1f2783c15SPaul Mackerras /* 2f2783c15SPaul Mackerras * Common time routines among all ppc machines. 3f2783c15SPaul Mackerras * 4f2783c15SPaul Mackerras * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5f2783c15SPaul Mackerras * Paul Mackerras' version and mine for PReP and Pmac. 6f2783c15SPaul Mackerras * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7f2783c15SPaul Mackerras * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8f2783c15SPaul Mackerras * 9f2783c15SPaul Mackerras * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10f2783c15SPaul Mackerras * to make clock more stable (2.4.0-test5). The only thing 11f2783c15SPaul Mackerras * that this code assumes is that the timebases have been synchronized 12f2783c15SPaul Mackerras * by firmware on SMP and are never stopped (never do sleep 13f2783c15SPaul Mackerras * on SMP then, nap and doze are OK). 14f2783c15SPaul Mackerras * 15f2783c15SPaul Mackerras * Speeded up do_gettimeofday by getting rid of references to 16f2783c15SPaul Mackerras * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17f2783c15SPaul Mackerras * 18f2783c15SPaul Mackerras * TODO (not necessarily in this file): 19f2783c15SPaul Mackerras * - improve precision and reproducibility of timebase frequency 20f2783c15SPaul Mackerras * measurement at boot time. (for iSeries, we calibrate the timebase 21f2783c15SPaul Mackerras * against the Titan chip's clock.) 22f2783c15SPaul Mackerras * - for astronomical applications: add a new function to get 23f2783c15SPaul Mackerras * non ambiguous timestamps even around leap seconds. This needs 24f2783c15SPaul Mackerras * a new timestamp format and a good name. 25f2783c15SPaul Mackerras * 26f2783c15SPaul Mackerras * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27f2783c15SPaul Mackerras * "A Kernel Model for Precision Timekeeping" by Dave Mills 28f2783c15SPaul Mackerras * 29f2783c15SPaul Mackerras * This program is free software; you can redistribute it and/or 30f2783c15SPaul Mackerras * modify it under the terms of the GNU General Public License 31f2783c15SPaul Mackerras * as published by the Free Software Foundation; either version 32f2783c15SPaul Mackerras * 2 of the License, or (at your option) any later version. 33f2783c15SPaul Mackerras */ 34f2783c15SPaul Mackerras 35f2783c15SPaul Mackerras #include <linux/config.h> 36f2783c15SPaul Mackerras #include <linux/errno.h> 37f2783c15SPaul Mackerras #include <linux/module.h> 38f2783c15SPaul Mackerras #include <linux/sched.h> 39f2783c15SPaul Mackerras #include <linux/kernel.h> 40f2783c15SPaul Mackerras #include <linux/param.h> 41f2783c15SPaul Mackerras #include <linux/string.h> 42f2783c15SPaul Mackerras #include <linux/mm.h> 43f2783c15SPaul Mackerras #include <linux/interrupt.h> 44f2783c15SPaul Mackerras #include <linux/timex.h> 45f2783c15SPaul Mackerras #include <linux/kernel_stat.h> 46f2783c15SPaul Mackerras #include <linux/time.h> 47f2783c15SPaul Mackerras #include <linux/init.h> 48f2783c15SPaul Mackerras #include <linux/profile.h> 49f2783c15SPaul Mackerras #include <linux/cpu.h> 50f2783c15SPaul Mackerras #include <linux/security.h> 51f2783c15SPaul Mackerras #include <linux/percpu.h> 52f2783c15SPaul Mackerras #include <linux/rtc.h> 53f2783c15SPaul Mackerras 54f2783c15SPaul Mackerras #include <asm/io.h> 55f2783c15SPaul Mackerras #include <asm/processor.h> 56f2783c15SPaul Mackerras #include <asm/nvram.h> 57f2783c15SPaul Mackerras #include <asm/cache.h> 58f2783c15SPaul Mackerras #include <asm/machdep.h> 59f2783c15SPaul Mackerras #include <asm/uaccess.h> 60f2783c15SPaul Mackerras #include <asm/time.h> 61f2783c15SPaul Mackerras #include <asm/prom.h> 62f2783c15SPaul Mackerras #include <asm/irq.h> 63f2783c15SPaul Mackerras #include <asm/div64.h> 64f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 65f2783c15SPaul Mackerras #include <asm/systemcfg.h> 66f2783c15SPaul Mackerras #include <asm/firmware.h> 67f2783c15SPaul Mackerras #endif 68f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 69f2783c15SPaul Mackerras #include <asm/iSeries/ItLpQueue.h> 70f2783c15SPaul Mackerras #include <asm/iSeries/HvCallXm.h> 71f2783c15SPaul Mackerras #endif 72f2783c15SPaul Mackerras 73f2783c15SPaul Mackerras u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; 74f2783c15SPaul Mackerras 75f2783c15SPaul Mackerras EXPORT_SYMBOL(jiffies_64); 76f2783c15SPaul Mackerras 77f2783c15SPaul Mackerras /* keep track of when we need to update the rtc */ 78f2783c15SPaul Mackerras time_t last_rtc_update; 79f2783c15SPaul Mackerras extern int piranha_simulator; 80f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 81f2783c15SPaul Mackerras unsigned long iSeries_recal_titan = 0; 82f2783c15SPaul Mackerras unsigned long iSeries_recal_tb = 0; 83f2783c15SPaul Mackerras static unsigned long first_settimeofday = 1; 84f2783c15SPaul Mackerras #endif 85f2783c15SPaul Mackerras 86f2783c15SPaul Mackerras /* The decrementer counts down by 128 every 128ns on a 601. */ 87f2783c15SPaul Mackerras #define DECREMENTER_COUNT_601 (1000000000 / HZ) 88f2783c15SPaul Mackerras 89f2783c15SPaul Mackerras #define XSEC_PER_SEC (1024*1024) 90f2783c15SPaul Mackerras 91f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 92f2783c15SPaul Mackerras #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 93f2783c15SPaul Mackerras #else 94f2783c15SPaul Mackerras /* compute ((xsec << 12) * max) >> 32 */ 95f2783c15SPaul Mackerras #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 96f2783c15SPaul Mackerras #endif 97f2783c15SPaul Mackerras 98f2783c15SPaul Mackerras unsigned long tb_ticks_per_jiffy; 99f2783c15SPaul Mackerras unsigned long tb_ticks_per_usec = 100; /* sane default */ 100f2783c15SPaul Mackerras EXPORT_SYMBOL(tb_ticks_per_usec); 101f2783c15SPaul Mackerras unsigned long tb_ticks_per_sec; 102f2783c15SPaul Mackerras u64 tb_to_xs; 103f2783c15SPaul Mackerras unsigned tb_to_us; 104f2783c15SPaul Mackerras unsigned long processor_freq; 105f2783c15SPaul Mackerras DEFINE_SPINLOCK(rtc_lock); 106f2783c15SPaul Mackerras EXPORT_SYMBOL_GPL(rtc_lock); 107f2783c15SPaul Mackerras 108f2783c15SPaul Mackerras u64 tb_to_ns_scale; 109f2783c15SPaul Mackerras unsigned tb_to_ns_shift; 110f2783c15SPaul Mackerras 111f2783c15SPaul Mackerras struct gettimeofday_struct do_gtod; 112f2783c15SPaul Mackerras 113f2783c15SPaul Mackerras extern unsigned long wall_jiffies; 114f2783c15SPaul Mackerras 115f2783c15SPaul Mackerras extern struct timezone sys_tz; 116f2783c15SPaul Mackerras static long timezone_offset; 117f2783c15SPaul Mackerras 118f2783c15SPaul Mackerras void ppc_adjtimex(void); 119f2783c15SPaul Mackerras 120f2783c15SPaul Mackerras static unsigned adjusting_time = 0; 121f2783c15SPaul Mackerras 122f2783c15SPaul Mackerras unsigned long ppc_proc_freq; 123f2783c15SPaul Mackerras unsigned long ppc_tb_freq; 124f2783c15SPaul Mackerras 125f2783c15SPaul Mackerras #ifdef CONFIG_PPC32 /* XXX for now */ 126f2783c15SPaul Mackerras #define boot_cpuid 0 127f2783c15SPaul Mackerras #endif 128f2783c15SPaul Mackerras 129f2783c15SPaul Mackerras static __inline__ void timer_check_rtc(void) 130f2783c15SPaul Mackerras { 131f2783c15SPaul Mackerras /* 132f2783c15SPaul Mackerras * update the rtc when needed, this should be performed on the 133f2783c15SPaul Mackerras * right fraction of a second. Half or full second ? 