xref: /openbmc/linux/arch/powerpc/kernel/time.c (revision 3356bb9f7ba378a6e2709f9df95f4ea52111f4df)
1f2783c15SPaul Mackerras /*
2f2783c15SPaul Mackerras  * Common time routines among all ppc machines.
3f2783c15SPaul Mackerras  *
4f2783c15SPaul Mackerras  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5f2783c15SPaul Mackerras  * Paul Mackerras' version and mine for PReP and Pmac.
6f2783c15SPaul Mackerras  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7f2783c15SPaul Mackerras  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8f2783c15SPaul Mackerras  *
9f2783c15SPaul Mackerras  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10f2783c15SPaul Mackerras  * to make clock more stable (2.4.0-test5). The only thing
11f2783c15SPaul Mackerras  * that this code assumes is that the timebases have been synchronized
12f2783c15SPaul Mackerras  * by firmware on SMP and are never stopped (never do sleep
13f2783c15SPaul Mackerras  * on SMP then, nap and doze are OK).
14f2783c15SPaul Mackerras  *
15f2783c15SPaul Mackerras  * Speeded up do_gettimeofday by getting rid of references to
16f2783c15SPaul Mackerras  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17f2783c15SPaul Mackerras  *
18f2783c15SPaul Mackerras  * TODO (not necessarily in this file):
19f2783c15SPaul Mackerras  * - improve precision and reproducibility of timebase frequency
20f2783c15SPaul Mackerras  * measurement at boot time. (for iSeries, we calibrate the timebase
21f2783c15SPaul Mackerras  * against the Titan chip's clock.)
22f2783c15SPaul Mackerras  * - for astronomical applications: add a new function to get
23f2783c15SPaul Mackerras  * non ambiguous timestamps even around leap seconds. This needs
24f2783c15SPaul Mackerras  * a new timestamp format and a good name.
25f2783c15SPaul Mackerras  *
26f2783c15SPaul Mackerras  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27f2783c15SPaul Mackerras  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28f2783c15SPaul Mackerras  *
29f2783c15SPaul Mackerras  *      This program is free software; you can redistribute it and/or
30f2783c15SPaul Mackerras  *      modify it under the terms of the GNU General Public License
31f2783c15SPaul Mackerras  *      as published by the Free Software Foundation; either version
32f2783c15SPaul Mackerras  *      2 of the License, or (at your option) any later version.
33f2783c15SPaul Mackerras  */
34f2783c15SPaul Mackerras 
35f2783c15SPaul Mackerras #include <linux/config.h>
36f2783c15SPaul Mackerras #include <linux/errno.h>
37f2783c15SPaul Mackerras #include <linux/module.h>
38f2783c15SPaul Mackerras #include <linux/sched.h>
39f2783c15SPaul Mackerras #include <linux/kernel.h>
40f2783c15SPaul Mackerras #include <linux/param.h>
41f2783c15SPaul Mackerras #include <linux/string.h>
42f2783c15SPaul Mackerras #include <linux/mm.h>
43f2783c15SPaul Mackerras #include <linux/interrupt.h>
44f2783c15SPaul Mackerras #include <linux/timex.h>
45f2783c15SPaul Mackerras #include <linux/kernel_stat.h>
46f2783c15SPaul Mackerras #include <linux/time.h>
47f2783c15SPaul Mackerras #include <linux/init.h>
48f2783c15SPaul Mackerras #include <linux/profile.h>
49f2783c15SPaul Mackerras #include <linux/cpu.h>
50f2783c15SPaul Mackerras #include <linux/security.h>
51f2783c15SPaul Mackerras #include <linux/percpu.h>
52f2783c15SPaul Mackerras #include <linux/rtc.h>
53f2783c15SPaul Mackerras 
54f2783c15SPaul Mackerras #include <asm/io.h>
55f2783c15SPaul Mackerras #include <asm/processor.h>
56f2783c15SPaul Mackerras #include <asm/nvram.h>
57f2783c15SPaul Mackerras #include <asm/cache.h>
58f2783c15SPaul Mackerras #include <asm/machdep.h>
59f2783c15SPaul Mackerras #include <asm/uaccess.h>
60f2783c15SPaul Mackerras #include <asm/time.h>
61f2783c15SPaul Mackerras #include <asm/prom.h>
62f2783c15SPaul Mackerras #include <asm/irq.h>
63f2783c15SPaul Mackerras #include <asm/div64.h>
642249ca9dSPaul Mackerras #include <asm/smp.h>
65a7f290daSBenjamin Herrenschmidt #include <asm/vdso_datapage.h>
66f2783c15SPaul Mackerras #ifdef CONFIG_PPC64
67f2783c15SPaul Mackerras #include <asm/firmware.h>
68f2783c15SPaul Mackerras #endif
69f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES
708875ccfbSKelly Daly #include <asm/iseries/it_lp_queue.h>
718021b8a7SKelly Daly #include <asm/iseries/hv_call_xm.h>
72f2783c15SPaul Mackerras #endif
73732ee21fSOlof Johansson #include <asm/smp.h>
74f2783c15SPaul Mackerras 
75f2783c15SPaul Mackerras /* keep track of when we need to update the rtc */
76f2783c15SPaul Mackerras time_t last_rtc_update;
77f2783c15SPaul Mackerras extern int piranha_simulator;
78f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES
79f2783c15SPaul Mackerras unsigned long iSeries_recal_titan = 0;
80f2783c15SPaul Mackerras unsigned long iSeries_recal_tb = 0;
81f2783c15SPaul Mackerras static unsigned long first_settimeofday = 1;
82f2783c15SPaul Mackerras #endif
83f2783c15SPaul Mackerras 
84f2783c15SPaul Mackerras /* The decrementer counts down by 128 every 128ns on a 601. */
85f2783c15SPaul Mackerras #define DECREMENTER_COUNT_601	(1000000000 / HZ)
86f2783c15SPaul Mackerras 
87f2783c15SPaul Mackerras #define XSEC_PER_SEC (1024*1024)
88f2783c15SPaul Mackerras 
89f2783c15SPaul Mackerras #ifdef CONFIG_PPC64
90f2783c15SPaul Mackerras #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
91f2783c15SPaul Mackerras #else
92f2783c15SPaul Mackerras /* compute ((xsec << 12) * max) >> 32 */
93f2783c15SPaul Mackerras #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
94f2783c15SPaul Mackerras #endif
95f2783c15SPaul Mackerras 
96f2783c15SPaul Mackerras unsigned long tb_ticks_per_jiffy;
97f2783c15SPaul Mackerras unsigned long tb_ticks_per_usec = 100; /* sane default */
98f2783c15SPaul Mackerras EXPORT_SYMBOL(tb_ticks_per_usec);
99f2783c15SPaul Mackerras unsigned long tb_ticks_per_sec;
100f2783c15SPaul Mackerras u64 tb_to_xs;
101f2783c15SPaul Mackerras unsigned tb_to_us;
102f2783c15SPaul Mackerras unsigned long processor_freq;
103f2783c15SPaul Mackerras DEFINE_SPINLOCK(rtc_lock);
104f2783c15SPaul Mackerras EXPORT_SYMBOL_GPL(rtc_lock);
105f2783c15SPaul Mackerras 
106f2783c15SPaul Mackerras u64 tb_to_ns_scale;
107f2783c15SPaul Mackerras unsigned tb_to_ns_shift;
108f2783c15SPaul Mackerras 
109f2783c15SPaul Mackerras struct gettimeofday_struct do_gtod;
110f2783c15SPaul Mackerras 
111f2783c15SPaul Mackerras extern unsigned long wall_jiffies;
112f2783c15SPaul Mackerras 
113f2783c15SPaul Mackerras extern struct timezone sys_tz;
114f2783c15SPaul Mackerras static long timezone_offset;
115f2783c15SPaul Mackerras 
116f2783c15SPaul Mackerras void ppc_adjtimex(void);
117f2783c15SPaul Mackerras 
118f2783c15SPaul Mackerras static unsigned adjusting_time = 0;
119f2783c15SPaul Mackerras 
120f2783c15SPaul Mackerras unsigned long ppc_proc_freq;
121f2783c15SPaul Mackerras unsigned long ppc_tb_freq;
122f2783c15SPaul Mackerras 
12396c44507SPaul Mackerras u64 tb_last_jiffy __cacheline_aligned_in_smp;
12496c44507SPaul Mackerras unsigned long tb_last_stamp;
12596c44507SPaul Mackerras 
12696c44507SPaul Mackerras /*
12796c44507SPaul Mackerras  * Note that on ppc32 this only stores the bottom 32 bits of
12896c44507SPaul Mackerras  * the timebase value, but that's enough to tell when a jiffy
12996c44507SPaul Mackerras  * has passed.
