1f2783c15SPaul Mackerras /* 2f2783c15SPaul Mackerras * Common time routines among all ppc machines. 3f2783c15SPaul Mackerras * 4f2783c15SPaul Mackerras * Written by Cort Dougan (cort@cs.nmt.edu) to merge 5f2783c15SPaul Mackerras * Paul Mackerras' version and mine for PReP and Pmac. 6f2783c15SPaul Mackerras * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). 7f2783c15SPaul Mackerras * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) 8f2783c15SPaul Mackerras * 9f2783c15SPaul Mackerras * First round of bugfixes by Gabriel Paubert (paubert@iram.es) 10f2783c15SPaul Mackerras * to make clock more stable (2.4.0-test5). The only thing 11f2783c15SPaul Mackerras * that this code assumes is that the timebases have been synchronized 12f2783c15SPaul Mackerras * by firmware on SMP and are never stopped (never do sleep 13f2783c15SPaul Mackerras * on SMP then, nap and doze are OK). 14f2783c15SPaul Mackerras * 15f2783c15SPaul Mackerras * Speeded up do_gettimeofday by getting rid of references to 16f2783c15SPaul Mackerras * xtime (which required locks for consistency). (mikejc@us.ibm.com) 17f2783c15SPaul Mackerras * 18f2783c15SPaul Mackerras * TODO (not necessarily in this file): 19f2783c15SPaul Mackerras * - improve precision and reproducibility of timebase frequency 20f2783c15SPaul Mackerras * measurement at boot time. (for iSeries, we calibrate the timebase 21f2783c15SPaul Mackerras * against the Titan chip's clock.) 22f2783c15SPaul Mackerras * - for astronomical applications: add a new function to get 23f2783c15SPaul Mackerras * non ambiguous timestamps even around leap seconds. This needs 24f2783c15SPaul Mackerras * a new timestamp format and a good name. 25f2783c15SPaul Mackerras * 26f2783c15SPaul Mackerras * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 27f2783c15SPaul Mackerras * "A Kernel Model for Precision Timekeeping" by Dave Mills 28f2783c15SPaul Mackerras * 29f2783c15SPaul Mackerras * This program is free software; you can redistribute it and/or 30f2783c15SPaul Mackerras * modify it under the terms of the GNU General Public License 31f2783c15SPaul Mackerras * as published by the Free Software Foundation; either version 32f2783c15SPaul Mackerras * 2 of the License, or (at your option) any later version. 33f2783c15SPaul Mackerras */ 34f2783c15SPaul Mackerras 35f2783c15SPaul Mackerras #include <linux/config.h> 36f2783c15SPaul Mackerras #include <linux/errno.h> 37f2783c15SPaul Mackerras #include <linux/module.h> 38f2783c15SPaul Mackerras #include <linux/sched.h> 39f2783c15SPaul Mackerras #include <linux/kernel.h> 40f2783c15SPaul Mackerras #include <linux/param.h> 41f2783c15SPaul Mackerras #include <linux/string.h> 42f2783c15SPaul Mackerras #include <linux/mm.h> 43f2783c15SPaul Mackerras #include <linux/interrupt.h> 44f2783c15SPaul Mackerras #include <linux/timex.h> 45f2783c15SPaul Mackerras #include <linux/kernel_stat.h> 46f2783c15SPaul Mackerras #include <linux/time.h> 47f2783c15SPaul Mackerras #include <linux/init.h> 48f2783c15SPaul Mackerras #include <linux/profile.h> 49f2783c15SPaul Mackerras #include <linux/cpu.h> 50f2783c15SPaul Mackerras #include <linux/security.h> 51f2783c15SPaul Mackerras #include <linux/percpu.h> 52f2783c15SPaul Mackerras #include <linux/rtc.h> 53*092b8f34SPaul Mackerras #include <linux/jiffies.h> 54f2783c15SPaul Mackerras 55f2783c15SPaul Mackerras #include <asm/io.h> 56f2783c15SPaul Mackerras #include <asm/processor.h> 57f2783c15SPaul Mackerras #include <asm/nvram.h> 58f2783c15SPaul Mackerras #include <asm/cache.h> 59f2783c15SPaul Mackerras #include <asm/machdep.h> 60f2783c15SPaul Mackerras #include <asm/uaccess.h> 61f2783c15SPaul Mackerras #include <asm/time.h> 62f2783c15SPaul Mackerras #include <asm/prom.h> 63f2783c15SPaul Mackerras #include <asm/irq.h> 64f2783c15SPaul Mackerras #include <asm/div64.h> 652249ca9dSPaul Mackerras #include <asm/smp.h> 66a7f290daSBenjamin Herrenschmidt #include <asm/vdso_datapage.h> 67f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 68f2783c15SPaul Mackerras #include <asm/firmware.h> 69f2783c15SPaul Mackerras #endif 70f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 718875ccfbSKelly Daly #include <asm/iseries/it_lp_queue.h> 728021b8a7SKelly Daly #include <asm/iseries/hv_call_xm.h> 73f2783c15SPaul Mackerras #endif 74732ee21fSOlof Johansson #include <asm/smp.h> 75f2783c15SPaul Mackerras 76f2783c15SPaul Mackerras /* keep track of when we need to update the rtc */ 77f2783c15SPaul Mackerras time_t last_rtc_update; 78f2783c15SPaul Mackerras extern int piranha_simulator; 79f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 80f2783c15SPaul Mackerras unsigned long iSeries_recal_titan = 0; 81f2783c15SPaul Mackerras unsigned long