134f2783c15SPaul Mackerras * Full second works on mk48t59 clocks, others need testing. 135f2783c15SPaul Mackerras * Note that this update is basically only used through 136f2783c15SPaul Mackerras * the adjtimex system calls. Setting the HW clock in 137f2783c15SPaul Mackerras * any other way is a /dev/rtc and userland business. 138f2783c15SPaul Mackerras * This is still wrong by -0.5/+1.5 jiffies because of the 139f2783c15SPaul Mackerras * timer interrupt resolution and possible delay, but here we 140f2783c15SPaul Mackerras * hit a quantization limit which can only be solved by higher 141f2783c15SPaul Mackerras * resolution timers and decoupling time management from timer 142f2783c15SPaul Mackerras * interrupts. This is also wrong on the clocks 143f2783c15SPaul Mackerras * which require being written at the half second boundary. 144f2783c15SPaul Mackerras * We should have an rtc call that only sets the minutes and 145f2783c15SPaul Mackerras * seconds like on Intel to avoid problems with non UTC clocks. 146f2783c15SPaul Mackerras */ 147f2783c15SPaul Mackerras if (ntp_synced() && 148f2783c15SPaul Mackerras xtime.tv_sec - last_rtc_update >= 659 && 149f2783c15SPaul Mackerras abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ && 150f2783c15SPaul Mackerras jiffies - wall_jiffies == 1) { 151f2783c15SPaul Mackerras struct rtc_time tm; 152f2783c15SPaul Mackerras to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); 153f2783c15SPaul Mackerras tm.tm_year -= 1900; 154f2783c15SPaul Mackerras tm.tm_mon -= 1; 155f2783c15SPaul Mackerras if (ppc_md.set_rtc_time(&tm) == 0) 156f2783c15SPaul Mackerras last_rtc_update = xtime.tv_sec + 1; 157f2783c15SPaul Mackerras else 158f2783c15SPaul Mackerras /* Try again one minute later */ 159f2783c15SPaul Mackerras last_rtc_update += 60; 160f2783c15SPaul Mackerras } 161f2783c15SPaul Mackerras } 162f2783c15SPaul Mackerras 163f2783c15SPaul Mackerras /* 164f2783c15SPaul Mackerras * This version of gettimeofday has microsecond resolution. 165f2783c15SPaul Mackerras */ 166f2783c15SPaul Mackerras static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) 167f2783c15SPaul Mackerras { 168f2783c15SPaul Mackerras unsigned long sec, usec; 169f2783c15SPaul Mackerras u64 tb_ticks, xsec; 170f2783c15SPaul Mackerras struct gettimeofday_vars *temp_varp; 171f2783c15SPaul Mackerras u64 temp_tb_to_xs, temp_stamp_xsec; 172f2783c15SPaul Mackerras 173f2783c15SPaul Mackerras /* 174f2783c15SPaul Mackerras * These calculations are faster (gets rid of divides) 175f2783c15SPaul Mackerras * if done in units of 1/2^20 rather than microseconds. 176f2783c15SPaul Mackerras * The conversion to microseconds at the end is done 177f2783c15SPaul Mackerras * without a divide (and in fact, without a multiply) 178f2783c15SPaul Mackerras */ 179f2783c15SPaul Mackerras temp_varp = do_gtod.varp; 180f2783c15SPaul Mackerras tb_ticks = tb_val - temp_varp->tb_orig_stamp; 181f2783c15SPaul Mackerras temp_tb_to_xs = temp_varp->tb_to_xs; 182f2783c15SPaul Mackerras temp_stamp_xsec = temp_varp->stamp_xsec; 183f2783c15SPaul Mackerras xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); 184f2783c15SPaul Mackerras sec = xsec / XSEC_PER_SEC; 185f2783c15SPaul Mackerras usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); 186f2783c15SPaul Mackerras usec = SCALE_XSEC(usec, 1000000); 187f2783c15SPaul Mackerras 188f2783c15SPaul Mackerras tv->tv_sec = sec; 189f2783c15SPaul Mackerras tv->tv_usec = usec; 190f2783c15SPaul Mackerras } 191f2783c15SPaul Mackerras 192f2783c15SPaul Mackerras void do_gettimeofday(struct timeval *tv) 193f2783c15SPaul Mackerras { 194f2783c15SPaul Mackerras __do_gettimeofday(tv, get_tb()); 195f2783c15SPaul Mackerras } 196f2783c15SPaul Mackerras 197f2783c15SPaul Mackerras EXPORT_SYMBOL(do_gettimeofday); 198f2783c15SPaul Mackerras 199f2783c15SPaul Mackerras /* Synchronize xtime with do_gettimeofday */ 200f2783c15SPaul Mackerras 201f2783c15SPaul Mackerras static inline void timer_sync_xtime(unsigned long cur_tb) 202f2783c15SPaul Mackerras { 203f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 204f2783c15SPaul Mackerras /* why do we do this? */ 205f2783c15SPaul Mackerras struct timeval my_tv; 206f2783c15SPaul Mackerras 207f2783c15SPaul Mackerras __do_gettimeofday(&my_tv, cur_tb); 208f2783c15SPaul Mackerras 209f2783c15SPaul Mackerras if (xtime.tv_sec <= my_tv.tv_sec) { 210f2783c15SPaul Mackerras xtime.tv_sec = my_tv.tv_sec; 211f2783c15SPaul Mackerras xtime.tv_nsec = my_tv.tv_usec * 1000; 212f2783c15SPaul Mackerras } 213f2783c15SPaul Mackerras #endif 214f2783c15SPaul Mackerras } 215f2783c15SPaul Mackerras 216f2783c15SPaul Mackerras /* 217f2783c15SPaul Mackerras * There are two copies of tb_to_xs and stamp_xsec so that no 218f2783c15SPaul Mackerras * lock is needed to access and use these values in 219f2783c15SPaul Mackerras * do_gettimeofday. We alternate the copies and as long as a 220f2783c15SPaul Mackerras * reasonable time elapses between changes, there will never 221f2783c15SPaul Mackerras * be inconsistent values. ntpd has a minimum of one minute 222f2783c15SPaul Mackerras * between updates. 