13096c44507SPaul Mackerras  */
13196c44507SPaul Mackerras DEFINE_PER_CPU(unsigned long, last_jiffy);
13296c44507SPaul Mackerras 
1336defa38bSPaul Mackerras void __delay(unsigned long loops)
1346defa38bSPaul Mackerras {
1356defa38bSPaul Mackerras 	unsigned long start;
1366defa38bSPaul Mackerras 	int diff;
1376defa38bSPaul Mackerras 
1386defa38bSPaul Mackerras 	if (__USE_RTC()) {
1396defa38bSPaul Mackerras 		start = get_rtcl();
1406defa38bSPaul Mackerras 		do {
1416defa38bSPaul Mackerras 			/* the RTCL register wraps at 1000000000 */
1426defa38bSPaul Mackerras 			diff = get_rtcl() - start;
1436defa38bSPaul Mackerras 			if (diff < 0)
1446defa38bSPaul Mackerras 				diff += 1000000000;
1456defa38bSPaul Mackerras 		} while (diff < loops);
1466defa38bSPaul Mackerras 	} else {
1476defa38bSPaul Mackerras 		start = get_tbl();
1486defa38bSPaul Mackerras 		while (get_tbl() - start < loops)
1496defa38bSPaul Mackerras 			HMT_low();
1506defa38bSPaul Mackerras 		HMT_medium();
1516defa38bSPaul Mackerras 	}
1526defa38bSPaul Mackerras }
1536defa38bSPaul Mackerras EXPORT_SYMBOL(__delay);
1546defa38bSPaul Mackerras 
1556defa38bSPaul Mackerras void udelay(unsigned long usecs)
1566defa38bSPaul Mackerras {
1576defa38bSPaul Mackerras 	__delay(tb_ticks_per_usec * usecs);
1586defa38bSPaul Mackerras }
1596defa38bSPaul Mackerras EXPORT_SYMBOL(udelay);
1606defa38bSPaul Mackerras 
161f2783c15SPaul Mackerras static __inline__ void timer_check_rtc(void)
162f2783c15SPaul Mackerras {
163f2783c15SPaul Mackerras         /*
164f2783c15SPaul Mackerras          * update the rtc when needed, this should be performed on the
165f2783c15SPaul Mackerras          * right fraction of a second. Half or full second ?
166f2783c15SPaul Mackerras          * Full second works on mk48t59 clocks, others need testing.
167f2783c15SPaul Mackerras          * Note that this update is basically only used through
168f2783c15SPaul Mackerras          * the adjtimex system calls. Setting the HW clock in
169f2783c15SPaul Mackerras          * any other way is a /dev/rtc and userland business.
170f2783c15SPaul Mackerras          * This is still wrong by -0.5/+1.5 jiffies because of the
171f2783c15SPaul Mackerras          * timer interrupt resolution and possible delay, but here we
172f2783c15SPaul Mackerras          * hit a quantization limit which can only be solved by higher
173f2783c15SPaul Mackerras          * resolution timers and decoupling time management from timer
174f2783c15SPaul Mackerras          * interrupts. This is also wrong on the clocks
175f2783c15SPaul Mackerras          * which require being written at the half second boundary.
176f2783c15SPaul Mackerras          * We should have an rtc call that only sets the minutes and
177f2783c15SPaul Mackerras          * seconds like on Intel to avoid problems with non UTC clocks.
178f2783c15SPaul Mackerras          */
179d2e61512SKumar Gala         if (ppc_md.set_rtc_time && ntp_synced() &&
180f2783c15SPaul Mackerras 	    xtime.tv_sec - last_rtc_update >= 659 &&
181f2783c15SPaul Mackerras 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ &&
182f2783c15SPaul Mackerras 	    jiffies - wall_jiffies == 1) {
183f2783c15SPaul Mackerras 		struct rtc_time tm;
184f2783c15SPaul Mackerras 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
185f2783c15SPaul Mackerras 		tm.tm_year -= 1900;
186f2783c15SPaul Mackerras 		tm.tm_mon -= 1;
187f2783c15SPaul Mackerras 		if (ppc_md.set_rtc_time(&tm) == 0)
188f2783c15SPaul Mackerras 			last_rtc_update = xtime.tv_sec + 1;
189f2783c15SPaul Mackerras 		else
190f2783c15SPaul Mackerras 			/* Try again one minute later */
191f2783c15SPaul Mackerras 			last_rtc_update += 60;
192f2783c15SPaul Mackerras         }
193f2783c15SPaul Mackerras }
194f2783c15SPaul Mackerras 
195f2783c15SPaul Mackerras /*
196f2783c15SPaul Mackerras  * This version of gettimeofday has microsecond resolution.
197f2783c15SPaul Mackerras  */
198f2783c15SPaul Mackerras static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
199f2783c15SPaul Mackerras {
200f2783c15SPaul Mackerras 	unsigned long sec, usec;
201f2783c15SPaul Mackerras 	u64 tb_ticks, xsec;
202f2783c15SPaul Mackerras 	struct gettimeofday_vars *temp_varp;
203f2783c15SPaul Mackerras 	u64 temp_tb_to_xs, temp_stamp_xsec;
204f2783c15SPaul Mackerras 
205f2783c15SPaul Mackerras 	/*
206f2783c15SPaul Mackerras 	 * These calculations are faster (gets rid of divides)
207f2783c15SPaul Mackerras 	 * if done in units of 1/2^20 rather than microseconds.
208f2783c15SPaul Mackerras 	 * The conversion to microseconds at the end is done
209f2783c15SPaul Mackerras 	 * without a divide (and in fact, without a multiply)
210f2783c15SPaul Mackerras 	 */
211f2783c15SPaul Mackerras 	temp_varp = do_gtod.varp;
212f2783c15SPaul Mackerras 	tb_ticks = tb_val - temp_varp->tb_orig_stamp;
213f2783c15SPaul Mackerras 	temp_tb_to_xs = temp_varp->tb_to_xs;
214f2783c15SPaul Mackerras 	temp_stamp_xsec = temp_varp->stamp_xsec;
215f2783c15SPaul Mackerras 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
216f2783c15SPaul Mackerras 	sec = xsec / XSEC_PER_SEC;
217f2783c15SPaul Mackerras 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
218f2783c15SPaul Mackerras 	usec = SCALE_XSEC(usec, 1000000);
219f2783c15SPaul Mackerras 
220f2783c15SPaul Mackerras 	tv->tv_sec = sec;
221f2783c15SPaul Mackerras 	tv->tv_usec = usec;
222f2783c15SPaul Mackerras }
223f2783c15SPaul Mackerras 
224f2783c15SPaul Mackerras void do_gettimeofday(struct timeval *tv)
225f2783c15SPaul Mackerras {
22696c44507SPaul Mackerras 	if (__USE_RTC()) {
22796c44507SPaul Mackerras 		/* do this the old way */
22896c44507SPaul Mackerras 		unsigned long flags, seq;
22996c44507SPaul Mackerras 		unsigned int sec, nsec, usec, lost;
23096c44507SPaul Mackerras 
23196c44507SPaul Mackerras 		do {
23296c44507SPaul Mackerras 			seq = read_seqbegin_irqsave(&xtime_lock, flags);
23396c44507SPaul Mackerras 			sec = xtime.tv_sec;
23496c44507SPaul Mackerras 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
23596c44507SPaul Mackerras 			lost = jiffies - wall_jiffies;
23696c44507SPaul Mackerras 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
23796c44507SPaul Mackerras 		usec = nsec / 1000 + lost * (1000000 / HZ);
23896c44507SPaul Mackerras 		while (usec >= 1000000) {
23996c44507SPaul Mackerras 			usec -= 1000000;
24096c44507SPaul Mackerras 			++sec;
24196c44507SPaul Mackerras 		}
24296c44507SPaul Mackerras 		tv->tv_sec = sec;
24396c44507SPaul Mackerras 		tv->tv_usec = usec;
24496c44507SPaul Mackerras 		return;
24596c44507SPaul Mackerras 	}
246f2783c15SPaul Mackerras 	__do_gettimeofday(tv, get_tb());
247f2783c15SPaul Mackerras }
248f2783c15SPaul Mackerras 
249f2783c15SPaul Mackerras EXPORT_SYMBOL(do_gettimeofday);
250f2783c15SPaul Mackerras 
251f2783c15SPaul Mackerras /* Synchronize xtime with do_gettimeofday */
252f2783c15SPaul Mackerras 
253f2783c15SPaul Mackerras static inline void timer_sync_xtime(unsigned long cur_tb)
254f2783c15SPaul Mackerras {
255f2783c15SPaul Mackerras #ifdef CONFIG_PPC64
256f2783c15SPaul Mackerras 	/* why do we do this? */
257f2783c15SPaul Mackerras 	struct timeval my_tv;
258f2783c15SPaul Mackerras 
259f2783c15SPaul Mackerras 	__do_gettimeofday(&my_tv, cur_tb);
260f2783c15SPaul Mackerras 
261f2783c15SPaul Mackerras 	if (xtime.tv_sec <= my_tv.tv_sec) {
262f2783c15SPaul Mackerras 		xtime.tv_sec = my_tv.tv_sec;
263f2783c15SPaul Mackerras 		xtime.tv_nsec = my_tv.tv_usec * 1000;
264f2783c15SPaul Mackerras 	}
265f2783c15SPaul Mackerras #endif
266f2783c15SPaul Mackerras }
267f2783c15SPaul Mackerras 
268f2783c15SPaul Mackerras /*
269f2783c15SPaul Mackerras  * There are two copies of tb_to_xs and stamp_xsec so that no
270f2783c15SPaul Mackerras  * lock is needed to access and use these values in
271f2783c15SPaul Mackerras  * do_gettimeofday.  We alternate the copies and as long as a
272f2783c15SPaul Mackerras  * reasonable time elapses between changes, there will never
273f2783c15SPaul Mackerras  * be inconsistent values.  ntpd has a minimum of one minute
274f2783c15SPaul Mackerras  * between updates.