iSeries_recal_tb = 0; 82f2783c15SPaul Mackerras static unsigned long first_settimeofday = 1; 83f2783c15SPaul Mackerras #endif 84f2783c15SPaul Mackerras 85f2783c15SPaul Mackerras /* The decrementer counts down by 128 every 128ns on a 601. */ 86f2783c15SPaul Mackerras #define DECREMENTER_COUNT_601 (1000000000 / HZ) 87f2783c15SPaul Mackerras 88f2783c15SPaul Mackerras #define XSEC_PER_SEC (1024*1024) 89f2783c15SPaul Mackerras 90f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 91f2783c15SPaul Mackerras #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC) 92f2783c15SPaul Mackerras #else 93f2783c15SPaul Mackerras /* compute ((xsec << 12) * max) >> 32 */ 94f2783c15SPaul Mackerras #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max) 95f2783c15SPaul Mackerras #endif 96f2783c15SPaul Mackerras 97f2783c15SPaul Mackerras unsigned long tb_ticks_per_jiffy; 98f2783c15SPaul Mackerras unsigned long tb_ticks_per_usec = 100; /* sane default */ 99f2783c15SPaul Mackerras EXPORT_SYMBOL(tb_ticks_per_usec); 100f2783c15SPaul Mackerras unsigned long tb_ticks_per_sec; 101f2783c15SPaul Mackerras u64 tb_to_xs; 102f2783c15SPaul Mackerras unsigned tb_to_us; 103*092b8f34SPaul Mackerras 104*092b8f34SPaul Mackerras #define TICKLEN_SCALE (SHIFT_SCALE - 10) 105*092b8f34SPaul Mackerras u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */ 106*092b8f34SPaul Mackerras u64 ticklen_to_xs; /* 0.64 fraction */ 107*092b8f34SPaul Mackerras 108*092b8f34SPaul Mackerras /* If last_tick_len corresponds to about 1/HZ seconds, then 109*092b8f34SPaul Mackerras last_tick_len << TICKLEN_SHIFT will be about 2^63. */ 110*092b8f34SPaul Mackerras #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ) 111*092b8f34SPaul Mackerras 112f2783c15SPaul Mackerras DEFINE_SPINLOCK(rtc_lock); 113f2783c15SPaul Mackerras EXPORT_SYMBOL_GPL(rtc_lock); 114f2783c15SPaul Mackerras 115f2783c15SPaul Mackerras u64 tb_to_ns_scale; 116f2783c15SPaul Mackerras unsigned tb_to_ns_shift; 117f2783c15SPaul Mackerras 118f2783c15SPaul Mackerras struct gettimeofday_struct do_gtod; 119f2783c15SPaul Mackerras 120f2783c15SPaul Mackerras extern unsigned long wall_jiffies; 121f2783c15SPaul Mackerras 122f2783c15SPaul Mackerras extern struct timezone sys_tz; 123f2783c15SPaul Mackerras static long timezone_offset; 124f2783c15SPaul Mackerras 125f2783c15SPaul Mackerras unsigned long ppc_proc_freq; 126f2783c15SPaul Mackerras unsigned long ppc_tb_freq; 127f2783c15SPaul Mackerras 12896c44507SPaul Mackerras u64 tb_last_jiffy __cacheline_aligned_in_smp; 12996c44507SPaul Mackerras unsigned long tb_last_stamp; 13096c44507SPaul Mackerras 13196c44507SPaul Mackerras /* 13296c44507SPaul Mackerras * Note that on ppc32 this only stores the bottom 32 bits of 13396c44507SPaul Mackerras * the timebase value, but that's enough to tell when a jiffy 13496c44507SPaul Mackerras * has passed. 13596c44507SPaul Mackerras */ 13696c44507SPaul Mackerras DEFINE_PER_CPU(unsigned long, last_jiffy); 13796c44507SPaul Mackerras 1386defa38bSPaul Mackerras void __delay(unsigned long loops) 1396defa38bSPaul Mackerras { 1406defa38bSPaul Mackerras unsigned long start; 1416defa38bSPaul Mackerras int diff; 1426defa38bSPaul Mackerras 1436defa38bSPaul Mackerras if (__USE_RTC()) { 1446defa38bSPaul Mackerras start = get_rtcl(); 1456defa38bSPaul Mackerras do { 1466defa38bSPaul Mackerras /* the RTCL register wraps at 1000000000 */ 1476defa38bSPaul Mackerras diff = get_rtcl() - start; 1486defa38bSPaul Mackerras if (diff < 0) 1496defa38bSPaul Mackerras diff += 1000000000; 1506defa38bSPaul Mackerras } while (diff < loops); 1516defa38bSPaul Mackerras } else { 1526defa38bSPaul Mackerras start = get_tbl(); 1536defa38bSPaul Mackerras while (get_tbl() - start < loops) 1546defa38bSPaul Mackerras HMT_low(); 1556defa38bSPaul Mackerras HMT_medium(); 1566defa38bSPaul Mackerras } 1576defa38bSPaul Mackerras } 1586defa38bSPaul Mackerras EXPORT_SYMBOL(__delay); 1596defa38bSPaul Mackerras 1606defa38bSPaul Mackerras void udelay(unsigned long usecs) 1616defa38bSPaul Mackerras { 1626defa38bSPaul Mackerras __delay(tb_ticks_per_usec * usecs); 1636defa38bSPaul Mackerras } 1646defa38bSPaul Mackerras EXPORT_SYMBOL(udelay); 1656defa38bSPaul Mackerras 166f2783c15SPaul Mackerras static __inline__ void timer_check_rtc(void) 167f2783c15SPaul Mackerras { 168f2783c15SPaul Mackerras /* 169f2783c15SPaul Mackerras * update the rtc when needed, this should be performed on the 170f2783c15SPaul Mackerras * right fraction of a second. Half or full second ? 171f2783c15SPaul Mackerras * Full second works on mk48t59 clocks, others need testing. 172f2783c15SPaul Mackerras * Note that this update is basically only used through 173f2783c15SPaul Mackerras * the adjtimex system calls. Setting the HW clock in 174f2783c15SPaul Mackerras * any other way is a /dev/rtc and userland business. 