223f2783c15SPaul Mackerras */ 224f2783c15SPaul Mackerras static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 225f2783c15SPaul Mackerras unsigned int new_tb_to_xs) 226f2783c15SPaul Mackerras { 227f2783c15SPaul Mackerras unsigned temp_idx; 228f2783c15SPaul Mackerras struct gettimeofday_vars *temp_varp; 229f2783c15SPaul Mackerras 230f2783c15SPaul Mackerras temp_idx = (do_gtod.var_idx == 0); 231f2783c15SPaul Mackerras temp_varp = &do_gtod.vars[temp_idx]; 232f2783c15SPaul Mackerras 233f2783c15SPaul Mackerras temp_varp->tb_to_xs = new_tb_to_xs; 234f2783c15SPaul Mackerras temp_varp->tb_orig_stamp = new_tb_stamp; 235f2783c15SPaul Mackerras temp_varp->stamp_xsec = new_stamp_xsec; 236f2783c15SPaul Mackerras smp_mb(); 237f2783c15SPaul Mackerras do_gtod.varp = temp_varp; 238f2783c15SPaul Mackerras do_gtod.var_idx = temp_idx; 239f2783c15SPaul Mackerras 240f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 241f2783c15SPaul Mackerras /* 242f2783c15SPaul Mackerras * tb_update_count is used to allow the userspace gettimeofday code 243f2783c15SPaul Mackerras * to assure itself that it sees a consistent view of the tb_to_xs and 244f2783c15SPaul Mackerras * stamp_xsec variables. It reads the tb_update_count, then reads 245f2783c15SPaul Mackerras * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 246f2783c15SPaul Mackerras * the two values of tb_update_count match and are even then the 247f2783c15SPaul Mackerras * tb_to_xs and stamp_xsec values are consistent. If not, then it 248f2783c15SPaul Mackerras * loops back and reads them again until this criteria is met. 249f2783c15SPaul Mackerras */ 250f2783c15SPaul Mackerras ++(systemcfg->tb_update_count); 251f2783c15SPaul Mackerras smp_wmb(); 252f2783c15SPaul Mackerras systemcfg->tb_orig_stamp = new_tb_stamp; 253f2783c15SPaul Mackerras systemcfg->stamp_xsec = new_stamp_xsec; 254f2783c15SPaul Mackerras systemcfg->tb_to_xs = new_tb_to_xs; 255f2783c15SPaul Mackerras smp_wmb(); 256f2783c15SPaul Mackerras ++(systemcfg->tb_update_count); 257f2783c15SPaul Mackerras #endif 258f2783c15SPaul Mackerras } 259f2783c15SPaul Mackerras 260f2783c15SPaul Mackerras /* 261f2783c15SPaul Mackerras * When the timebase - tb_orig_stamp gets too big, we do a manipulation 262f2783c15SPaul Mackerras * between tb_orig_stamp and stamp_xsec. The goal here is to keep the 263f2783c15SPaul Mackerras * difference tb - tb_orig_stamp small enough to always fit inside a 264f2783c15SPaul Mackerras * 32 bits number. This is a requirement of our fast 32 bits userland 265f2783c15SPaul Mackerras * implementation in the vdso. If we "miss" a call to this function 266f2783c15SPaul Mackerras * (interrupt latency, CPU locked in a spinlock, ...) and we end up 267f2783c15SPaul Mackerras * with a too big difference, then the vdso will fallback to calling 268f2783c15SPaul Mackerras * the syscall 269f2783c15SPaul Mackerras */ 270f2783c15SPaul Mackerras static __inline__ void timer_recalc_offset(u64 cur_tb) 271f2783c15SPaul Mackerras { 272f2783c15SPaul Mackerras unsigned long offset; 273f2783c15SPaul Mackerras u64 new_stamp_xsec; 274f2783c15SPaul Mackerras 275f2783c15SPaul Mackerras offset = cur_tb - do_gtod.varp->tb_orig_stamp; 276f2783c15SPaul Mackerras if ((offset & 0x80000000u) == 0) 277f2783c15SPaul Mackerras return; 278f2783c15SPaul Mackerras new_stamp_xsec = do_gtod.varp->stamp_xsec 279f2783c15SPaul Mackerras + mulhdu(offset, do_gtod.varp->tb_to_xs); 280f2783c15SPaul Mackerras update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs); 281f2783c15SPaul Mackerras } 282f2783c15SPaul Mackerras 283f2783c15SPaul Mackerras #ifdef CONFIG_SMP 284f2783c15SPaul Mackerras unsigned long profile_pc(struct pt_regs *regs) 285f2783c15SPaul Mackerras { 286f2783c15SPaul Mackerras unsigned long pc = instruction_pointer(regs); 287f2783c15SPaul Mackerras 288f2783c15SPaul Mackerras if (in_lock_functions(pc)) 289f2783c15SPaul Mackerras return regs->link; 290f2783c15SPaul Mackerras 291f2783c15SPaul Mackerras return pc; 292f2783c15SPaul Mackerras } 293f2783c15SPaul Mackerras EXPORT_SYMBOL(profile_pc); 294f2783c15SPaul Mackerras #endif 295f2783c15SPaul Mackerras 296f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 297f2783c15SPaul Mackerras 298f2783c15SPaul Mackerras /* 299f2783c15SPaul Mackerras * This function recalibrates the timebase based on the 49-bit time-of-day 300f2783c15SPaul Mackerras * value in the Titan chip. The Titan is much more accurate than the value 301f2783c15SPaul Mackerras * returned by the service processor for the timebase frequency. 302f2783c15SPaul Mackerras */ 303f2783c15SPaul Mackerras 304f2783c15SPaul Mackerras static void iSeries_tb_recal(void) 305f2783c15SPaul Mackerras { 306f2783c15SPaul Mackerras struct div_result divres; 307f2783c15SPaul Mackerras unsigned long titan, tb; 308f2783c15SPaul Mackerras tb = get_tb(); 309f2783c15SPaul Mackerras titan = HvCallXm_loadTod(); 310f2783c15SPaul Mackerras if ( iSeries_recal_titan ) { 311f2783c15SPaul Mackerras unsigned long tb_ticks = tb - iSeries_recal_tb; 312f2783c15SPaul Mackerras unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 313f2783c15SPaul Mackerras unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 314f2783c15SPaul Mackerras unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 315f2783c15SPaul Mackerras long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 316f2783c15SPaul Mackerras char sign = '+'; 317f2783c15SPaul Mackerras /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 318f2783c15SPaul Mackerras new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 319f2783c15SPaul Mackerras 320f2783c15SPaul Mackerras if ( tick_diff < 0 ) { 321f2783c15SPaul Mackerras tick_diff = -tick_diff; 322f2783c15SPaul Mackerras sign = '-'; 323f2783c15SPaul Mackerras } 324f2783c15SPaul Mackerras if ( tick_diff ) { 325f2783c15SPaul Mackerras if ( tick_diff < tb_ticks_per_jiffy/25 ) { 326f2783c15SPaul Mackerras printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 327f2783c15SPaul Mackerras new_tb_ticks_per_jiffy, sign, tick_diff ); 328f2783c15SPaul Mackerras tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 329f2783c15SPaul Mackerras tb_ticks_per_sec = new_tb_ticks_per_sec; 330f2783c15SPaul Mackerras div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 331f2783c15SPaul Mackerras do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 332f2783c15SPaul Mackerras tb_to_xs = divres.result_low; 333f2783c15SPaul Mackerras do_gtod.varp->tb_to_xs = tb_to_xs; 334f2783c15SPaul Mackerras systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; 335f2783c15SPaul Mackerras systemcfg->tb_to_xs = tb_to_xs; 336f2783c15SPaul Mackerras } 337f2783c15SPaul Mackerras else { 338f2783c15SPaul Mackerras printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 339f2783c15SPaul Mackerras " new tb_ticks_per_jiffy = %lu\n" 340f2783c15SPaul Mackerras " old tb_ticks_per_jiffy = %lu\n", 341f2783c15SPaul Mackerras new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 342f2783c15SPaul Mackerras } 343f2783c15SPaul Mackerras } 344f2783c15SPaul Mackerras } 345f2783c15SPaul Mackerras iSeries_recal_titan = titan; 346f2783c15SPaul Mackerras iSeries_recal_tb = tb; 347f2783c15SPaul Mackerras } 348f2783c15SPaul Mackerras #endif 349f2783c15SPaul Mackerras 350f2783c15SPaul Mackerras /* 351f2783c15SPaul Mackerras * For iSeries shared processors, we have to let the hypervisor 352f2783c15SPaul Mackerras * set the hardware decrementer. We set a virtual decrementer 353f2783c15SPaul Mackerras * in the lppaca and call the hypervisor if the virtual 354f2783c15SPaul Mackerras * decrementer is less than the current value in the hardware 355f2783c15SPaul Mackerras * decrementer. (almost always the new decrementer value will 356f2783c15SPaul Mackerras * be greater than the current hardware decementer so the hypervisor 357f2783c15SPaul Mackerras * call will not be needed) 358f2783c15SPaul Mackerras */ 359f2783c15SPaul Mackerras 360f2783c15SPaul Mackerras u64 tb_last_stamp __cacheline_aligned_in_smp; 361f2783c15SPaul Mackerras 362f2783c15SPaul Mackerras /* 363f2783c15SPaul Mackerras * Note that on ppc32 this only stores the bottom 32 bits of 364f2783c15SPaul Mackerras * the timebase value, but that's enough to tell when a jiffy 365f2783c15SPaul Mackerras * has passed. 