275f2783c15SPaul Mackerras  */
276f2783c15SPaul Mackerras static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
2775d14a18dSPaul Mackerras 			       u64 new_tb_to_xs)
278f2783c15SPaul Mackerras {
279f2783c15SPaul Mackerras 	unsigned temp_idx;
280f2783c15SPaul Mackerras 	struct gettimeofday_vars *temp_varp;
281f2783c15SPaul Mackerras 
282f2783c15SPaul Mackerras 	temp_idx = (do_gtod.var_idx == 0);
283f2783c15SPaul Mackerras 	temp_varp = &do_gtod.vars[temp_idx];
284f2783c15SPaul Mackerras 
285f2783c15SPaul Mackerras 	temp_varp->tb_to_xs = new_tb_to_xs;
286f2783c15SPaul Mackerras 	temp_varp->tb_orig_stamp = new_tb_stamp;
287f2783c15SPaul Mackerras 	temp_varp->stamp_xsec = new_stamp_xsec;
288f2783c15SPaul Mackerras 	smp_mb();
289f2783c15SPaul Mackerras 	do_gtod.varp = temp_varp;
290f2783c15SPaul Mackerras 	do_gtod.var_idx = temp_idx;
291f2783c15SPaul Mackerras 
292f2783c15SPaul Mackerras 	/*
293f2783c15SPaul Mackerras 	 * tb_update_count is used to allow the userspace gettimeofday code
294f2783c15SPaul Mackerras 	 * to assure itself that it sees a consistent view of the tb_to_xs and
295f2783c15SPaul Mackerras 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
296f2783c15SPaul Mackerras 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
297f2783c15SPaul Mackerras 	 * the two values of tb_update_count match and are even then the
298f2783c15SPaul Mackerras 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
299f2783c15SPaul Mackerras 	 * loops back and reads them again until this criteria is met.
300f2783c15SPaul Mackerras 	 */
301a7f290daSBenjamin Herrenschmidt 	++(vdso_data->tb_update_count);
302f2783c15SPaul Mackerras 	smp_wmb();
303a7f290daSBenjamin Herrenschmidt 	vdso_data->tb_orig_stamp = new_tb_stamp;
304a7f290daSBenjamin Herrenschmidt 	vdso_data->stamp_xsec = new_stamp_xsec;
305a7f290daSBenjamin Herrenschmidt 	vdso_data->tb_to_xs = new_tb_to_xs;
306a7f290daSBenjamin Herrenschmidt 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
307a7f290daSBenjamin Herrenschmidt 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
308f2783c15SPaul Mackerras 	smp_wmb();
309a7f290daSBenjamin Herrenschmidt 	++(vdso_data->tb_update_count);
310f2783c15SPaul Mackerras }
311f2783c15SPaul Mackerras 
312f2783c15SPaul Mackerras /*
313f2783c15SPaul Mackerras  * When the timebase - tb_orig_stamp gets too big, we do a manipulation
314f2783c15SPaul Mackerras  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
315f2783c15SPaul Mackerras  * difference tb - tb_orig_stamp small enough to always fit inside a
316f2783c15SPaul Mackerras  * 32 bits number. This is a requirement of our fast 32 bits userland
317f2783c15SPaul Mackerras  * implementation in the vdso. If we "miss" a call to this function
318f2783c15SPaul Mackerras  * (interrupt latency, CPU locked in a spinlock, ...) and we end up
319f2783c15SPaul Mackerras  * with a too big difference, then the vdso will fallback to calling
320f2783c15SPaul Mackerras  * the syscall
321f2783c15SPaul Mackerras  */
322f2783c15SPaul Mackerras static __inline__ void timer_recalc_offset(u64 cur_tb)
323f2783c15SPaul Mackerras {
324f2783c15SPaul Mackerras 	unsigned long offset;
325f2783c15SPaul Mackerras 	u64 new_stamp_xsec;
326f2783c15SPaul Mackerras 
32796c44507SPaul Mackerras 	if (__USE_RTC())
32896c44507SPaul Mackerras 		return;
329f2783c15SPaul Mackerras 	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
330f2783c15SPaul Mackerras 	if ((offset & 0x80000000u) == 0)
331f2783c15SPaul Mackerras 		return;
332f2783c15SPaul Mackerras 	new_stamp_xsec = do_gtod.varp->stamp_xsec
333f2783c15SPaul Mackerras 		+ mulhdu(offset, do_gtod.varp->tb_to_xs);
334f2783c15SPaul Mackerras 	update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs);
335f2783c15SPaul Mackerras }
336f2783c15SPaul Mackerras 
337f2783c15SPaul Mackerras #ifdef CONFIG_SMP
338f2783c15SPaul Mackerras unsigned long profile_pc(struct pt_regs *regs)
339f2783c15SPaul Mackerras {
340f2783c15SPaul Mackerras 	unsigned long pc = instruction_pointer(regs);
341f2783c15SPaul Mackerras 
342f2783c15SPaul Mackerras 	if (in_lock_functions(pc))
343f2783c15SPaul Mackerras 		return regs->link;
344f2783c15SPaul Mackerras 
345f2783c15SPaul Mackerras 	return pc;
346f2783c15SPaul Mackerras }
347f2783c15SPaul Mackerras EXPORT_SYMBOL(profile_pc);
348f2783c15SPaul Mackerras #endif
349f2783c15SPaul Mackerras 
350f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES
351f2783c15SPaul Mackerras 
352f2783c15SPaul Mackerras /*
353f2783c15SPaul Mackerras  * This function recalibrates the timebase based on the 49-bit time-of-day
354f2783c15SPaul Mackerras  * value in the Titan chip.  The Titan is much more accurate than the value
355f2783c15SPaul Mackerras  * returned by the service processor for the timebase frequency.