175f2783c15SPaul Mackerras * This is still wrong by -0.5/+1.5 jiffies because of the 176f2783c15SPaul Mackerras * timer interrupt resolution and possible delay, but here we 177f2783c15SPaul Mackerras * hit a quantization limit which can only be solved by higher 178f2783c15SPaul Mackerras * resolution timers and decoupling time management from timer 179f2783c15SPaul Mackerras * interrupts. This is also wrong on the clocks 180f2783c15SPaul Mackerras * which require being written at the half second boundary. 181f2783c15SPaul Mackerras * We should have an rtc call that only sets the minutes and 182f2783c15SPaul Mackerras * seconds like on Intel to avoid problems with non UTC clocks. 183f2783c15SPaul Mackerras */ 184d2e61512SKumar Gala if (ppc_md.set_rtc_time && ntp_synced() && 185f2783c15SPaul Mackerras xtime.tv_sec - last_rtc_update >= 659 && 186*092b8f34SPaul Mackerras abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) { 187f2783c15SPaul Mackerras struct rtc_time tm; 188f2783c15SPaul Mackerras to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); 189f2783c15SPaul Mackerras tm.tm_year -= 1900; 190f2783c15SPaul Mackerras tm.tm_mon -= 1; 191f2783c15SPaul Mackerras if (ppc_md.set_rtc_time(&tm) == 0) 192f2783c15SPaul Mackerras last_rtc_update = xtime.tv_sec + 1; 193f2783c15SPaul Mackerras else 194f2783c15SPaul Mackerras /* Try again one minute later */ 195f2783c15SPaul Mackerras last_rtc_update += 60; 196f2783c15SPaul Mackerras } 197f2783c15SPaul Mackerras } 198f2783c15SPaul Mackerras 199f2783c15SPaul Mackerras /* 200f2783c15SPaul Mackerras * This version of gettimeofday has microsecond resolution. 201f2783c15SPaul Mackerras */ 202f2783c15SPaul Mackerras static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) 203f2783c15SPaul Mackerras { 204f2783c15SPaul Mackerras unsigned long sec, usec; 205f2783c15SPaul Mackerras u64 tb_ticks, xsec; 206f2783c15SPaul Mackerras struct gettimeofday_vars *temp_varp; 207f2783c15SPaul Mackerras u64 temp_tb_to_xs, temp_stamp_xsec; 208f2783c15SPaul Mackerras 209f2783c15SPaul Mackerras /* 210f2783c15SPaul Mackerras * These calculations are faster (gets rid of divides) 211f2783c15SPaul Mackerras * if done in units of 1/2^20 rather than microseconds. 212f2783c15SPaul Mackerras * The conversion to microseconds at the end is done 213f2783c15SPaul Mackerras * without a divide (and in fact, without a multiply) 214f2783c15SPaul Mackerras */ 215f2783c15SPaul Mackerras temp_varp = do_gtod.varp; 216f2783c15SPaul Mackerras tb_ticks = tb_val - temp_varp->tb_orig_stamp; 217f2783c15SPaul Mackerras temp_tb_to_xs = temp_varp->tb_to_xs; 218f2783c15SPaul Mackerras temp_stamp_xsec = temp_varp->stamp_xsec; 219f2783c15SPaul Mackerras xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); 220f2783c15SPaul Mackerras sec = xsec / XSEC_PER_SEC; 221f2783c15SPaul Mackerras usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); 222f2783c15SPaul Mackerras usec = SCALE_XSEC(usec, 1000000); 223f2783c15SPaul Mackerras 224f2783c15SPaul Mackerras tv->tv_sec = sec; 225f2783c15SPaul Mackerras tv->tv_usec = usec; 226f2783c15SPaul Mackerras } 227f2783c15SPaul Mackerras 228f2783c15SPaul Mackerras void do_gettimeofday(struct timeval *tv) 229f2783c15SPaul Mackerras { 23096c44507SPaul Mackerras if (__USE_RTC()) { 23196c44507SPaul Mackerras /* do this the old way */ 23296c44507SPaul Mackerras unsigned long flags, seq; 233*092b8f34SPaul Mackerras unsigned int sec, nsec, usec; 23496c44507SPaul Mackerras 23596c44507SPaul Mackerras do { 23696c44507SPaul Mackerras seq = read_seqbegin_irqsave(&xtime_lock, flags); 23796c44507SPaul Mackerras sec = xtime.tv_sec; 23896c44507SPaul Mackerras nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp); 23996c44507SPaul Mackerras } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); 240*092b8f34SPaul Mackerras usec = nsec / 1000; 24196c44507SPaul Mackerras while (usec >= 1000000) { 24296c44507SPaul Mackerras usec -= 1000000; 24396c44507SPaul Mackerras ++sec; 24496c44507SPaul Mackerras } 24596c44507SPaul Mackerras tv->tv_sec = sec; 24696c44507SPaul Mackerras tv->tv_usec = usec; 24796c44507SPaul Mackerras return; 24896c44507SPaul Mackerras } 249f2783c15SPaul Mackerras __do_gettimeofday(tv, get_tb()); 250f2783c15SPaul Mackerras } 251f2783c15SPaul Mackerras 252f2783c15SPaul Mackerras EXPORT_SYMBOL(do_gettimeofday); 253f2783c15SPaul Mackerras 254f2783c15SPaul Mackerras /* 255f2783c15SPaul Mackerras * There are two copies of tb_to_xs and stamp_xsec so that no 256f2783c15SPaul Mackerras * lock is needed to access and use these values in 257f2783c15SPaul Mackerras * do_gettimeofday. We alternate the copies and as long as a 258f2783c15SPaul Mackerras * reasonable time elapses between changes, there will never 259f2783c15SPaul Mackerras * be inconsistent values. ntpd has a minimum of one minute 260f2783c15SPaul Mackerras * between updates. 