366f2783c15SPaul Mackerras */ 367f2783c15SPaul Mackerras DEFINE_PER_CPU(unsigned long, last_jiffy); 368f2783c15SPaul Mackerras 369f2783c15SPaul Mackerras /* 370f2783c15SPaul Mackerras * timer_interrupt - gets called when the decrementer overflows, 371f2783c15SPaul Mackerras * with interrupts disabled. 372f2783c15SPaul Mackerras */ 373f2783c15SPaul Mackerras void timer_interrupt(struct pt_regs * regs) 374f2783c15SPaul Mackerras { 375f2783c15SPaul Mackerras int next_dec; 376f2783c15SPaul Mackerras int cpu = smp_processor_id(); 377f2783c15SPaul Mackerras unsigned long ticks; 378f2783c15SPaul Mackerras 379f2783c15SPaul Mackerras #ifdef CONFIG_PPC32 380f2783c15SPaul Mackerras if (atomic_read(&ppc_n_lost_interrupts) != 0) 381f2783c15SPaul Mackerras do_IRQ(regs); 382f2783c15SPaul Mackerras #endif 383f2783c15SPaul Mackerras 384f2783c15SPaul Mackerras irq_enter(); 385f2783c15SPaul Mackerras 386f2783c15SPaul Mackerras profile_tick(CPU_PROFILING, regs); 387f2783c15SPaul Mackerras 388f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 389f2783c15SPaul Mackerras get_paca()->lppaca.int_dword.fields.decr_int = 0; 390f2783c15SPaul Mackerras #endif 391f2783c15SPaul Mackerras 392f2783c15SPaul Mackerras while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) 393f2783c15SPaul Mackerras >= tb_ticks_per_jiffy) { 394f2783c15SPaul Mackerras /* Update last_jiffy */ 395f2783c15SPaul Mackerras per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; 396f2783c15SPaul Mackerras /* Handle RTCL overflow on 601 */ 397f2783c15SPaul Mackerras if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) 398f2783c15SPaul Mackerras per_cpu(last_jiffy, cpu) -= 1000000000; 399f2783c15SPaul Mackerras 400f2783c15SPaul Mackerras /* 401f2783c15SPaul Mackerras * We cannot disable the decrementer, so in the period 402f2783c15SPaul Mackerras * between this cpu's being marked offline in cpu_online_map 403f2783c15SPaul Mackerras * and calling stop-self, it is taking timer interrupts. 404f2783c15SPaul Mackerras * Avoid calling into the scheduler rebalancing code if this 405f2783c15SPaul Mackerras * is the case. 406f2783c15SPaul Mackerras */ 407f2783c15SPaul Mackerras if (!cpu_is_offline(cpu)) 408f2783c15SPaul Mackerras update_process_times(user_mode(regs)); 409f2783c15SPaul Mackerras 410f2783c15SPaul Mackerras /* 411f2783c15SPaul Mackerras * No need to check whether cpu is offline here; boot_cpuid 412f2783c15SPaul Mackerras * should have been fixed up by now. 413f2783c15SPaul Mackerras */ 414f2783c15SPaul Mackerras if (cpu != boot_cpuid) 415f2783c15SPaul Mackerras continue; 416f2783c15SPaul Mackerras 417f2783c15SPaul Mackerras write_seqlock(&xtime_lock); 418f2783c15SPaul Mackerras tb_last_stamp += tb_ticks_per_jiffy; 419f2783c15SPaul Mackerras timer_recalc_offset(tb_last_stamp); 420f2783c15SPaul Mackerras do_timer(regs); 421f2783c15SPaul Mackerras timer_sync_xtime(tb_last_stamp); 422f2783c15SPaul Mackerras timer_check_rtc(); 423f2783c15SPaul Mackerras write_sequnlock(&xtime_lock); 424f2783c15SPaul Mackerras if (adjusting_time && (time_adjust == 0)) 425f2783c15SPaul Mackerras ppc_adjtimex(); 426f2783c15SPaul Mackerras } 427f2783c15SPaul Mackerras 428f2783c15SPaul Mackerras next_dec = tb_ticks_per_jiffy - ticks; 429f2783c15SPaul Mackerras set_dec(next_dec); 430f2783c15SPaul Mackerras 431f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 432f2783c15SPaul Mackerras if (hvlpevent_is_pending()) 433f2783c15SPaul Mackerras process_hvlpevents(regs); 434f2783c15SPaul Mackerras #endif 435f2783c15SPaul Mackerras 436f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 437f2783c15SPaul Mackerras /* collect purr register values often, for accurate calculations */ 438f2783c15SPaul Mackerras if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 439f2783c15SPaul Mackerras struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 440f2783c15SPaul Mackerras cu->current_tb = mfspr(SPRN_PURR); 441f2783c15SPaul Mackerras } 442f2783c15SPaul Mackerras #endif 443f2783c15SPaul Mackerras 444f2783c15SPaul Mackerras irq_exit(); 445f2783c15SPaul Mackerras } 446f2783c15SPaul Mackerras 447f2783c15SPaul Mackerras void wakeup_decrementer(void) 448f2783c15SPaul Mackerras { 449f2783c15SPaul Mackerras int i; 450f2783c15SPaul Mackerras 451f2783c15SPaul Mackerras set_dec(tb_ticks_per_jiffy); 452f2783c15SPaul Mackerras /* 453f2783c15SPaul Mackerras * We don't expect this to be called on a machine with a 601, 454f2783c15SPaul Mackerras * so using get_tbl is fine. 455f2783c15SPaul Mackerras */ 456f2783c15SPaul Mackerras tb_last_stamp = get_tb(); 457f2783c15SPaul Mackerras for_each_cpu(i) 458f2783c15SPaul Mackerras per_cpu(last_jiffy, i) = tb_last_stamp; 459f2783c15SPaul Mackerras } 460f2783c15SPaul Mackerras 461f2783c15SPaul Mackerras #ifdef CONFIG_SMPxxx 462f2783c15SPaul Mackerras void __init smp_space_timers(unsigned int max_cpus) 463f2783c15SPaul Mackerras { 464f2783c15SPaul Mackerras int i; 465f2783c15SPaul Mackerras unsigned long offset = tb_ticks_per_jiffy / max_cpus; 466f2783c15SPaul Mackerras unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); 467f2783c15SPaul Mackerras 468f2783c15SPaul Mackerras for_each_cpu(i) { 469f2783c15SPaul Mackerras if (i != boot_cpuid) { 470f2783c15SPaul Mackerras previous_tb += offset; 471f2783c15SPaul Mackerras per_cpu(last_jiffy, i) = previous_tb; 472f2783c15SPaul Mackerras } 473f2783c15SPaul Mackerras } 474f2783c15SPaul Mackerras } 475f2783c15SPaul Mackerras #endif 476f2783c15SPaul Mackerras 477f2783c15SPaul Mackerras /* 478f2783c15SPaul Mackerras * Scheduler clock - returns current time in nanosec units. 