356f2783c15SPaul Mackerras  */
357f2783c15SPaul Mackerras 
358f2783c15SPaul Mackerras static void iSeries_tb_recal(void)
359f2783c15SPaul Mackerras {
360f2783c15SPaul Mackerras 	struct div_result divres;
361f2783c15SPaul Mackerras 	unsigned long titan, tb;
362f2783c15SPaul Mackerras 	tb = get_tb();
363f2783c15SPaul Mackerras 	titan = HvCallXm_loadTod();
364f2783c15SPaul Mackerras 	if ( iSeries_recal_titan ) {
365f2783c15SPaul Mackerras 		unsigned long tb_ticks = tb - iSeries_recal_tb;
366f2783c15SPaul Mackerras 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
367f2783c15SPaul Mackerras 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
368f2783c15SPaul Mackerras 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
369f2783c15SPaul Mackerras 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
370f2783c15SPaul Mackerras 		char sign = '+';
371f2783c15SPaul Mackerras 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
372f2783c15SPaul Mackerras 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
373f2783c15SPaul Mackerras 
374f2783c15SPaul Mackerras 		if ( tick_diff < 0 ) {
375f2783c15SPaul Mackerras 			tick_diff = -tick_diff;
376f2783c15SPaul Mackerras 			sign = '-';
377f2783c15SPaul Mackerras 		}
378f2783c15SPaul Mackerras 		if ( tick_diff ) {
379f2783c15SPaul Mackerras 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
380f2783c15SPaul Mackerras 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
381f2783c15SPaul Mackerras 						new_tb_ticks_per_jiffy, sign, tick_diff );
382f2783c15SPaul Mackerras 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
383f2783c15SPaul Mackerras 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
384f2783c15SPaul Mackerras 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
385f2783c15SPaul Mackerras 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
386f2783c15SPaul Mackerras 				tb_to_xs = divres.result_low;
387f2783c15SPaul Mackerras 				do_gtod.varp->tb_to_xs = tb_to_xs;
388a7f290daSBenjamin Herrenschmidt 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
389a7f290daSBenjamin Herrenschmidt 				vdso_data->tb_to_xs = tb_to_xs;
390f2783c15SPaul Mackerras 			}
391f2783c15SPaul Mackerras 			else {
392f2783c15SPaul Mackerras 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
393f2783c15SPaul Mackerras 					"                   new tb_ticks_per_jiffy = %lu\n"
394f2783c15SPaul Mackerras 					"                   old tb_ticks_per_jiffy = %lu\n",
395f2783c15SPaul Mackerras 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
396f2783c15SPaul Mackerras 			}
397f2783c15SPaul Mackerras 		}
398f2783c15SPaul Mackerras 	}
399f2783c15SPaul Mackerras 	iSeries_recal_titan = titan;
400f2783c15SPaul Mackerras 	iSeries_recal_tb = tb;
401f2783c15SPaul Mackerras }
402f2783c15SPaul Mackerras #endif
403f2783c15SPaul Mackerras 
404f2783c15SPaul Mackerras /*
405f2783c15SPaul Mackerras  * For iSeries shared processors, we have to let the hypervisor
406f2783c15SPaul Mackerras  * set the hardware decrementer.  We set a virtual decrementer
407f2783c15SPaul Mackerras  * in the lppaca and call the hypervisor if the virtual
408f2783c15SPaul Mackerras  * decrementer is less than the current value in the hardware
409f2783c15SPaul Mackerras  * decrementer. (almost always the new decrementer value will
410f2783c15SPaul Mackerras  * be greater than the current hardware decementer so the hypervisor
411f2783c15SPaul Mackerras  * call will not be needed)
412f2783c15SPaul Mackerras  */
413f2783c15SPaul Mackerras 
414f2783c15SPaul Mackerras /*
415f2783c15SPaul Mackerras  * timer_interrupt - gets called when the decrementer overflows,
416f2783c15SPaul Mackerras  * with interrupts disabled.
417f2783c15SPaul Mackerras  */
418f2783c15SPaul Mackerras void timer_interrupt(struct pt_regs * regs)
419f2783c15SPaul Mackerras {
420f2783c15SPaul Mackerras 	int next_dec;
421f2783c15SPaul Mackerras 	int cpu = smp_processor_id();
422f2783c15SPaul Mackerras 	unsigned long ticks;
423f2783c15SPaul Mackerras 
424f2783c15SPaul Mackerras #ifdef CONFIG_PPC32
425f2783c15SPaul Mackerras 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
426f2783c15SPaul Mackerras 		do_IRQ(regs);
427f2783c15SPaul Mackerras #endif
428f2783c15SPaul Mackerras 
429f2783c15SPaul Mackerras 	irq_enter();
430f2783c15SPaul Mackerras 
431f2783c15SPaul Mackerras 	profile_tick(CPU_PROFILING, regs);
432f2783c15SPaul Mackerras 
433f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES
434*3356bb9fSDavid Gibson 	get_lppaca()->int_dword.fields.decr_int = 0;
435f2783c15SPaul Mackerras #endif
436f2783c15SPaul Mackerras 
437f2783c15SPaul Mackerras 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
438f2783c15SPaul Mackerras 	       >= tb_ticks_per_jiffy) {
439f2783c15SPaul Mackerras 		/* Update last_jiffy */
440f2783c15SPaul Mackerras 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
441f2783c15SPaul Mackerras 		/* Handle RTCL overflow on 601 */
442f2783c15SPaul Mackerras 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
443f2783c15SPaul Mackerras 			per_cpu(last_jiffy, cpu) -= 1000000000;
444f2783c15SPaul Mackerras 
445f2783c15SPaul Mackerras 		/*
446f2783c15SPaul Mackerras 		 * We cannot disable the decrementer, so in the period
447f2783c15SPaul Mackerras 		 * between this cpu's being marked offline in cpu_online_map
448f2783c15SPaul Mackerras 		 * and calling stop-self, it is taking timer interrupts.
449f2783c15SPaul Mackerras 		 * Avoid calling into the scheduler rebalancing code if this
450f2783c15SPaul Mackerras 		 * is the case.
451f2783c15SPaul Mackerras 		 */
452f2783c15SPaul Mackerras 		if (!cpu_is_offline(cpu))
453f2783c15SPaul Mackerras 			update_process_times(user_mode(regs));
454f2783c15SPaul Mackerras 
455f2783c15SPaul Mackerras 		/*
456f2783c15SPaul Mackerras 		 * No need to check whether cpu is offline here; boot_cpuid
457f2783c15SPaul Mackerras 		 * should have been fixed up by now.
458f2783c15SPaul Mackerras 		 */
459f2783c15SPaul Mackerras 		if (cpu != boot_cpuid)
460f2783c15SPaul Mackerras 			continue;
461f2783c15SPaul Mackerras 
462f2783c15SPaul Mackerras 		write_seqlock(&xtime_lock);
46396c44507SPaul Mackerras 		tb_last_jiffy += tb_ticks_per_jiffy;
46496c44507SPaul Mackerras 		tb_last_stamp = per_cpu(last_jiffy, cpu);
46596c44507SPaul Mackerras 		timer_recalc_offset(tb_last_jiffy);
466f2783c15SPaul Mackerras 		do_timer(regs);
46796c44507SPaul Mackerras 		timer_sync_xtime(tb_last_jiffy);
468f2783c15SPaul Mackerras 		timer_check_rtc();
469f2783c15SPaul Mackerras 		write_sequnlock(&xtime_lock);
470f2783c15SPaul Mackerras 		if (adjusting_time && (time_adjust == 0))
471f2783c15SPaul Mackerras 			ppc_adjtimex();
472f2783c15SPaul Mackerras 	}
473f2783c15SPaul Mackerras 
474f2783c15SPaul Mackerras 	next_dec = tb_ticks_per_jiffy - ticks;
475f2783c15SPaul Mackerras 	set_dec(next_dec);
476f2783c15SPaul Mackerras 
477f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES
478f2783c15SPaul Mackerras 	if (hvlpevent_is_pending())
479f2783c15SPaul Mackerras 		process_hvlpevents(regs);
480f2783c15SPaul Mackerras #endif
481f2783c15SPaul Mackerras 
482f2783c15SPaul Mackerras #ifdef CONFIG_PPC64
483f2783c15SPaul Mackerras 	/* collect purr register values often, for accurate calculations */
484f2783c15SPaul Mackerras 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
485f2783c15SPaul Mackerras 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
486f2783c15SPaul Mackerras 		cu->current_tb = mfspr(SPRN_PURR);
487f2783c15SPaul Mackerras 	}
488f2783c15SPaul Mackerras #endif
489f2783c15SPaul Mackerras 
490f2783c15SPaul Mackerras 	irq_exit();
491f2783c15SPaul Mackerras }
492f2783c15SPaul Mackerras 
493f2783c15SPaul Mackerras void wakeup_decrementer(void)
494f2783c15SPaul Mackerras {
495f2783c15SPaul Mackerras 	int i;
496f2783c15SPaul Mackerras 
497f2783c15SPaul Mackerras 	set_dec(tb_ticks_per_jiffy);
498f2783c15SPaul Mackerras 	/*
499f2783c15SPaul Mackerras 	 * We don't expect this to be called on a machine with a 601,
500f2783c15SPaul Mackerras 	 * so using get_tbl is fine.