261f2783c15SPaul Mackerras */ 262f2783c15SPaul Mackerras static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, 2635d14a18dSPaul Mackerras u64 new_tb_to_xs) 264f2783c15SPaul Mackerras { 265f2783c15SPaul Mackerras unsigned temp_idx; 266f2783c15SPaul Mackerras struct gettimeofday_vars *temp_varp; 267f2783c15SPaul Mackerras 268f2783c15SPaul Mackerras temp_idx = (do_gtod.var_idx == 0); 269f2783c15SPaul Mackerras temp_varp = &do_gtod.vars[temp_idx]; 270f2783c15SPaul Mackerras 271f2783c15SPaul Mackerras temp_varp->tb_to_xs = new_tb_to_xs; 272f2783c15SPaul Mackerras temp_varp->tb_orig_stamp = new_tb_stamp; 273f2783c15SPaul Mackerras temp_varp->stamp_xsec = new_stamp_xsec; 274f2783c15SPaul Mackerras smp_mb(); 275f2783c15SPaul Mackerras do_gtod.varp = temp_varp; 276f2783c15SPaul Mackerras do_gtod.var_idx = temp_idx; 277f2783c15SPaul Mackerras 278f2783c15SPaul Mackerras /* 279f2783c15SPaul Mackerras * tb_update_count is used to allow the userspace gettimeofday code 280f2783c15SPaul Mackerras * to assure itself that it sees a consistent view of the tb_to_xs and 281f2783c15SPaul Mackerras * stamp_xsec variables. It reads the tb_update_count, then reads 282f2783c15SPaul Mackerras * tb_to_xs and stamp_xsec and then reads tb_update_count again. If 283f2783c15SPaul Mackerras * the two values of tb_update_count match and are even then the 284f2783c15SPaul Mackerras * tb_to_xs and stamp_xsec values are consistent. If not, then it 285f2783c15SPaul Mackerras * loops back and reads them again until this criteria is met. 286f2783c15SPaul Mackerras */ 287a7f290daSBenjamin Herrenschmidt ++(vdso_data->tb_update_count); 288f2783c15SPaul Mackerras smp_wmb(); 289a7f290daSBenjamin Herrenschmidt vdso_data->tb_orig_stamp = new_tb_stamp; 290a7f290daSBenjamin Herrenschmidt vdso_data->stamp_xsec = new_stamp_xsec; 291a7f290daSBenjamin Herrenschmidt vdso_data->tb_to_xs = new_tb_to_xs; 292a7f290daSBenjamin Herrenschmidt vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; 293a7f290daSBenjamin Herrenschmidt vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; 294f2783c15SPaul Mackerras smp_wmb(); 295a7f290daSBenjamin Herrenschmidt ++(vdso_data->tb_update_count); 296f2783c15SPaul Mackerras } 297f2783c15SPaul Mackerras 298f2783c15SPaul Mackerras /* 299f2783c15SPaul Mackerras * When the timebase - tb_orig_stamp gets too big, we do a manipulation 300f2783c15SPaul Mackerras * between tb_orig_stamp and stamp_xsec. The goal here is to keep the 301f2783c15SPaul Mackerras * difference tb - tb_orig_stamp small enough to always fit inside a 302f2783c15SPaul Mackerras * 32 bits number. This is a requirement of our fast 32 bits userland 303f2783c15SPaul Mackerras * implementation in the vdso. If we "miss" a call to this function 304f2783c15SPaul Mackerras * (interrupt latency, CPU locked in a spinlock, ...) and we end up 305f2783c15SPaul Mackerras * with a too big difference, then the vdso will fallback to calling 306f2783c15SPaul Mackerras * the syscall 307f2783c15SPaul Mackerras */ 308f2783c15SPaul Mackerras static __inline__ void timer_recalc_offset(u64 cur_tb) 309f2783c15SPaul Mackerras { 310f2783c15SPaul Mackerras unsigned long offset; 311f2783c15SPaul Mackerras u64 new_stamp_xsec; 312*092b8f34SPaul Mackerras u64 tlen, t2x; 313f2783c15SPaul Mackerras 31496c44507SPaul Mackerras if (__USE_RTC()) 31596c44507SPaul Mackerras return; 316*092b8f34SPaul Mackerras tlen = current_tick_length(); 317f2783c15SPaul Mackerras offset = cur_tb - do_gtod.varp->tb_orig_stamp; 318*092b8f34SPaul Mackerras if (tlen == last_tick_len && offset < 0x80000000u) { 319*092b8f34SPaul Mackerras /* check that we're still in sync; if not, resync */ 320*092b8f34SPaul Mackerras struct timeval tv; 321*092b8f34SPaul Mackerras __do_gettimeofday(&tv, cur_tb); 322*092b8f34SPaul Mackerras if (tv.tv_sec <= xtime.tv_sec && 323*092b8f34SPaul Mackerras (tv.tv_sec < xtime.tv_sec || 324*092b8f34SPaul Mackerras tv.tv_usec * 1000 <= xtime.tv_nsec)) 325f2783c15SPaul Mackerras return; 326*092b8f34SPaul Mackerras } 327*092b8f34SPaul Mackerras if (tlen != last_tick_len) { 328*092b8f34SPaul Mackerras t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs); 329*092b8f34SPaul Mackerras last_tick_len = tlen; 330*092b8f34SPaul Mackerras } else 331*092b8f34SPaul Mackerras t2x = do_gtod.varp->tb_to_xs; 332*092b8f34SPaul Mackerras new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; 333*092b8f34SPaul Mackerras