479f2783c15SPaul Mackerras * 480f2783c15SPaul Mackerras * Note: mulhdu(a, b) (multiply high double unsigned) returns 481f2783c15SPaul Mackerras * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 482f2783c15SPaul Mackerras * are 64-bit unsigned numbers. 483f2783c15SPaul Mackerras */ 484f2783c15SPaul Mackerras unsigned long long sched_clock(void) 485f2783c15SPaul Mackerras { 486f2783c15SPaul Mackerras return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; 487f2783c15SPaul Mackerras } 488f2783c15SPaul Mackerras 489f2783c15SPaul Mackerras int do_settimeofday(struct timespec *tv) 490f2783c15SPaul Mackerras { 491f2783c15SPaul Mackerras time_t wtm_sec, new_sec = tv->tv_sec; 492f2783c15SPaul Mackerras long wtm_nsec, new_nsec = tv->tv_nsec; 493f2783c15SPaul Mackerras unsigned long flags; 494f2783c15SPaul Mackerras long int tb_delta; 495f2783c15SPaul Mackerras u64 new_xsec; 496f2783c15SPaul Mackerras 497f2783c15SPaul Mackerras if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 498f2783c15SPaul Mackerras return -EINVAL; 499f2783c15SPaul Mackerras 500f2783c15SPaul Mackerras write_seqlock_irqsave(&xtime_lock, flags); 501f2783c15SPaul Mackerras 502f2783c15SPaul Mackerras /* 503f2783c15SPaul Mackerras * Updating the RTC is not the job of this code. If the time is 504f2783c15SPaul Mackerras * stepped under NTP, the RTC will be updated after STA_UNSYNC 505f2783c15SPaul Mackerras * is cleared. Tools like clock/hwclock either copy the RTC 506f2783c15SPaul Mackerras * to the system time, in which case there is no point in writing 507f2783c15SPaul Mackerras * to the RTC again, or write to the RTC but then they don't call 508f2783c15SPaul Mackerras * settimeofday to perform this operation. 509f2783c15SPaul Mackerras */ 510f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 511f2783c15SPaul Mackerras if (first_settimeofday) { 512f2783c15SPaul Mackerras iSeries_tb_recal(); 513f2783c15SPaul Mackerras first_settimeofday = 0; 514f2783c15SPaul Mackerras } 515f2783c15SPaul Mackerras #endif 516f2783c15SPaul Mackerras tb_delta = tb_ticks_since(tb_last_stamp); 517f2783c15SPaul Mackerras tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; 518f2783c15SPaul Mackerras 519f2783c15SPaul Mackerras new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta); 520f2783c15SPaul Mackerras 521f2783c15SPaul Mackerras wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); 522f2783c15SPaul Mackerras wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); 523f2783c15SPaul Mackerras 524f2783c15SPaul Mackerras set_normalized_timespec(&xtime, new_sec, new_nsec); 525f2783c15SPaul Mackerras set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 526f2783c15SPaul Mackerras 527f2783c15SPaul Mackerras /* In case of a large backwards jump in time with NTP, we want the 528f2783c15SPaul Mackerras * clock to be updated as soon as the PLL is again in lock. 529f2783c15SPaul Mackerras */ 530f2783c15SPaul Mackerras last_rtc_update = new_sec - 658; 531f2783c15SPaul Mackerras 532f2783c15SPaul Mackerras ntp_clear(); 533f2783c15SPaul Mackerras 534f2783c15SPaul Mackerras new_xsec = (u64)new_nsec * XSEC_PER_SEC; 535f2783c15SPaul Mackerras do_div(new_xsec, NSEC_PER_SEC); 536f2783c15SPaul Mackerras new_xsec += (u64)new_sec * XSEC_PER_SEC; 537f2783c15SPaul Mackerras update_gtod(tb_last_stamp, new_xsec, do_gtod.varp->tb_to_xs); 538f2783c15SPaul Mackerras 539f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 540f2783c15SPaul Mackerras systemcfg->tz_minuteswest = sys_tz.tz_minuteswest; 541f2783c15SPaul Mackerras systemcfg->tz_dsttime = sys_tz.tz_dsttime; 542f2783c15SPaul Mackerras #endif 543f2783c15SPaul Mackerras 544f2783c15SPaul Mackerras write_sequnlock_irqrestore(&xtime_lock, flags); 545f2783c15SPaul Mackerras clock_was_set(); 546f2783c15SPaul Mackerras return 0; 547f2783c15SPaul Mackerras } 548f2783c15SPaul Mackerras 549f2783c15SPaul Mackerras EXPORT_SYMBOL(do_settimeofday); 550f2783c15SPaul Mackerras 551f2783c15SPaul Mackerras void __init generic_calibrate_decr(void) 552f2783c15SPaul Mackerras { 553f2783c15SPaul Mackerras struct device_node *cpu; 554f2783c15SPaul Mackerras unsigned int *fp; 555f2783c15SPaul Mackerras int node_found; 556f2783c15SPaul Mackerras 557f2783c15SPaul Mackerras /* 558f2783c15SPaul Mackerras * The cpu node should have a timebase-frequency property 559f2783c15SPaul Mackerras * to tell us the rate at which the decrementer counts. 560f2783c15SPaul Mackerras */ 561f2783c15SPaul Mackerras cpu = of_find_node_by_type(NULL, "cpu"); 562f2783c15SPaul Mackerras 563f2783c15SPaul Mackerras ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 564f2783c15SPaul Mackerras node_found = 0; 565f2783c15SPaul Mackerras if (cpu != 0) { 566f2783c15SPaul Mackerras fp = (unsigned int *)get_property(cpu, "timebase-frequency", 567f2783c15SPaul Mackerras NULL); 568f2783c15SPaul Mackerras if (fp != 0) { 569f2783c15SPaul Mackerras node_found = 1; 570f2783c15SPaul Mackerras ppc_tb_freq = *fp; 571f2783c15SPaul Mackerras } 572f2783c15SPaul Mackerras } 573f2783c15SPaul Mackerras if (!node_found) 574f2783c15SPaul Mackerras printk(KERN_ERR "WARNING: Estimating decrementer frequency " 575f2783c15SPaul Mackerras "(not found)\n"); 576f2783c15SPaul Mackerras 577f2783c15SPaul Mackerras ppc_proc_freq = DEFAULT_PROC_FREQ; 578f2783c15SPaul Mackerras node_found = 0; 579f2783c15SPaul Mackerras if (cpu != 0) { 580f2783c15SPaul Mackerras fp = (unsigned int *)get_property(cpu, "clock-frequency", 581f2783c15SPaul Mackerras NULL); 582f2783c15SPaul Mackerras if (fp != 0) { 583f2783c15SPaul Mackerras node_found = 1; 584f2783c15SPaul Mackerras ppc_proc_freq = *fp; 585f2783c15SPaul Mackerras } 586f2783c15SPaul Mackerras } 587f2783c15SPaul Mackerras if (!node_found) 588f2783c15SPaul Mackerras printk(KERN_ERR "WARNING: Estimating processor frequency " 589f2783c15SPaul Mackerras "(not found)\n"); 590f2783c15SPaul Mackerras 591f2783c15SPaul Mackerras of_node_put(cpu); 592f2783c15SPaul Mackerras } 593f2783c15SPaul Mackerras 594f2783c15SPaul Mackerras unsigned long get_boot_time(void) 595f2783c15SPaul Mackerras { 596f2783c15SPaul Mackerras struct rtc_time tm; 597f2783c15SPaul Mackerras 598f2783c15SPaul Mackerras if (ppc_md.get_boot_time) 599f2783c15SPaul Mackerras return ppc_md.get_boot_time(); 600f2783c15SPaul Mackerras if (!ppc_md.get_rtc_time) 601f2783c15SPaul Mackerras return 0; 602f2783c15SPaul Mackerras ppc_md.get_rtc_time(&tm); 603f2783c15SPaul Mackerras return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 604f2783c15SPaul Mackerras tm.tm_hour, tm.tm_min, tm.tm_sec); 605f2783c15SPaul Mackerras } 606f2783c15SPaul Mackerras 607f2783c15SPaul Mackerras /* This function is only called on the boot processor */ 