501f2783c15SPaul Mackerras 	 */
50296c44507SPaul Mackerras 	tb_last_stamp = tb_last_jiffy = get_tb();
503f2783c15SPaul Mackerras 	for_each_cpu(i)
504f2783c15SPaul Mackerras 		per_cpu(last_jiffy, i) = tb_last_stamp;
505f2783c15SPaul Mackerras }
506f2783c15SPaul Mackerras 
507a5b518edSPaul Mackerras #ifdef CONFIG_SMP
508f2783c15SPaul Mackerras void __init smp_space_timers(unsigned int max_cpus)
509f2783c15SPaul Mackerras {
510f2783c15SPaul Mackerras 	int i;
511f2783c15SPaul Mackerras 	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
512f2783c15SPaul Mackerras 	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
513f2783c15SPaul Mackerras 
514cbe62e2bSPaul Mackerras 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
515cbe62e2bSPaul Mackerras 	previous_tb -= tb_ticks_per_jiffy;
516f2783c15SPaul Mackerras 	for_each_cpu(i) {
517f2783c15SPaul Mackerras 		if (i != boot_cpuid) {
518f2783c15SPaul Mackerras 			previous_tb += offset;
519f2783c15SPaul Mackerras 			per_cpu(last_jiffy, i) = previous_tb;
520f2783c15SPaul Mackerras 		}
521f2783c15SPaul Mackerras 	}
522f2783c15SPaul Mackerras }
523f2783c15SPaul Mackerras #endif
524f2783c15SPaul Mackerras 
525f2783c15SPaul Mackerras /*
526f2783c15SPaul Mackerras  * Scheduler clock - returns current time in nanosec units.
527f2783c15SPaul Mackerras  *
528f2783c15SPaul Mackerras  * Note: mulhdu(a, b) (multiply high double unsigned) returns
529f2783c15SPaul Mackerras  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
530f2783c15SPaul Mackerras  * are 64-bit unsigned numbers.
531f2783c15SPaul Mackerras  */
532f2783c15SPaul Mackerras unsigned long long sched_clock(void)
533f2783c15SPaul Mackerras {
53496c44507SPaul Mackerras 	if (__USE_RTC())
53596c44507SPaul Mackerras 		return get_rtc();
536f2783c15SPaul Mackerras 	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
537f2783c15SPaul Mackerras }
538f2783c15SPaul Mackerras 
539f2783c15SPaul Mackerras int do_settimeofday(struct timespec *tv)
540f2783c15SPaul Mackerras {
541f2783c15SPaul Mackerras 	time_t wtm_sec, new_sec = tv->tv_sec;
542f2783c15SPaul Mackerras 	long wtm_nsec, new_nsec = tv->tv_nsec;
543f2783c15SPaul Mackerras 	unsigned long flags;
544f2783c15SPaul Mackerras 	long int tb_delta;
5455f6b5b97SPaul Mackerras 	u64 new_xsec, tb_delta_xs;
546f2783c15SPaul Mackerras 
547f2783c15SPaul Mackerras 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
548f2783c15SPaul Mackerras 		return -EINVAL;
549f2783c15SPaul Mackerras 
550f2783c15SPaul Mackerras 	write_seqlock_irqsave(&xtime_lock, flags);
551f2783c15SPaul Mackerras 
552f2783c15SPaul Mackerras 	/*
553f2783c15SPaul Mackerras 	 * Updating the RTC is not the job of this code. If the time is
554f2783c15SPaul Mackerras 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
555f2783c15SPaul Mackerras 	 * is cleared.  Tools like clock/hwclock either copy the RTC
556f2783c15SPaul Mackerras 	 * to the system time, in which case there is no point in writing
557f2783c15SPaul Mackerras 	 * to the RTC again, or write to the RTC but then they don't call
558f2783c15SPaul Mackerras 	 * settimeofday to perform this operation.
559f2783c15SPaul Mackerras 	 */
560f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES
561f2783c15SPaul Mackerras 	if (first_settimeofday) {
562f2783c15SPaul Mackerras 		iSeries_tb_recal();
563f2783c15SPaul Mackerras 		first_settimeofday = 0;
564f2783c15SPaul Mackerras 	}
565f2783c15SPaul Mackerras #endif
566f2783c15SPaul Mackerras 	tb_delta = tb_ticks_since(tb_last_stamp);
567f2783c15SPaul Mackerras 	tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy;
5685f6b5b97SPaul Mackerras 	tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs);
569f2783c15SPaul Mackerras 
570f2783c15SPaul Mackerras 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
571f2783c15SPaul Mackerras 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
572f2783c15SPaul Mackerras 
573f2783c15SPaul Mackerras  	set_normalized_timespec(&xtime, new_sec, new_nsec);
574f2783c15SPaul Mackerras 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
575f2783c15SPaul Mackerras 
576f2783c15SPaul Mackerras 	/* In case of a large backwards jump in time with NTP, we want the
577f2783c15SPaul Mackerras 	 * clock to be updated as soon as the PLL is again in lock.
578f2783c15SPaul Mackerras 	 */
579f2783c15SPaul Mackerras 	last_rtc_update = new_sec - 658;
580f2783c15SPaul Mackerras 
581f2783c15SPaul Mackerras 	ntp_clear();
582f2783c15SPaul Mackerras 
5835f6b5b97SPaul Mackerras 	new_xsec = 0;
5845f6b5b97SPaul Mackerras 	if (new_nsec != 0) {
585f2783c15SPaul Mackerras 		new_xsec = (u64)new_nsec * XSEC_PER_SEC;
586f2783c15SPaul Mackerras 		do_div(new_xsec, NSEC_PER_SEC);
5875f6b5b97SPaul Mackerras 	}
5885f6b5b97SPaul Mackerras 	new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs;
58996c44507SPaul Mackerras 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
590f2783c15SPaul Mackerras 
591a7f290daSBenjamin Herrenschmidt 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
592a7f290daSBenjamin Herrenschmidt 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
593f2783c15SPaul Mackerras 
594f2783c15SPaul Mackerras 	write_sequnlock_irqrestore(&xtime_lock, flags);
595f2783c15SPaul Mackerras 	clock_was_set();
596f2783c15SPaul Mackerras 	return 0;
597f2783c15SPaul Mackerras }
598f2783c15SPaul Mackerras 
599f2783c15SPaul Mackerras EXPORT_SYMBOL(do_settimeofday);
600f2783c15SPaul Mackerras 
601f2783c15SPaul Mackerras void __init generic_calibrate_decr(void)
602f2783c15SPaul Mackerras {
603f2783c15SPaul Mackerras 	struct device_node *cpu;
604f2783c15SPaul Mackerras 	unsigned int *fp;
605f2783c15SPaul Mackerras 	int node_found;
606f2783c15SPaul Mackerras 
607f2783c15SPaul Mackerras 	/*
608f2783c15SPaul Mackerras 	 * The cpu node should have a timebase-frequency property
609f2783c15SPaul Mackerras 	 * to tell us the rate at which the decrementer counts.