do_div(new_stamp_xsec, 1000000000); 334*092b8f34SPaul Mackerras new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; 335*092b8f34SPaul Mackerras update_gtod(cur_tb, new_stamp_xsec, t2x); 336f2783c15SPaul Mackerras } 337f2783c15SPaul Mackerras 338f2783c15SPaul Mackerras #ifdef CONFIG_SMP 339f2783c15SPaul Mackerras unsigned long profile_pc(struct pt_regs *regs) 340f2783c15SPaul Mackerras { 341f2783c15SPaul Mackerras unsigned long pc = instruction_pointer(regs); 342f2783c15SPaul Mackerras 343f2783c15SPaul Mackerras if (in_lock_functions(pc)) 344f2783c15SPaul Mackerras return regs->link; 345f2783c15SPaul Mackerras 346f2783c15SPaul Mackerras return pc; 347f2783c15SPaul Mackerras } 348f2783c15SPaul Mackerras EXPORT_SYMBOL(profile_pc); 349f2783c15SPaul Mackerras #endif 350f2783c15SPaul Mackerras 351f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 352f2783c15SPaul Mackerras 353f2783c15SPaul Mackerras /* 354f2783c15SPaul Mackerras * This function recalibrates the timebase based on the 49-bit time-of-day 355f2783c15SPaul Mackerras * value in the Titan chip. The Titan is much more accurate than the value 356f2783c15SPaul Mackerras * returned by the service processor for the timebase frequency. 357f2783c15SPaul Mackerras */ 358f2783c15SPaul Mackerras 359f2783c15SPaul Mackerras static void iSeries_tb_recal(void) 360f2783c15SPaul Mackerras { 361f2783c15SPaul Mackerras struct div_result divres; 362f2783c15SPaul Mackerras unsigned long titan, tb; 363f2783c15SPaul Mackerras tb = get_tb(); 364f2783c15SPaul Mackerras titan = HvCallXm_loadTod(); 365f2783c15SPaul Mackerras if ( iSeries_recal_titan ) { 366f2783c15SPaul Mackerras unsigned long tb_ticks = tb - iSeries_recal_tb; 367f2783c15SPaul Mackerras unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; 368f2783c15SPaul Mackerras unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec; 369f2783c15SPaul Mackerras unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; 370f2783c15SPaul Mackerras long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; 371f2783c15SPaul Mackerras char sign = '+'; 372f2783c15SPaul Mackerras /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ 373f2783c15SPaul Mackerras new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; 374f2783c15SPaul Mackerras 375f2783c15SPaul Mackerras if ( tick_diff < 0 ) { 376f2783c15SPaul Mackerras tick_diff = -tick_diff; 377f2783c15SPaul Mackerras sign = '-'; 378f2783c15SPaul Mackerras } 379f2783c15SPaul Mackerras if ( tick_diff ) { 380f2783c15SPaul Mackerras if ( tick_diff < tb_ticks_per_jiffy/25 ) { 381f2783c15SPaul Mackerras printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", 382f2783c15SPaul Mackerras new_tb_ticks_per_jiffy, sign, tick_diff ); 383f2783c15SPaul Mackerras tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; 384f2783c15SPaul Mackerras tb_ticks_per_sec = new_tb_ticks_per_sec; 385f2783c15SPaul Mackerras div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); 386f2783c15SPaul Mackerras do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 387f2783c15SPaul Mackerras tb_to_xs = divres.result_low; 388f2783c15SPaul Mackerras do_gtod.varp->tb_to_xs = tb_to_xs; 389a7f290daSBenjamin Herrenschmidt vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 390a7f290daSBenjamin Herrenschmidt vdso_data->tb_to_xs = tb_to_xs; 391f2783c15SPaul Mackerras } 392f2783c15SPaul Mackerras else { 393f2783c15SPaul Mackerras printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" 394f2783c15SPaul Mackerras " new tb_ticks_per_jiffy = %lu\n" 395f2783c15SPaul Mackerras " old tb_ticks_per_jiffy = %lu\n", 396f2783c15SPaul Mackerras new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); 397f2783c15SPaul Mackerras } 398f2783c15SPaul Mackerras } 399f2783c15SPaul Mackerras } 400f2783c15SPaul Mackerras iSeries_recal_titan = titan; 401f2783c15SPaul Mackerras iSeries_recal_tb = tb; 402f2783c15SPaul Mackerras } 403f2783c15SPaul Mackerras #endif 404f2783c15SPaul Mackerras 405f2783c15SPaul Mackerras /* 406f2783c15SPaul Mackerras * For iSeries shared processors, we have to let the hypervisor 407f2783c15SPaul Mackerras * set the hardware decrementer. We set a virtual decrementer 408f2783c15SPaul Mackerras * in the lppaca and call the hypervisor if the virtual 409f2783c15SPaul Mackerras * decrementer is less than the current value in the hardware 410f2783c15SPaul Mackerras * decrementer. (almost always the new decrementer value will 411f2783c15SPaul Mackerras * be greater than the current hardware decementer so the hypervisor 412f2783c15SPaul Mackerras * call will not be needed) 413f2783c15SPaul Mackerras */ 414f2783c15SPaul Mackerras 415f2783c15SPaul Mackerras /* 416f2783c15SPaul Mackerras * timer_interrupt - gets called when the decrementer overflows, 417f2783c15SPaul Mackerras * with interrupts disabled. 