608f2783c15SPaul Mackerras void __init time_init(void) 609f2783c15SPaul Mackerras { 610f2783c15SPaul Mackerras unsigned long flags; 611f2783c15SPaul Mackerras unsigned long tm = 0; 612f2783c15SPaul Mackerras struct div_result res; 613f2783c15SPaul Mackerras u64 scale; 614f2783c15SPaul Mackerras unsigned shift; 615f2783c15SPaul Mackerras 616f2783c15SPaul Mackerras if (ppc_md.time_init != NULL) 617f2783c15SPaul Mackerras timezone_offset = ppc_md.time_init(); 618f2783c15SPaul Mackerras 619f2783c15SPaul Mackerras ppc_md.calibrate_decr(); 620f2783c15SPaul Mackerras 621*374e99d4SPaul Mackerras printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", 622*374e99d4SPaul Mackerras ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 623*374e99d4SPaul Mackerras printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n", 624*374e99d4SPaul Mackerras ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 625*374e99d4SPaul Mackerras 626*374e99d4SPaul Mackerras tb_ticks_per_jiffy = ppc_tb_freq / HZ; 627*374e99d4SPaul Mackerras tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; 628*374e99d4SPaul Mackerras tb_ticks_per_usec = ppc_tb_freq / 1000000; 629*374e99d4SPaul Mackerras tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 630*374e99d4SPaul Mackerras div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res); 631*374e99d4SPaul Mackerras tb_to_xs = res.result_low; 632*374e99d4SPaul Mackerras 633f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 634f2783c15SPaul Mackerras get_paca()->default_decr = tb_ticks_per_jiffy; 635f2783c15SPaul Mackerras #endif 636f2783c15SPaul Mackerras 637f2783c15SPaul Mackerras /* 638f2783c15SPaul Mackerras * Compute scale factor for sched_clock. 639f2783c15SPaul Mackerras * The calibrate_decr() function has set tb_ticks_per_sec, 640f2783c15SPaul Mackerras * which is the timebase frequency. 641f2783c15SPaul Mackerras * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 642f2783c15SPaul Mackerras * the 128-bit result as a 64.64 fixed-point number. 643f2783c15SPaul Mackerras * We then shift that number right until it is less than 1.0, 644f2783c15SPaul Mackerras * giving us the scale factor and shift count to use in 645f2783c15SPaul Mackerras * sched_clock(). 646f2783c15SPaul Mackerras */ 647f2783c15SPaul Mackerras div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 648f2783c15SPaul Mackerras scale = res.result_low; 649f2783c15SPaul Mackerras for (shift = 0; res.result_high != 0; ++shift) { 650f2783c15SPaul Mackerras scale = (scale >> 1) | (res.result_high << 63); 651f2783c15SPaul Mackerras res.result_high >>= 1; 652f2783c15SPaul Mackerras } 653f2783c15SPaul Mackerras tb_to_ns_scale = scale; 654f2783c15SPaul Mackerras tb_to_ns_shift = shift; 655f2783c15SPaul Mackerras 656f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 657f2783c15SPaul Mackerras if (!piranha_simulator) 658f2783c15SPaul Mackerras #endif 659f2783c15SPaul Mackerras tm = get_boot_time(); 660f2783c15SPaul Mackerras 661f2783c15SPaul Mackerras write_seqlock_irqsave(&xtime_lock, flags); 662f2783c15SPaul Mackerras xtime.tv_sec = tm; 663f2783c15SPaul Mackerras xtime.tv_nsec = 0; 664f2783c15SPaul Mackerras tb_last_stamp = get_tb(); 665f2783c15SPaul Mackerras do_gtod.varp = &do_gtod.vars[0]; 666f2783c15SPaul Mackerras do_gtod.var_idx = 0; 667f2783c15SPaul Mackerras do_gtod.varp->tb_orig_stamp = tb_last_stamp; 668f2783c15SPaul Mackerras __get_cpu_var(last_jiffy) = tb_last_stamp; 669f2783c15SPaul Mackerras do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 670f2783c15SPaul Mackerras do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 671f2783c15SPaul Mackerras do_gtod.varp->tb_to_xs = tb_to_xs; 672f2783c15SPaul Mackerras do_gtod.tb_to_us = tb_to_us; 673f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 674f2783c15SPaul Mackerras systemcfg->tb_orig_stamp = tb_last_stamp; 675f2783c15SPaul Mackerras systemcfg->tb_update_count = 0; 676f2783c15SPaul Mackerras systemcfg->tb_ticks_per_sec = tb_ticks_per_sec; 677f2783c15SPaul Mackerras systemcfg->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; 678f2783c15SPaul Mackerras systemcfg->tb_to_xs = tb_to_xs; 679f2783c15SPaul Mackerras #endif 680f2783c15SPaul Mackerras 681f2783c15SPaul Mackerras time_freq = 0; 682f2783c15SPaul Mackerras 683f2783c15SPaul Mackerras /* If platform provided a timezone (pmac), we correct the time */ 684f2783c15SPaul Mackerras if (timezone_offset) { 685f2783c15SPaul Mackerras sys_tz.tz_minuteswest = -timezone_offset / 60; 686f2783c15SPaul Mackerras sys_tz.tz_dsttime = 0; 687f2783c15SPaul Mackerras xtime.tv_sec -= timezone_offset; 688f2783c15SPaul Mackerras } 689f2783c15SPaul Mackerras 690f2783c15SPaul Mackerras last_rtc_update = xtime.tv_sec; 691f2783c15SPaul Mackerras set_normalized_timespec(&wall_to_monotonic, 692f2783c15SPaul Mackerras -xtime.tv_sec, -xtime.tv_nsec); 693f2783c15SPaul Mackerras write_sequnlock_irqrestore(&xtime_lock, flags); 694f2783c15SPaul Mackerras 695f2783c15SPaul Mackerras /* Not exact, but the timer interrupt takes care of this */ 696f2783c15SPaul Mackerras set_dec(tb_ticks_per_jiffy); 697f2783c15SPaul Mackerras } 698f2783c15SPaul Mackerras 699f2783c15SPaul Mackerras /* 700f2783c15SPaul Mackerras * After adjtimex is called, adjust the conversion of tb ticks 701f2783c15SPaul Mackerras * to microseconds to keep do_gettimeofday synchronized 702f2783c15SPaul Mackerras * with ntpd. 703f2783c15SPaul Mackerras * 704f2783c15SPaul Mackerras * Use the time_adjust, time_freq and time_offset computed by adjtimex to 705f2783c15SPaul Mackerras * adjust the frequency. 706f2783c15SPaul Mackerras */ 707f2783c15SPaul Mackerras 708f2783c15SPaul Mackerras /* #define DEBUG_PPC_ADJTIMEX 1 */ 709f2783c15SPaul Mackerras 710f2783c15SPaul Mackerras void ppc_adjtimex(void) 711f2783c15SPaul Mackerras { 712f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 713f2783c15SPaul Mackerras unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec, 714f2783c15SPaul Mackerras new_tb_to_xs, new_xsec, new_stamp_xsec; 715f2783c15SPaul Mackerras unsigned long tb_ticks_per_sec_delta; 716f2783c15SPaul Mackerras long delta_freq, ltemp; 717f2783c15SPaul Mackerras struct div_result divres; 718f2783c15SPaul Mackerras unsigned long flags; 719f2783c15SPaul Mackerras long singleshot_ppm = 0; 720f2783c15SPaul Mackerras 721f2783c15SPaul Mackerras /* 722f2783c15SPaul Mackerras * Compute parts per million frequency adjustment to 723f2783c15SPaul Mackerras * accomplish the time adjustment implied by time_offset to be 724f2783c15SPaul Mackerras * applied over the elapsed time indicated by time_constant. 