610f2783c15SPaul Mackerras 	 */
611f2783c15SPaul Mackerras 	cpu = of_find_node_by_type(NULL, "cpu");
612f2783c15SPaul Mackerras 
613f2783c15SPaul Mackerras 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
614f2783c15SPaul Mackerras 	node_found = 0;
615f2783c15SPaul Mackerras 	if (cpu != 0) {
616f2783c15SPaul Mackerras 		fp = (unsigned int *)get_property(cpu, "timebase-frequency",
617f2783c15SPaul Mackerras 						  NULL);
618f2783c15SPaul Mackerras 		if (fp != 0) {
619f2783c15SPaul Mackerras 			node_found = 1;
620f2783c15SPaul Mackerras 			ppc_tb_freq = *fp;
621f2783c15SPaul Mackerras 		}
622f2783c15SPaul Mackerras 	}
623f2783c15SPaul Mackerras 	if (!node_found)
624f2783c15SPaul Mackerras 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
625f2783c15SPaul Mackerras 				"(not found)\n");
626f2783c15SPaul Mackerras 
627f2783c15SPaul Mackerras 	ppc_proc_freq = DEFAULT_PROC_FREQ;
628f2783c15SPaul Mackerras 	node_found = 0;
629f2783c15SPaul Mackerras 	if (cpu != 0) {
630f2783c15SPaul Mackerras 		fp = (unsigned int *)get_property(cpu, "clock-frequency",
631f2783c15SPaul Mackerras 						  NULL);
632f2783c15SPaul Mackerras 		if (fp != 0) {
633f2783c15SPaul Mackerras 			node_found = 1;
634f2783c15SPaul Mackerras 			ppc_proc_freq = *fp;
635f2783c15SPaul Mackerras 		}
636f2783c15SPaul Mackerras 	}
6370fd6f717SKumar Gala #ifdef CONFIG_BOOKE
6380fd6f717SKumar Gala 	/* Set the time base to zero */
6390fd6f717SKumar Gala 	mtspr(SPRN_TBWL, 0);
6400fd6f717SKumar Gala 	mtspr(SPRN_TBWU, 0);
6410fd6f717SKumar Gala 
6420fd6f717SKumar Gala 	/* Clear any pending timer interrupts */
6430fd6f717SKumar Gala 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
6440fd6f717SKumar Gala 
6450fd6f717SKumar Gala 	/* Enable decrementer interrupt */
6460fd6f717SKumar Gala 	mtspr(SPRN_TCR, TCR_DIE);
6470fd6f717SKumar Gala #endif
648f2783c15SPaul Mackerras 	if (!node_found)
649f2783c15SPaul Mackerras 		printk(KERN_ERR "WARNING: Estimating processor frequency "
650f2783c15SPaul Mackerras 				"(not found)\n");
651f2783c15SPaul Mackerras 
652f2783c15SPaul Mackerras 	of_node_put(cpu);
653f2783c15SPaul Mackerras }
654f2783c15SPaul Mackerras 
655f2783c15SPaul Mackerras unsigned long get_boot_time(void)
656f2783c15SPaul Mackerras {
657f2783c15SPaul Mackerras 	struct rtc_time tm;
658f2783c15SPaul Mackerras 
659f2783c15SPaul Mackerras 	if (ppc_md.get_boot_time)
660f2783c15SPaul Mackerras 		return ppc_md.get_boot_time();
661f2783c15SPaul Mackerras 	if (!ppc_md.get_rtc_time)
662f2783c15SPaul Mackerras 		return 0;
663f2783c15SPaul Mackerras 	ppc_md.get_rtc_time(&tm);
664f2783c15SPaul Mackerras 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
665f2783c15SPaul Mackerras 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
666f2783c15SPaul Mackerras }
667f2783c15SPaul Mackerras 
668f2783c15SPaul Mackerras /* This function is only called on the boot processor */
669f2783c15SPaul Mackerras void __init time_init(void)
670f2783c15SPaul Mackerras {
671f2783c15SPaul Mackerras 	unsigned long flags;
672f2783c15SPaul Mackerras 	unsigned long tm = 0;
673f2783c15SPaul Mackerras 	struct div_result res;
674f2783c15SPaul Mackerras 	u64 scale;
675f2783c15SPaul Mackerras 	unsigned shift;
676f2783c15SPaul Mackerras 
677f2783c15SPaul Mackerras         if (ppc_md.time_init != NULL)
678f2783c15SPaul Mackerras                 timezone_offset = ppc_md.time_init();
679f2783c15SPaul Mackerras 
68096c44507SPaul Mackerras 	if (__USE_RTC()) {
68196c44507SPaul Mackerras 		/* 601 processor: dec counts down by 128 every 128ns */
68296c44507SPaul Mackerras 		ppc_tb_freq = 1000000000;
68396c44507SPaul Mackerras 		tb_last_stamp = get_rtcl();
68496c44507SPaul Mackerras 		tb_last_jiffy = tb_last_stamp;
68596c44507SPaul Mackerras 	} else {
68696c44507SPaul Mackerras 		/* Normal PowerPC with timebase register */
687f2783c15SPaul Mackerras 		ppc_md.calibrate_decr();
688374e99d4SPaul Mackerras 		printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
689374e99d4SPaul Mackerras 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
690374e99d4SPaul Mackerras 		printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n",
691374e99d4SPaul Mackerras 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
69296c44507SPaul Mackerras 		tb_last_stamp = tb_last_jiffy = get_tb();
69396c44507SPaul Mackerras 	}
694374e99d4SPaul Mackerras 
695374e99d4SPaul Mackerras 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
696374e99d4SPaul Mackerras 	tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
697374e99d4SPaul Mackerras 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
698374e99d4SPaul Mackerras 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
699374e99d4SPaul Mackerras 	div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res);
700374e99d4SPaul Mackerras 	tb_to_xs = res.result_low;
701374e99d4SPaul Mackerras 
702f2783c15SPaul Mackerras 	/*
703f2783c15SPaul Mackerras 	 * Compute scale factor for sched_clock.
704f2783c15SPaul Mackerras 	 * The calibrate_decr() function has set tb_ticks_per_sec,
705f2783c15SPaul Mackerras 	 * which is the timebase frequency.
706f2783c15SPaul Mackerras 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
707f2783c15SPaul Mackerras 	 * the 128-bit result as a 64.64 fixed-point number.
708f2783c15SPaul Mackerras 	 * We then shift that number right until it is less than 1.0,
709f2783c15SPaul Mackerras 	 * giving us the scale factor and shift count to use in
710f2783c15SPaul Mackerras 	 * sched_clock().
711f2783c15SPaul Mackerras 	 */
712f2783c15SPaul Mackerras 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
713f2783c15SPaul Mackerras 	scale = res.result_low;
714f2783c15SPaul Mackerras 	for (shift = 0; res.result_high != 0; ++shift) {
715f2783c15SPaul Mackerras 		scale = (scale >> 1) | (res.result_high << 63);
716f2783c15SPaul Mackerras 		res.result_high >>= 1;
717f2783c15SPaul Mackerras 	}
718f2783c15SPaul Mackerras 	tb_to_ns_scale = scale;
719f2783c15SPaul Mackerras 	tb_to_ns_shift = shift;
720f2783c15SPaul Mackerras 
721f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES
722f2783c15SPaul Mackerras 	if (!piranha_simulator)
723f2783c15SPaul Mackerras #endif
724f2783c15SPaul Mackerras 		tm = get_boot_time();
725f2783c15SPaul Mackerras 
726f2783c15SPaul Mackerras 	write_seqlock_irqsave(&xtime_lock, flags);
727f2783c15SPaul Mackerras 	xtime.tv_sec = tm;
728f2783c15SPaul Mackerras 	xtime.tv_nsec = 0;
729f2783c15SPaul Mackerras 	do_gtod.varp = &do_gtod.vars[0];
730f2783c15SPaul Mackerras 	do_gtod.var_idx = 0;
73196c44507SPaul Mackerras 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
732f2783c15SPaul Mackerras 	__get_cpu_var(last_jiffy) = tb_last_stamp;
733f2783c15SPaul Mackerras 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
734f2783c15SPaul Mackerras 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
735f2783c15SPaul Mackerras 	do_gtod.varp->tb_to_xs = tb_to_xs;
736f2783c15SPaul Mackerras 	do_gtod.tb_to_us = tb_to_us;
737a7f290daSBenjamin Herrenschmidt 
738a7f290daSBenjamin Herrenschmidt 	vdso_data->tb_orig_stamp = tb_last_jiffy;
739a7f290daSBenjamin Herrenschmidt 	vdso_data->tb_update_count = 0;
740a7f290daSBenjamin Herrenschmidt 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
741a7f290daSBenjamin Herrenschmidt 	vdso_data->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC;
742a7f290daSBenjamin Herrenschmidt 	vdso_data->tb_to_xs = tb_to_xs;
743f2783c15SPaul Mackerras 
744f2783c15SPaul Mackerras 	time_freq = 0;
745f2783c15SPaul Mackerras 
746f2783c15SPaul Mackerras 	/* If platform provided a timezone (pmac), we correct the time */
747f2783c15SPaul Mackerras         if (timezone_offset) {
748f2783c15SPaul Mackerras 		sys_tz.tz_minuteswest = -timezone_offset / 60;
749f2783c15SPaul Mackerras 		sys_tz.tz_dsttime = 0;
750f2783c15SPaul Mackerras 		xtime.tv_sec -= timezone_offset;
751f2783c15SPaul Mackerras         }
752f2783c15SPaul Mackerras 
753f2783c15SPaul Mackerras 	last_rtc_update = xtime.tv_sec;
754f2783c15SPaul Mackerras 	set_normalized_timespec(&wall_to_monotonic,
755f2783c15SPaul Mackerras 	                        -xtime.tv_sec, -xtime.tv_nsec);
756f2783c15SPaul Mackerras 	write_sequnlock_irqrestore(&xtime_lock, flags);
757f2783c15SPaul Mackerras 
758f2783c15SPaul Mackerras 	/* Not exact, but the timer interrupt takes care of this */
759f2783c15SPaul Mackerras 	set_dec(tb_ticks_per_jiffy);
760f2783c15SPaul Mackerras }
761f2783c15SPaul Mackerras 
762f2783c15SPaul Mackerras /*
763f2783c15SPaul Mackerras  * After adjtimex is called, adjust the conversion of tb ticks
764f2783c15SPaul Mackerras  * to microseconds to keep do_gettimeofday synchronized
765f2783c15SPaul Mackerras  * with ntpd.
766f2783c15SPaul Mackerras  *
767f2783c15SPaul Mackerras  * Use the time_adjust, time_freq and time_offset computed by adjtimex to
768f2783c15SPaul Mackerras  * adjust the frequency.