418f2783c15SPaul Mackerras */ 419f2783c15SPaul Mackerras void timer_interrupt(struct pt_regs * regs) 420f2783c15SPaul Mackerras { 421f2783c15SPaul Mackerras int next_dec; 422f2783c15SPaul Mackerras int cpu = smp_processor_id(); 423f2783c15SPaul Mackerras unsigned long ticks; 424f2783c15SPaul Mackerras 425f2783c15SPaul Mackerras #ifdef CONFIG_PPC32 426f2783c15SPaul Mackerras if (atomic_read(&ppc_n_lost_interrupts) != 0) 427f2783c15SPaul Mackerras do_IRQ(regs); 428f2783c15SPaul Mackerras #endif 429f2783c15SPaul Mackerras 430f2783c15SPaul Mackerras irq_enter(); 431f2783c15SPaul Mackerras 432f2783c15SPaul Mackerras profile_tick(CPU_PROFILING, regs); 433f2783c15SPaul Mackerras 434f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 4353356bb9fSDavid Gibson get_lppaca()->int_dword.fields.decr_int = 0; 436f2783c15SPaul Mackerras #endif 437f2783c15SPaul Mackerras 438f2783c15SPaul Mackerras while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) 439f2783c15SPaul Mackerras >= tb_ticks_per_jiffy) { 440f2783c15SPaul Mackerras /* Update last_jiffy */ 441f2783c15SPaul Mackerras per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; 442f2783c15SPaul Mackerras /* Handle RTCL overflow on 601 */ 443f2783c15SPaul Mackerras if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) 444f2783c15SPaul Mackerras per_cpu(last_jiffy, cpu) -= 1000000000; 445f2783c15SPaul Mackerras 446f2783c15SPaul Mackerras /* 447f2783c15SPaul Mackerras * We cannot disable the decrementer, so in the period 448f2783c15SPaul Mackerras * between this cpu's being marked offline in cpu_online_map 449f2783c15SPaul Mackerras * and calling stop-self, it is taking timer interrupts. 450f2783c15SPaul Mackerras * Avoid calling into the scheduler rebalancing code if this 451f2783c15SPaul Mackerras * is the case. 452f2783c15SPaul Mackerras */ 453f2783c15SPaul Mackerras if (!cpu_is_offline(cpu)) 454f2783c15SPaul Mackerras update_process_times(user_mode(regs)); 455f2783c15SPaul Mackerras 456f2783c15SPaul Mackerras /* 457f2783c15SPaul Mackerras * No need to check whether cpu is offline here; boot_cpuid 458f2783c15SPaul Mackerras * should have been fixed up by now. 459f2783c15SPaul Mackerras */ 460f2783c15SPaul Mackerras if (cpu != boot_cpuid) 461f2783c15SPaul Mackerras continue; 462f2783c15SPaul Mackerras 463f2783c15SPaul Mackerras write_seqlock(&xtime_lock); 46496c44507SPaul Mackerras tb_last_jiffy += tb_ticks_per_jiffy; 46596c44507SPaul Mackerras tb_last_stamp = per_cpu(last_jiffy, cpu); 466f2783c15SPaul Mackerras do_timer(regs); 467*092b8f34SPaul Mackerras timer_recalc_offset(tb_last_jiffy); 468f2783c15SPaul Mackerras timer_check_rtc(); 469f2783c15SPaul Mackerras write_sequnlock(&xtime_lock); 470f2783c15SPaul Mackerras } 471f2783c15SPaul Mackerras 472f2783c15SPaul Mackerras next_dec = tb_ticks_per_jiffy - ticks; 473f2783c15SPaul Mackerras set_dec(next_dec); 474f2783c15SPaul Mackerras 475f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 476f2783c15SPaul Mackerras if (hvlpevent_is_pending()) 477f2783c15SPaul Mackerras process_hvlpevents(regs); 478f2783c15SPaul Mackerras #endif 479f2783c15SPaul Mackerras 480f2783c15SPaul Mackerras #ifdef CONFIG_PPC64 481f2783c15SPaul Mackerras /* collect purr register values often, for accurate calculations */ 482f2783c15SPaul Mackerras if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 483f2783c15SPaul Mackerras struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 484f2783c15SPaul Mackerras cu->current_tb = mfspr(SPRN_PURR); 485f2783c15SPaul Mackerras } 486f2783c15SPaul Mackerras #endif 487f2783c15SPaul Mackerras 488f2783c15SPaul Mackerras irq_exit(); 489f2783c15SPaul Mackerras } 490f2783c15SPaul Mackerras 491f2783c15SPaul Mackerras void wakeup_decrementer(void) 492f2783c15SPaul Mackerras { 493*092b8f34SPaul Mackerras unsigned long ticks; 494f2783c15SPaul Mackerras 495f2783c15SPaul Mackerras /* 496*092b8f34SPaul Mackerras * The timebase gets saved on sleep and restored on wakeup, 497*092b8f34SPaul Mackerras * so all we need to do is to reset the decrementer. 