725f2783c15SPaul Mackerras * Use SHIFT_USEC to get it into the same units as 726f2783c15SPaul Mackerras * time_freq. 727f2783c15SPaul Mackerras */ 728f2783c15SPaul Mackerras if ( time_offset < 0 ) { 729f2783c15SPaul Mackerras ltemp = -time_offset; 730f2783c15SPaul Mackerras ltemp <<= SHIFT_USEC - SHIFT_UPDATE; 731f2783c15SPaul Mackerras ltemp >>= SHIFT_KG + time_constant; 732f2783c15SPaul Mackerras ltemp = -ltemp; 733f2783c15SPaul Mackerras } else { 734f2783c15SPaul Mackerras ltemp = time_offset; 735f2783c15SPaul Mackerras ltemp <<= SHIFT_USEC - SHIFT_UPDATE; 736f2783c15SPaul Mackerras ltemp >>= SHIFT_KG + time_constant; 737f2783c15SPaul Mackerras } 738f2783c15SPaul Mackerras 739f2783c15SPaul Mackerras /* If there is a single shot time adjustment in progress */ 740f2783c15SPaul Mackerras if ( time_adjust ) { 741f2783c15SPaul Mackerras #ifdef DEBUG_PPC_ADJTIMEX 742f2783c15SPaul Mackerras printk("ppc_adjtimex: "); 743f2783c15SPaul Mackerras if ( adjusting_time == 0 ) 744f2783c15SPaul Mackerras printk("starting "); 745f2783c15SPaul Mackerras printk("single shot time_adjust = %ld\n", time_adjust); 746f2783c15SPaul Mackerras #endif 747f2783c15SPaul Mackerras 748f2783c15SPaul Mackerras adjusting_time = 1; 749f2783c15SPaul Mackerras 750f2783c15SPaul Mackerras /* 751f2783c15SPaul Mackerras * Compute parts per million frequency adjustment 752f2783c15SPaul Mackerras * to match time_adjust 753f2783c15SPaul Mackerras */ 754f2783c15SPaul Mackerras singleshot_ppm = tickadj * HZ; 755f2783c15SPaul Mackerras /* 756f2783c15SPaul Mackerras * The adjustment should be tickadj*HZ to match the code in 757f2783c15SPaul Mackerras * linux/kernel/timer.c, but experiments show that this is too 758f2783c15SPaul Mackerras * large. 3/4 of tickadj*HZ seems about right 759f2783c15SPaul Mackerras */ 760f2783c15SPaul Mackerras singleshot_ppm -= singleshot_ppm / 4; 761f2783c15SPaul Mackerras /* Use SHIFT_USEC to get it into the same units as time_freq */ 762f2783c15SPaul Mackerras singleshot_ppm <<= SHIFT_USEC; 763f2783c15SPaul Mackerras if ( time_adjust < 0 ) 764f2783c15SPaul Mackerras singleshot_ppm = -singleshot_ppm; 765f2783c15SPaul Mackerras } 766f2783c15SPaul Mackerras else { 767f2783c15SPaul Mackerras #ifdef DEBUG_PPC_ADJTIMEX 768f2783c15SPaul Mackerras if ( adjusting_time ) 769f2783c15SPaul Mackerras printk("ppc_adjtimex: ending single shot time_adjust\n"); 770f2783c15SPaul Mackerras #endif 771f2783c15SPaul Mackerras adjusting_time = 0; 772f2783c15SPaul Mackerras } 773f2783c15SPaul Mackerras 774f2783c15SPaul Mackerras /* Add up all of the frequency adjustments */ 775f2783c15SPaul Mackerras delta_freq = time_freq + ltemp + singleshot_ppm; 776f2783c15SPaul Mackerras 777f2783c15SPaul Mackerras /* 778f2783c15SPaul Mackerras * Compute a new value for tb_ticks_per_sec based on 779f2783c15SPaul Mackerras * the frequency adjustment 780f2783c15SPaul Mackerras */ 781f2783c15SPaul Mackerras den = 1000000 * (1 << (SHIFT_USEC - 8)); 782f2783c15SPaul Mackerras if ( delta_freq < 0 ) { 783f2783c15SPaul Mackerras tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den; 784f2783c15SPaul Mackerras new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta; 785f2783c15SPaul Mackerras } 786f2783c15SPaul Mackerras else { 787f2783c15SPaul Mackerras tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den; 788f2783c15SPaul Mackerras new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta; 789f2783c15SPaul Mackerras } 790f2783c15SPaul Mackerras 791f2783c15SPaul Mackerras #ifdef DEBUG_PPC_ADJTIMEX 792f2783c15SPaul Mackerras printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm); 793f2783c15SPaul Mackerras printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec); 794f2783c15SPaul Mackerras #endif 795f2783c15SPaul Mackerras 796f2783c15SPaul Mackerras /* 797f2783c15SPaul Mackerras * Compute a new value of tb_to_xs (used to convert tb to 798f2783c15SPaul Mackerras * microseconds) and a new value of stamp_xsec which is the 799f2783c15SPaul Mackerras * time (in 1/2^20 second units) corresponding to 800f2783c15SPaul Mackerras * tb_orig_stamp. This new value of stamp_xsec compensates 801f2783c15SPaul Mackerras * for the change in frequency (implied by the new tb_to_xs) 802f2783c15SPaul Mackerras * which guarantees that the current time remains the same. 803f2783c15SPaul Mackerras */ 804f2783c15SPaul Mackerras write_seqlock_irqsave( &xtime_lock, flags ); 805f2783c15SPaul Mackerras tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp; 806f2783c15SPaul Mackerras div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres); 807f2783c15SPaul Mackerras new_tb_to_xs = divres.result_low; 808f2783c15SPaul Mackerras new_xsec = mulhdu(tb_ticks, new_tb_to_xs); 809f2783c15SPaul Mackerras 810f2783c15SPaul Mackerras old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs); 811f2783c15SPaul Mackerras new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec; 812f2783c15SPaul Mackerras 813f2783c15SPaul Mackerras update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs); 814f2783c15SPaul Mackerras 815f2783c15SPaul Mackerras write_sequnlock_irqrestore( &xtime_lock, flags ); 816f2783c15SPaul Mackerras #endif /* CONFIG_PPC64 */ 817f2783c15SPaul Mackerras } 818f2783c15SPaul Mackerras 819f2783c15SPaul Mackerras 820f2783c15SPaul Mackerras #define FEBRUARY 2 821f2783c15SPaul Mackerras #define STARTOFTIME 1970 822f2783c15SPaul Mackerras #define SECDAY 86400L 823f2783c15SPaul Mackerras #define SECYR (SECDAY * 365) 824f2783c15SPaul Mackerras #define leapyear(year) ((year) % 4 == 0 && \ 825f2783c15SPaul Mackerras ((year) % 100 != 0 || (year) % 400 == 0)) 826f2783c15SPaul Mackerras #define days_in_year(a) (leapyear(a) ? 