769f2783c15SPaul Mackerras  */
770f2783c15SPaul Mackerras 
771f2783c15SPaul Mackerras /* #define DEBUG_PPC_ADJTIMEX 1 */
772f2783c15SPaul Mackerras 
773f2783c15SPaul Mackerras void ppc_adjtimex(void)
774f2783c15SPaul Mackerras {
775f2783c15SPaul Mackerras #ifdef CONFIG_PPC64
776f2783c15SPaul Mackerras 	unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec,
777f2783c15SPaul Mackerras 		new_tb_to_xs, new_xsec, new_stamp_xsec;
778f2783c15SPaul Mackerras 	unsigned long tb_ticks_per_sec_delta;
779f2783c15SPaul Mackerras 	long delta_freq, ltemp;
780f2783c15SPaul Mackerras 	struct div_result divres;
781f2783c15SPaul Mackerras 	unsigned long flags;
782f2783c15SPaul Mackerras 	long singleshot_ppm = 0;
783f2783c15SPaul Mackerras 
784f2783c15SPaul Mackerras 	/*
785f2783c15SPaul Mackerras 	 * Compute parts per million frequency adjustment to
786f2783c15SPaul Mackerras 	 * accomplish the time adjustment implied by time_offset to be
787f2783c15SPaul Mackerras 	 * applied over the elapsed time indicated by time_constant.
788f2783c15SPaul Mackerras 	 * Use SHIFT_USEC to get it into the same units as
789f2783c15SPaul Mackerras 	 * time_freq.
790f2783c15SPaul Mackerras 	 */
791f2783c15SPaul Mackerras 	if ( time_offset < 0 ) {
792f2783c15SPaul Mackerras 		ltemp = -time_offset;
793f2783c15SPaul Mackerras 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
794f2783c15SPaul Mackerras 		ltemp >>= SHIFT_KG + time_constant;
795f2783c15SPaul Mackerras 		ltemp = -ltemp;
796f2783c15SPaul Mackerras 	} else {
797f2783c15SPaul Mackerras 		ltemp = time_offset;
798f2783c15SPaul Mackerras 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE;
799f2783c15SPaul Mackerras 		ltemp >>= SHIFT_KG + time_constant;
800f2783c15SPaul Mackerras 	}
801f2783c15SPaul Mackerras 
802f2783c15SPaul Mackerras 	/* If there is a single shot time adjustment in progress */
803f2783c15SPaul Mackerras 	if ( time_adjust ) {
804f2783c15SPaul Mackerras #ifdef DEBUG_PPC_ADJTIMEX
805f2783c15SPaul Mackerras 		printk("ppc_adjtimex: ");
806f2783c15SPaul Mackerras 		if ( adjusting_time == 0 )
807f2783c15SPaul Mackerras 			printk("starting ");
808f2783c15SPaul Mackerras 		printk("single shot time_adjust = %ld\n", time_adjust);
809f2783c15SPaul Mackerras #endif
810f2783c15SPaul Mackerras 
811f2783c15SPaul Mackerras 		adjusting_time = 1;
812f2783c15SPaul Mackerras 
813f2783c15SPaul Mackerras 		/*
814f2783c15SPaul Mackerras 		 * Compute parts per million frequency adjustment
815f2783c15SPaul Mackerras 		 * to match time_adjust
816f2783c15SPaul Mackerras 		 */
817f2783c15SPaul Mackerras 		singleshot_ppm = tickadj * HZ;
818f2783c15SPaul Mackerras 		/*
819f2783c15SPaul Mackerras 		 * The adjustment should be tickadj*HZ to match the code in
820f2783c15SPaul Mackerras 		 * linux/kernel/timer.c, but experiments show that this is too
821f2783c15SPaul Mackerras 		 * large. 3/4 of tickadj*HZ seems about right
822f2783c15SPaul Mackerras 		 */
823f2783c15SPaul Mackerras 		singleshot_ppm -= singleshot_ppm / 4;
824f2783c15SPaul Mackerras 		/* Use SHIFT_USEC to get it into the same units as time_freq */
825f2783c15SPaul Mackerras 		singleshot_ppm <<= SHIFT_USEC;
826f2783c15SPaul Mackerras 		if ( time_adjust < 0 )
827f2783c15SPaul Mackerras 			singleshot_ppm = -singleshot_ppm;
828f2783c15SPaul Mackerras 	}
829f2783c15SPaul Mackerras 	else {
830f2783c15SPaul Mackerras #ifdef DEBUG_PPC_ADJTIMEX
831f2783c15SPaul Mackerras 		if ( adjusting_time )
832f2783c15SPaul Mackerras 			printk("ppc_adjtimex: ending single shot time_adjust\n");
833f2783c15SPaul Mackerras #endif
834f2783c15SPaul Mackerras 		adjusting_time = 0;
835f2783c15SPaul Mackerras 	}
836f2783c15SPaul Mackerras 
837f2783c15SPaul Mackerras 	/* Add up all of the frequency adjustments */
838f2783c15SPaul Mackerras 	delta_freq = time_freq + ltemp + singleshot_ppm;
839f2783c15SPaul Mackerras 
840f2783c15SPaul Mackerras 	/*
841f2783c15SPaul Mackerras 	 * Compute a new value for tb_ticks_per_sec based on
842f2783c15SPaul Mackerras 	 * the frequency adjustment
843f2783c15SPaul Mackerras 	 */
844f2783c15SPaul Mackerras 	den = 1000000 * (1 << (SHIFT_USEC - 8));
845f2783c15SPaul Mackerras 	if ( delta_freq < 0 ) {
846f2783c15SPaul Mackerras 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den;
847f2783c15SPaul Mackerras 		new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta;
848f2783c15SPaul Mackerras 	}
849f2783c15SPaul Mackerras 	else {
850f2783c15SPaul Mackerras 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den;
851f2783c15SPaul Mackerras 		new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta;
852f2783c15SPaul Mackerras 	}
853f2783c15SPaul Mackerras 
854f2783c15SPaul Mackerras #ifdef DEBUG_PPC_ADJTIMEX
855f2783c15SPaul Mackerras 	printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm);
856f2783c15SPaul Mackerras 	printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld  new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec);
857f2783c15SPaul Mackerras #endif
858f2783c15SPaul Mackerras 
859f2783c15SPaul Mackerras 	/*
860f2783c15SPaul Mackerras 	 * Compute a new value of tb_to_xs (used to convert tb to
861f2783c15SPaul Mackerras 	 * microseconds) and a new value of stamp_xsec which is the
862f2783c15SPaul Mackerras 	 * time (in 1/2^20 second units) corresponding to
863f2783c15SPaul Mackerras 	 * tb_orig_stamp.  This new value of stamp_xsec compensates
864f2783c15SPaul Mackerras 	 * for the change in frequency (implied by the new tb_to_xs)
865f2783c15SPaul Mackerras 	 * which guarantees that the current time remains the same.