498f2783c15SPaul Mackerras */ 499*092b8f34SPaul Mackerras ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); 500*092b8f34SPaul Mackerras if (ticks < tb_ticks_per_jiffy) 501*092b8f34SPaul Mackerras ticks = tb_ticks_per_jiffy - ticks; 502*092b8f34SPaul Mackerras else 503*092b8f34SPaul Mackerras ticks = 1; 504*092b8f34SPaul Mackerras set_dec(ticks); 505f2783c15SPaul Mackerras } 506f2783c15SPaul Mackerras 507a5b518edSPaul Mackerras #ifdef CONFIG_SMP 508f2783c15SPaul Mackerras void __init smp_space_timers(unsigned int max_cpus) 509f2783c15SPaul Mackerras { 510f2783c15SPaul Mackerras int i; 511f2783c15SPaul Mackerras unsigned long offset = tb_ticks_per_jiffy / max_cpus; 512f2783c15SPaul Mackerras unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); 513f2783c15SPaul Mackerras 514cbe62e2bSPaul Mackerras /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ 515cbe62e2bSPaul Mackerras previous_tb -= tb_ticks_per_jiffy; 516f2783c15SPaul Mackerras for_each_cpu(i) { 517f2783c15SPaul Mackerras if (i != boot_cpuid) { 518f2783c15SPaul Mackerras previous_tb += offset; 519f2783c15SPaul Mackerras per_cpu(last_jiffy, i) = previous_tb; 520f2783c15SPaul Mackerras } 521f2783c15SPaul Mackerras } 522f2783c15SPaul Mackerras } 523f2783c15SPaul Mackerras #endif 524f2783c15SPaul Mackerras 525f2783c15SPaul Mackerras /* 526f2783c15SPaul Mackerras * Scheduler clock - returns current time in nanosec units. 527f2783c15SPaul Mackerras * 528f2783c15SPaul Mackerras * Note: mulhdu(a, b) (multiply high double unsigned) returns 529f2783c15SPaul Mackerras * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b 530f2783c15SPaul Mackerras * are 64-bit unsigned numbers. 531f2783c15SPaul Mackerras */ 532f2783c15SPaul Mackerras unsigned long long sched_clock(void) 533f2783c15SPaul Mackerras { 53496c44507SPaul Mackerras if (__USE_RTC()) 53596c44507SPaul Mackerras return get_rtc(); 536f2783c15SPaul Mackerras return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; 537f2783c15SPaul Mackerras } 538f2783c15SPaul Mackerras 539f2783c15SPaul Mackerras int do_settimeofday(struct timespec *tv) 540f2783c15SPaul Mackerras { 541f2783c15SPaul Mackerras time_t wtm_sec, new_sec = tv->tv_sec; 542f2783c15SPaul Mackerras long wtm_nsec, new_nsec = tv->tv_nsec; 543f2783c15SPaul Mackerras unsigned long flags; 544*092b8f34SPaul Mackerras u64 new_xsec; 545*092b8f34SPaul Mackerras unsigned long tb_delta; 546f2783c15SPaul Mackerras 547f2783c15SPaul Mackerras if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 548f2783c15SPaul Mackerras return -EINVAL; 549f2783c15SPaul Mackerras 550f2783c15SPaul Mackerras write_seqlock_irqsave(&xtime_lock, flags); 551f2783c15SPaul Mackerras 552f2783c15SPaul Mackerras /* 553f2783c15SPaul Mackerras * Updating the RTC is not the job of this code. If the time is 554f2783c15SPaul Mackerras * stepped under NTP, the RTC will be updated after STA_UNSYNC 555f2783c15SPaul Mackerras * is cleared. Tools like clock/hwclock either copy the RTC 556f2783c15SPaul Mackerras * to the system time, in which case there is no point in writing 557f2783c15SPaul Mackerras * to the RTC again, or write to the RTC but then they don't call 558f2783c15SPaul Mackerras * settimeofday to perform this operation. 559f2783c15SPaul Mackerras */ 560f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 561f2783c15SPaul Mackerras if (first_settimeofday) { 562f2783c15SPaul Mackerras iSeries_tb_recal(); 563f2783c15SPaul Mackerras first_settimeofday = 0; 564f2783c15SPaul Mackerras } 565f2783c15SPaul Mackerras #endif 566*092b8f34SPaul Mackerras 567*092b8f34SPaul Mackerras /* 568*092b8f34SPaul Mackerras * Subtract off the number of nanoseconds since the 569*092b8f34SPaul Mackerras * beginning of the last tick. 570*092b8f34SPaul Mackerras * Note that since we don't increment jiffies_64 anywhere other 571*092b8f34SPaul Mackerras * than in do_timer (since we don't have a lost tick problem), 572*092b8f34SPaul Mackerras * wall_jiffies will always be the same as jiffies, 573*092b8f34SPaul Mackerras * and therefore the (jiffies - wall_jiffies) computation 574*092b8f34SPaul Mackerras * has been removed. 575*092b8f34SPaul Mackerras */ 576f2783c15SPaul Mackerras tb_delta = tb_ticks_since(tb_last_stamp); 577*092b8f34SPaul Mackerras tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */ 578*092b8f34SPaul Mackerras new_nsec -= SCALE_XSEC(tb_delta, 1000000000); 579f2783c15SPaul Mackerras 580f2783c15SPaul Mackerras wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); 581f2783c15SPaul Mackerras wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); 582f2783c15SPaul Mackerras 583f2783c15SPaul Mackerras set_normalized_timespec(&xtime, new_sec, new_nsec); 584f2783c15SPaul Mackerras set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 585f2783c15SPaul Mackerras 586f2783c15SPaul Mackerras /* In case of a large backwards jump in time with NTP, we want the 587f2783c15SPaul Mackerras * clock to be updated as soon as the PLL is again in lock. 588f2783c15SPaul Mackerras */ 589f2783c15SPaul Mackerras last_rtc_update = new_sec - 658; 590f2783c15SPaul Mackerras 591f2783c15SPaul Mackerras ntp_clear(); 592f2783c15SPaul Mackerras 593*092b8f34SPaul Mackerras new_xsec = xtime.tv_nsec; 594*092b8f34SPaul Mackerras if (new_xsec != 0) { 