366 : 365) 827f2783c15SPaul Mackerras #define days_in_month(a) (month_days[(a) - 1]) 828f2783c15SPaul Mackerras 829f2783c15SPaul Mackerras static int month_days[12] = { 830f2783c15SPaul Mackerras 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 831f2783c15SPaul Mackerras }; 832f2783c15SPaul Mackerras 833f2783c15SPaul Mackerras /* 834f2783c15SPaul Mackerras * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 835f2783c15SPaul Mackerras */ 836f2783c15SPaul Mackerras void GregorianDay(struct rtc_time * tm) 837f2783c15SPaul Mackerras { 838f2783c15SPaul Mackerras int leapsToDate; 839f2783c15SPaul Mackerras int lastYear; 840f2783c15SPaul Mackerras int day; 841f2783c15SPaul Mackerras int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 842f2783c15SPaul Mackerras 843f2783c15SPaul Mackerras lastYear = tm->tm_year - 1; 844f2783c15SPaul Mackerras 845f2783c15SPaul Mackerras /* 846f2783c15SPaul Mackerras * Number of leap corrections to apply up to end of last year 847f2783c15SPaul Mackerras */ 848f2783c15SPaul Mackerras leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 849f2783c15SPaul Mackerras 850f2783c15SPaul Mackerras /* 851f2783c15SPaul Mackerras * This year is a leap year if it is divisible by 4 except when it is 852f2783c15SPaul Mackerras * divisible by 100 unless it is divisible by 400 853f2783c15SPaul Mackerras * 854f2783c15SPaul Mackerras * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 855f2783c15SPaul Mackerras */ 856f2783c15SPaul Mackerras day = tm->tm_mon > 2 && leapyear(tm->tm_year); 857f2783c15SPaul Mackerras 858f2783c15SPaul Mackerras day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 859f2783c15SPaul Mackerras tm->tm_mday; 860f2783c15SPaul Mackerras 861f2783c15SPaul Mackerras tm->tm_wday = day % 7; 862f2783c15SPaul Mackerras } 863f2783c15SPaul Mackerras 864f2783c15SPaul Mackerras void to_tm(int tim, struct rtc_time * tm) 865f2783c15SPaul Mackerras { 866f2783c15SPaul Mackerras register int i; 867f2783c15SPaul Mackerras register long hms, day; 868f2783c15SPaul Mackerras 869f2783c15SPaul Mackerras day = tim / SECDAY; 870f2783c15SPaul Mackerras hms = tim % SECDAY; 871f2783c15SPaul Mackerras 872f2783c15SPaul Mackerras /* Hours, minutes, seconds are easy */ 873f2783c15SPaul Mackerras tm->tm_hour = hms / 3600; 874f2783c15SPaul Mackerras tm->tm_min = (hms % 3600) / 60; 875f2783c15SPaul Mackerras tm->tm_sec = (hms % 3600) % 60; 876f2783c15SPaul Mackerras 877f2783c15SPaul Mackerras /* Number of years in days */ 878f2783c15SPaul Mackerras for (i = STARTOFTIME; day >= days_in_year(i); i++) 879f2783c15SPaul Mackerras day -= days_in_year(i); 880f2783c15SPaul Mackerras tm->tm_year = i; 881f2783c15SPaul Mackerras 882f2783c15SPaul Mackerras /* Number of months in days left */ 883f2783c15SPaul Mackerras if (leapyear(tm->tm_year)) 884f2783c15SPaul Mackerras days_in_month(FEBRUARY) = 29; 885f2783c15SPaul Mackerras for (i = 1; day >= days_in_month(i); i++) 886f2783c15SPaul Mackerras day -= days_in_month(i); 887f2783c15SPaul Mackerras days_in_month(FEBRUARY) = 28; 888f2783c15SPaul Mackerras tm->tm_mon = i; 889f2783c15SPaul Mackerras 890f2783c15SPaul Mackerras /* Days are what is left over (+1) from all that. */ 891f2783c15SPaul Mackerras tm->tm_mday = day + 1; 892f2783c15SPaul Mackerras 893f2783c15SPaul Mackerras /* 894f2783c15SPaul Mackerras * Determine the day of week 895f2783c15SPaul Mackerras */ 896f2783c15SPaul Mackerras GregorianDay(tm); 897f2783c15SPaul Mackerras } 898f2783c15SPaul Mackerras 899f2783c15SPaul Mackerras /* Auxiliary function to compute scaling factors */ 900f2783c15SPaul Mackerras /* Actually the choice of a timebase running at 1/4 the of the bus 901f2783c15SPaul Mackerras * frequency giving resolution of a few tens of nanoseconds is quite nice. 902f2783c15SPaul Mackerras * It makes this computation very precise (27-28 bits typically) which 903f2783c15SPaul Mackerras * is optimistic considering the stability of most processor clock 904f2783c15SPaul Mackerras * oscillators and the precision with which the timebase frequency 905f2783c15SPaul Mackerras * is measured but does not harm. 906f2783c15SPaul Mackerras */ 907f2783c15SPaul Mackerras unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 908f2783c15SPaul Mackerras { 909f2783c15SPaul Mackerras unsigned mlt=0, tmp, err; 910f2783c15SPaul Mackerras /* No concern for performance, it's done once: use a stupid 911f2783c15SPaul Mackerras * but safe and compact method to find the multiplier. 912f2783c15SPaul Mackerras */ 913f2783c15SPaul Mackerras 914f2783c15SPaul Mackerras for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 915f2783c15SPaul Mackerras if (mulhwu(inscale, mlt|tmp) < outscale) 916f2783c15SPaul Mackerras mlt |= tmp; 917f2783c15SPaul Mackerras } 918f2783c15SPaul Mackerras 919f2783c15SPaul Mackerras /* We might still be off by 1 for the best approximation. 920f2783c15SPaul Mackerras * A side effect of this is that if outscale is too large 921f2783c15SPaul Mackerras * the returned value will be zero. 922f2783c15SPaul Mackerras * Many corner cases have been checked and seem to work, 923f2783c15SPaul Mackerras * some might have been forgotten in the test however. 924f2783c15SPaul Mackerras */ 925f2783c15SPaul Mackerras 926f2783c15SPaul Mackerras err = inscale * (mlt+1); 927f2783c15SPaul Mackerras if (err <= inscale/2) 928f2783c15SPaul Mackerras mlt++; 929f2783c15SPaul Mackerras return mlt; 930f2783c15SPaul Mackerras } 931f2783c15SPaul Mackerras 932f2783c15SPaul Mackerras /* 933f2783c15SPaul Mackerras * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 934f2783c15SPaul Mackerras * result. 935f2783c15SPaul Mackerras */ 936f2783c15SPaul Mackerras void div128_by_32(u64 dividend_high, u64 dividend_low, 937f2783c15SPaul Mackerras unsigned divisor, struct div_result *dr) 938f2783c15SPaul Mackerras { 939f2783c15SPaul Mackerras unsigned long a, b, c, d; 940f2783c15SPaul Mackerras unsigned long w, x, y, z; 941f2783c15SPaul Mackerras u64 ra, rb, rc; 942f2783c15SPaul Mackerras 943f2783c15SPaul Mackerras a = dividend_high >> 32; 944f2783c15SPaul Mackerras b = dividend_high & 0xffffffff; 945f2783c15SPaul Mackerras c = dividend_low >> 32; 946f2783c15SPaul Mackerras d = dividend_low & 0xffffffff; 947f2783c15SPaul Mackerras 948f2783c15SPaul Mackerras w = a / divisor; 949f2783c15SPaul Mackerras ra = ((u64)(a - (w * divisor)) << 32) + b; 950f2783c15SPaul Mackerras 951f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 952f2783c15SPaul Mackerras x = ra / divisor; 953f2783c15SPaul Mackerras rb = ((ra - (x * divisor)) << 32) + c; 954f2783c15SPaul Mackerras 955f2783c15SPaul Mackerras y = rb / divisor; 956f2783c15SPaul Mackerras rc = ((rb - (y * divisor)) << 32) + d; 957f2783c15SPaul Mackerras 958f2783c15SPaul Mackerras z = rc / divisor; 959f2783c15SPaul Mackerras #else 960f2783c15SPaul Mackerras /* for 32-bit, use do_div from div64.h */ 961f2783c15SPaul Mackerras rb = ((u64) do_div(ra, divisor) << 32) + c; 962f2783c15SPaul Mackerras x = ra; 963f2783c15SPaul Mackerras 964f2783c15SPaul Mackerras rc = ((u64) do_div(rb, divisor) << 32) + d; 965f2783c15SPaul Mackerras y = rb; 966f2783c15SPaul Mackerras 967f2783c15SPaul Mackerras do_div(rc, divisor); 968f2783c15SPaul Mackerras z = rc; 969f2783c15SPaul Mackerras #endif 970f2783c15SPaul Mackerras 971f2783c15SPaul Mackerras dr->result_high = ((u64)w << 32) + x; 972f2783c15SPaul Mackerras dr->result_low = ((u64)y << 32) + z; 973f2783c15SPaul Mackerras 974f2783c15SPaul Mackerras } 975f2783c15SPaul Mackerras 976