f2783c15SPaul Mackerras 853f2783c15SPaul Mackerras #define FEBRUARY 2 854f2783c15SPaul Mackerras #define STARTOFTIME 1970 855f2783c15SPaul Mackerras #define SECDAY 86400L 856f2783c15SPaul Mackerras #define SECYR (SECDAY * 365) 857f2783c15SPaul Mackerras #define leapyear(year) ((year) % 4 == 0 && \ 858f2783c15SPaul Mackerras ((year) % 100 != 0 || (year) % 400 == 0)) 859f2783c15SPaul Mackerras #define days_in_year(a) (leapyear(a) ? 366 : 365) 860f2783c15SPaul Mackerras #define days_in_month(a) (month_days[(a) - 1]) 861f2783c15SPaul Mackerras 862f2783c15SPaul Mackerras static int month_days[12] = { 863f2783c15SPaul Mackerras 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 864f2783c15SPaul Mackerras }; 865f2783c15SPaul Mackerras 866f2783c15SPaul Mackerras /* 867f2783c15SPaul Mackerras * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 868f2783c15SPaul Mackerras */ 869f2783c15SPaul Mackerras void GregorianDay(struct rtc_time * tm) 870f2783c15SPaul Mackerras { 871f2783c15SPaul Mackerras int leapsToDate; 872f2783c15SPaul Mackerras int lastYear; 873f2783c15SPaul Mackerras int day; 874f2783c15SPaul Mackerras int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 875f2783c15SPaul Mackerras 876f2783c15SPaul Mackerras lastYear = tm->tm_year - 1; 877f2783c15SPaul Mackerras 878f2783c15SPaul Mackerras /* 879f2783c15SPaul Mackerras * Number of leap corrections to apply up to end of last year 880f2783c15SPaul Mackerras */ 881f2783c15SPaul Mackerras leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 882f2783c15SPaul Mackerras 883f2783c15SPaul Mackerras /* 884f2783c15SPaul Mackerras * This year is a leap year if it is divisible by 4 except when it is 885f2783c15SPaul Mackerras * divisible by 100 unless it is divisible by 400 886f2783c15SPaul Mackerras * 887f2783c15SPaul Mackerras * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 888f2783c15SPaul Mackerras */ 889f2783c15SPaul Mackerras day = tm->tm_mon > 2 && leapyear(tm->tm_year); 890f2783c15SPaul Mackerras 891f2783c15SPaul Mackerras day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 892f2783c15SPaul Mackerras tm->tm_mday; 893f2783c15SPaul Mackerras 894f2783c15SPaul Mackerras tm->tm_wday = day % 7; 895f2783c15SPaul Mackerras } 896f2783c15SPaul Mackerras 897f2783c15SPaul Mackerras void to_tm(int tim, struct rtc_time * tm) 898f2783c15SPaul Mackerras { 899f2783c15SPaul Mackerras register int i; 900f2783c15SPaul Mackerras register long hms, day; 901f2783c15SPaul Mackerras 902f2783c15SPaul Mackerras day = tim / SECDAY; 903f2783c15SPaul Mackerras hms = tim % SECDAY; 904f2783c15SPaul Mackerras 905f2783c15SPaul Mackerras /* Hours, minutes, seconds are easy */ 906f2783c15SPaul Mackerras tm->tm_hour = hms / 3600; 907f2783c15SPaul Mackerras tm->tm_min = (hms % 3600) / 60; 908f2783c15SPaul Mackerras tm->tm_sec = (hms % 3600) % 60; 909f2783c15SPaul Mackerras 910f2783c15SPaul Mackerras /* Number of years in days */ 911f2783c15SPaul Mackerras for (i = STARTOFTIME; day >= days_in_year(i); i++) 912f2783c15SPaul Mackerras day -= days_in_year(i); 913f2783c15SPaul Mackerras tm->tm_year = i; 914f2783c15SPaul Mackerras 915f2783c15SPaul Mackerras /* Number of months in days left */ 916f2783c15SPaul Mackerras if (leapyear(tm->tm_year)) 917f2783c15SPaul Mackerras days_in_month(FEBRUARY) = 29; 918f2783c15SPaul Mackerras for (i = 1; day >= days_in_month(i); i++) 919f2783c15SPaul Mackerras day -= days_in_month(i); 920f2783c15SPaul Mackerras days_in_month(FEBRUARY) = 28; 921f2783c15SPaul Mackerras tm->tm_mon = i; 922f2783c15SPaul Mackerras 923f2783c15SPaul Mackerras /* Days are what is left over (+1) from all that. */ 924f2783c15SPaul Mackerras tm->tm_mday = day + 1; 925f2783c15SPaul