866f2783c15SPaul Mackerras 	 */
867f2783c15SPaul Mackerras 	write_seqlock_irqsave( &xtime_lock, flags );
868f2783c15SPaul Mackerras 	tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp;
869f2783c15SPaul Mackerras 	div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres);
870f2783c15SPaul Mackerras 	new_tb_to_xs = divres.result_low;
871f2783c15SPaul Mackerras 	new_xsec = mulhdu(tb_ticks, new_tb_to_xs);
872f2783c15SPaul Mackerras 
873f2783c15SPaul Mackerras 	old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs);
874f2783c15SPaul Mackerras 	new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec;
875f2783c15SPaul Mackerras 
876f2783c15SPaul Mackerras 	update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs);
877f2783c15SPaul Mackerras 
878f2783c15SPaul Mackerras 	write_sequnlock_irqrestore( &xtime_lock, flags );
879f2783c15SPaul Mackerras #endif /* CONFIG_PPC64 */
880f2783c15SPaul Mackerras }
881f2783c15SPaul Mackerras 
882f2783c15SPaul Mackerras 
883f2783c15SPaul Mackerras #define FEBRUARY	2
884f2783c15SPaul Mackerras #define	STARTOFTIME	1970
885f2783c15SPaul Mackerras #define SECDAY		86400L
886f2783c15SPaul Mackerras #define SECYR		(SECDAY * 365)
887f2783c15SPaul Mackerras #define	leapyear(year)		((year) % 4 == 0 && \
888f2783c15SPaul Mackerras 				 ((year) % 100 != 0 || (year) % 400 == 0))
889f2783c15SPaul Mackerras #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
890f2783c15SPaul Mackerras #define	days_in_month(a) 	(month_days[(a) - 1])
891f2783c15SPaul Mackerras 
892f2783c15SPaul Mackerras static int month_days[12] = {
893f2783c15SPaul Mackerras 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
894f2783c15SPaul Mackerras };
895f2783c15SPaul Mackerras 
896f2783c15SPaul Mackerras /*
897f2783c15SPaul Mackerras  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
898f2783c15SPaul Mackerras  */
899f2783c15SPaul Mackerras void GregorianDay(struct rtc_time * tm)
900f2783c15SPaul Mackerras {
901f2783c15SPaul Mackerras 	int leapsToDate;
902f2783c15SPaul Mackerras 	int lastYear;
903f2783c15SPaul Mackerras 	int day;
904f2783c15SPaul Mackerras 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
905f2783c15SPaul Mackerras 
906f2783c15SPaul Mackerras 	lastYear = tm->tm_year - 1;
907f2783c15SPaul Mackerras 
908f2783c15SPaul Mackerras 	/*
909f2783c15SPaul Mackerras 	 * Number of leap corrections to apply up to end of last year
910f2783c15SPaul Mackerras 	 */
911f2783c15SPaul Mackerras 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
912f2783c15SPaul Mackerras 
913f2783c15SPaul Mackerras 	/*
914f2783c15SPaul Mackerras 	 * This year is a leap year if it is divisible by 4 except when it is
915f2783c15SPaul Mackerras 	 * divisible by 100 unless it is divisible by 400
916f2783c15SPaul Mackerras 	 *
917f2783c15SPaul Mackerras 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
918f2783c15SPaul Mackerras 	 */
919f2783c15SPaul Mackerras 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
920f2783c15SPaul Mackerras 
921f2783c15SPaul Mackerras 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
922f2783c15SPaul Mackerras 		   tm->tm_mday;
923f2783c15SPaul Mackerras 
924f2783c15SPaul Mackerras 	tm->tm_wday = day % 7;
925f2783c15SPaul Mackerras }
926f2783c15SPaul Mackerras 
927f2783c15SPaul Mackerras void to_tm(int tim, struct rtc_time * tm)
928f2783c15SPaul Mackerras {
929f2783c15SPaul Mackerras 	register int    i;
930f2783c15SPaul Mackerras 	register long   hms, day;
931f2783c15SPaul Mackerras 
932f2783c15SPaul Mackerras 	day = tim / SECDAY;
933f2783c15SPaul Mackerras 	hms = tim % SECDAY;
934f2783c15SPaul Mackerras 
935f2783c15SPaul Mackerras 	/* Hours, minutes, seconds are easy */
936f2783c15SPaul Mackerras 	tm->tm_hour = hms / 3600;
937f2783c15SPaul Mackerras 	tm->tm_min = (hms % 3600) / 60;
938f2783c15SPaul Mackerras 	tm->tm_sec = (hms % 3600) % 60;
939f2783c15SPaul Mackerras 
940f2783c15SPaul Mackerras 	/* Number of years in days */
941f2783c15SPaul Mackerras 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
942f2783c15SPaul Mackerras 		day -= days_in_year(i);
943f2783c15SPaul Mackerras 	tm->tm_year = i;
944f2783c15SPaul Mackerras 
945f2783c15SPaul Mackerras 	/* Number of months in days left */
946f2783c15SPaul Mackerras 	if (leapyear(tm->tm_year))
947f2783c15SPaul Mackerras 		days_in_month(FEBRUARY) = 29;
948f2783c15SPaul Mackerras 	for (i = 1; day >= days_in_month(i); i++)
949f2783c15SPaul Mackerras 		day -= days_in_month(i);
950f2783c15SPaul Mackerras 	days_in_month(FEBRUARY) = 28;
951f2783c15SPaul Mackerras 	tm->tm_mon = i;
952f2783c15SPaul Mackerras 
953f2783c15SPaul Mackerras 	/* Days are what is left over (+1) from all that. */
954f2783c15SPaul Mackerras 	tm->tm_mday = day + 1;
955f2783c15SPaul Mackerras 
956f2783c15SPaul Mackerras 	/*
957f2783c15SPaul Mackerras 	 * Determine the day of week
958f2783c15SPaul Mackerras 	 */
959f2783c15SPaul Mackerras 	GregorianDay(tm);
960f2783c15SPaul Mackerras }
961f2783c15SPaul Mackerras 
962f2783c15SPaul Mackerras /* Auxiliary function to compute scaling factors */
963f2783c15SPaul Mackerras /* Actually the choice of a timebase running at 1/4 the of the bus
964f2783c15SPaul Mackerras  * frequency giving resolution of a few tens of nanoseconds is quite nice.
965f2783c15SPaul Mackerras  * It makes this computation very precise (27-28 bits typically) which
966f2783c15SPaul Mackerras  * is optimistic considering the stability of most processor clock
967f2783c15SPaul Mackerras  * oscillators and the precision with which the timebase frequency
968f2783c15SPaul Mackerras  * is measured but does not harm.
969f2783c15SPaul Mackerras  */
970f2783c15SPaul Mackerras unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
971f2783c15SPaul Mackerras {
972f2783c15SPaul Mackerras         unsigned mlt=0, tmp, err;
973f2783c15SPaul Mackerras         /* No concern for performance, it's done once: use a stupid
974f2783c15SPaul Mackerras          * but safe and compact method to find the multiplier.
975f2783c15SPaul Mackerras          */
976f2783c15SPaul Mackerras 
977f2783c15SPaul Mackerras         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
978f2783c15SPaul Mackerras                 if (mulhwu(inscale, mlt|tmp) < outscale)
979f2783c15SPaul Mackerras 			mlt |= tmp;
980f2783c15SPaul Mackerras         }
981f2783c15SPaul Mackerras 
982f2783c15SPaul Mackerras         /* We might still be off by 1 for the best approximation.
983f2783c15SPaul Mackerras          * A side effect of this is that if outscale is too large
984f2783c15SPaul Mackerras          * the returned value will be zero.
985f2783c15SPaul Mackerras          * Many corner cases have been checked and seem to work,
986f2783c15SPaul Mackerras          * some might have been forgotten in the test however.
987f2783c15SPaul Mackerras          */
988f2783c15SPaul Mackerras 
989f2783c15SPaul Mackerras         err = inscale * (mlt+1);
990f2783c15SPaul Mackerras         if (err <= inscale/2)
991f2783c15SPaul Mackerras 		mlt++;
992f2783c15SPaul Mackerras         return mlt;
993f2783c15SPaul Mackerras }
994f2783c15SPaul Mackerras 
995f2783c15SPaul Mackerras /*
996f2783c15SPaul Mackerras  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
997f2783c15SPaul Mackerras  * result.
998f2783c15SPaul Mackerras  */
999f2783c15SPaul Mackerras void div128_by_32(u64 dividend_high, u64 dividend_low,
1000f2783c15SPaul Mackerras 		  unsigned divisor, struct div_result *dr)
1001f2783c15SPaul Mackerras {
1002f2783c15SPaul Mackerras 	unsigned long a, b, c, d;
1003f2783c15SPaul Mackerras 	unsigned long w, x, y, z;
1004f2783c15SPaul Mackerras 	u64 ra, rb, rc;
1005f2783c15SPaul Mackerras 
1006f2783c15SPaul Mackerras 	a = dividend_high >> 32;
1007f2783c15SPaul Mackerras 	b = dividend_high & 0xffffffff;
1008f2783c15SPaul Mackerras 	c = dividend_low >> 32;
1009f2783c15SPaul Mackerras 	d = dividend_low & 0xffffffff;
1010f2783c15SPaul Mackerras 
1011f2783c15SPaul Mackerras 	w = a / divisor;
1012f2783c15SPaul Mackerras 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1013f2783c15SPaul Mackerras 
1014f2783c15SPaul Mackerras 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1015f2783c15SPaul Mackerras 	x = ra;
1016f2783c15SPaul Mackerras 
1017f2783c15SPaul Mackerras 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1018f2783c15SPaul Mackerras 	y = rb;
1019f2783c15SPaul Mackerras 
1020f2783c15SPaul Mackerras 	do_div(rc, divisor);
1021f2783c15SPaul Mackerras 	z = rc;
1022f2783c15SPaul Mackerras 
1023f2783c15SPaul Mackerras 	dr->result_high = ((u64)w << 32) + x;
1024f2783c15SPaul Mackerras 	dr->result_low  = ((u64)y << 32) + z;
1025f2783c15SPaul Mackerras 
1026f2783c15SPaul Mackerras }
1027