Mackerras 926f2783c15SPaul Mackerras /* 927f2783c15SPaul Mackerras * Determine the day of week 928f2783c15SPaul Mackerras */ 929f2783c15SPaul Mackerras GregorianDay(tm); 930f2783c15SPaul Mackerras } 931f2783c15SPaul Mackerras 932f2783c15SPaul Mackerras /* Auxiliary function to compute scaling factors */ 933f2783c15SPaul Mackerras /* Actually the choice of a timebase running at 1/4 the of the bus 934f2783c15SPaul Mackerras * frequency giving resolution of a few tens of nanoseconds is quite nice. 935f2783c15SPaul Mackerras * It makes this computation very precise (27-28 bits typically) which 936f2783c15SPaul Mackerras * is optimistic considering the stability of most processor clock 937f2783c15SPaul Mackerras * oscillators and the precision with which the timebase frequency 938f2783c15SPaul Mackerras * is measured but does not harm. 939f2783c15SPaul Mackerras */ 940f2783c15SPaul Mackerras unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 941f2783c15SPaul Mackerras { 942f2783c15SPaul Mackerras unsigned mlt=0, tmp, err; 943f2783c15SPaul Mackerras /* No concern for performance, it's done once: use a stupid 944f2783c15SPaul Mackerras * but safe and compact method to find the multiplier. 945f2783c15SPaul Mackerras */ 946f2783c15SPaul Mackerras 947f2783c15SPaul Mackerras for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 948f2783c15SPaul Mackerras if (mulhwu(inscale, mlt|tmp) < outscale) 949f2783c15SPaul Mackerras mlt |= tmp; 950f2783c15SPaul Mackerras } 951f2783c15SPaul Mackerras 952f2783c15SPaul Mackerras /* We might still be off by 1 for the best approximation. 953f2783c15SPaul Mackerras * A side effect of this is that if outscale is too large 954f2783c15SPaul Mackerras * the returned value will be zero. 955f2783c15SPaul Mackerras * Many corner cases have been checked and seem to work, 956f2783c15SPaul Mackerras * some might have been forgotten in the test however. 957f2783c15SPaul Mackerras */ 958f2783c15SPaul Mackerras 959f2783c15SPaul Mackerras err = inscale * (mlt+1); 960f2783c15SPaul Mackerras if (err <= inscale/2) 961f2783c15SPaul Mackerras mlt++; 962f2783c15SPaul Mackerras return mlt; 963f2783c15SPaul Mackerras } 964f2783c15SPaul Mackerras 965f2783c15SPaul Mackerras /* 966f2783c15SPaul Mackerras * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 967f2783c15SPaul Mackerras * result. 968f2783c15SPaul Mackerras */ 969f2783c15SPaul Mackerras void div128_by_32(u64 dividend_high, u64 dividend_low, 970f2783c15SPaul Mackerras unsigned divisor, struct div_result *dr) 971f2783c15SPaul Mackerras { 972f2783c15SPaul Mackerras unsigned long a, b, c, d; 973f2783c15SPaul Mackerras unsigned long w, x, y, z; 974f2783c15SPaul Mackerras u64 ra, rb, rc; 975f2783c15SPaul Mackerras 976f2783c15SPaul Mackerras a = dividend_high >> 32; 977f2783c15SPaul Mackerras b = dividend_high & 0xffffffff; 978f2783c15SPaul Mackerras c = dividend_low >> 32; 979f2783c15SPaul Mackerras d = dividend_low & 0xffffffff; 980f2783c15SPaul Mackerras 981f2783c15SPaul Mackerras w = a / divisor; 982f2783c15SPaul Mackerras ra = ((u64)(a - (w * divisor)) << 32) + b; 983f2783c15SPaul Mackerras 984f2783c15SPaul Mackerras rb = ((u64) do_div(ra, divisor) << 32) + c; 985f2783c15SPaul Mackerras x = ra; 986f2783c15SPaul Mackerras 987f2783c15SPaul Mackerras rc = ((u64) do_div(rb, divisor) << 32) + d; 988f2783c15SPaul Mackerras y = rb; 989f2783c15SPaul Mackerras 990f2783c15SPaul Mackerras do_div(rc, divisor); 991f2783c15SPaul Mackerras z = rc; 992f2783c15SPaul Mackerras 993f2783c15SPaul Mackerras dr->result_high = ((u64)w << 32) + x; 994f2783c15SPaul Mackerras dr->result_low = ((u64)y << 32) + z; 995f2783c15SPaul Mackerras 996f2783c15SPaul Mackerras } 997