595*092b8f34SPaul Mackerras new_xsec *= XSEC_PER_SEC; 596f2783c15SPaul Mackerras do_div(new_xsec, NSEC_PER_SEC); 5975f6b5b97SPaul Mackerras } 598*092b8f34SPaul Mackerras new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC; 59996c44507SPaul Mackerras update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs); 600f2783c15SPaul Mackerras 601a7f290daSBenjamin Herrenschmidt vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; 602a7f290daSBenjamin Herrenschmidt vdso_data->tz_dsttime = sys_tz.tz_dsttime; 603f2783c15SPaul Mackerras 604f2783c15SPaul Mackerras write_sequnlock_irqrestore(&xtime_lock, flags); 605f2783c15SPaul Mackerras clock_was_set(); 606f2783c15SPaul Mackerras return 0; 607f2783c15SPaul Mackerras } 608f2783c15SPaul Mackerras 609f2783c15SPaul Mackerras EXPORT_SYMBOL(do_settimeofday); 610f2783c15SPaul Mackerras 611f2783c15SPaul Mackerras void __init generic_calibrate_decr(void) 612f2783c15SPaul Mackerras { 613f2783c15SPaul Mackerras struct device_node *cpu; 614f2783c15SPaul Mackerras unsigned int *fp; 615f2783c15SPaul Mackerras int node_found; 616f2783c15SPaul Mackerras 617f2783c15SPaul Mackerras /* 618f2783c15SPaul Mackerras * The cpu node should have a timebase-frequency property 619f2783c15SPaul Mackerras * to tell us the rate at which the decrementer counts. 620f2783c15SPaul Mackerras */ 621f2783c15SPaul Mackerras cpu = of_find_node_by_type(NULL, "cpu"); 622f2783c15SPaul Mackerras 623f2783c15SPaul Mackerras ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */ 624f2783c15SPaul Mackerras node_found = 0; 625d8a8188dSOlaf Hering if (cpu) { 626f2783c15SPaul Mackerras fp = (unsigned int *)get_property(cpu, "timebase-frequency", 627f2783c15SPaul Mackerras NULL); 628d8a8188dSOlaf Hering if (fp) { 629f2783c15SPaul Mackerras node_found = 1; 630f2783c15SPaul Mackerras ppc_tb_freq = *fp; 631f2783c15SPaul Mackerras } 632f2783c15SPaul Mackerras } 633f2783c15SPaul Mackerras if (!node_found) 634f2783c15SPaul Mackerras printk(KERN_ERR "WARNING: Estimating decrementer frequency " 635f2783c15SPaul Mackerras "(not found)\n"); 636f2783c15SPaul Mackerras 637f2783c15SPaul Mackerras ppc_proc_freq = DEFAULT_PROC_FREQ; 638f2783c15SPaul Mackerras node_found = 0; 639d8a8188dSOlaf Hering if (cpu) { 640f2783c15SPaul Mackerras fp = (unsigned int *)get_property(cpu, "clock-frequency", 641f2783c15SPaul Mackerras NULL); 642d8a8188dSOlaf Hering if (fp) { 643f2783c15SPaul Mackerras node_found = 1; 644f2783c15SPaul Mackerras ppc_proc_freq = *fp; 645f2783c15SPaul Mackerras } 646f2783c15SPaul Mackerras } 6470fd6f717SKumar Gala #ifdef CONFIG_BOOKE 6480fd6f717SKumar Gala /* Set the time base to zero */ 6490fd6f717SKumar Gala mtspr(SPRN_TBWL, 0); 6500fd6f717SKumar Gala mtspr(SPRN_TBWU, 0); 6510fd6f717SKumar Gala 6520fd6f717SKumar Gala /* Clear any pending timer interrupts */ 6530fd6f717SKumar Gala mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); 6540fd6f717SKumar Gala 6550fd6f717SKumar Gala /* Enable decrementer interrupt */ 6560fd6f717SKumar Gala mtspr(SPRN_TCR, TCR_DIE); 6570fd6f717SKumar Gala #endif 658f2783c15SPaul Mackerras if (!node_found) 659f2783c15SPaul Mackerras printk(KERN_ERR "WARNING: Estimating processor frequency " 660f2783c15SPaul Mackerras "(not found)\n"); 661f2783c15SPaul Mackerras 662f2783c15SPaul Mackerras of_node_put(cpu); 663f2783c15SPaul Mackerras } 664f2783c15SPaul Mackerras 665f2783c15SPaul Mackerras unsigned long get_boot_time(void) 666f2783c15SPaul Mackerras { 667f2783c15SPaul Mackerras struct rtc_time tm; 668f2783c15SPaul Mackerras 669f2783c15SPaul Mackerras if (ppc_md.get_boot_time) 670f2783c15SPaul Mackerras return ppc_md.get_boot_time(); 671f2783c15SPaul Mackerras if (!ppc_md.get_rtc_time) 672f2783c15SPaul Mackerras return 0; 673f2783c15SPaul Mackerras ppc_md.get_rtc_time(&tm); 674f2783c15SPaul Mackerras return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, 675f2783c15SPaul Mackerras tm.tm_hour, tm.tm_min, tm.tm_sec); 676f2783c15SPaul Mackerras } 677f2783c15SPaul Mackerras 678f2783c15SPaul Mackerras /* This function is only called on the boot processor */ 679f2783c15SPaul Mackerras void __init time_init(void) 680f2783c15SPaul Mackerras { 681f2783c15SPaul Mackerras unsigned long flags; 682f2783c15SPaul Mackerras unsigned long tm = 0; 683f2783c15SPaul Mackerras struct div_result res; 684*092b8f34SPaul Mackerras u64 scale, x; 685f2783c15SPaul Mackerras unsigned shift; 686f2783c15SPaul Mackerras 687f2783c15SPaul Mackerras if (ppc_md.time_init != NULL) 688f2783c15SPaul Mackerras timezone_offset = ppc_md.time_init(); 689f2783c15SPaul Mackerras 69096c44507SPaul Mackerras if (__USE_RTC()) { 69196c44507SPaul Mackerras /* 601 processor: dec counts down by 128 every 128ns */ 69296c44507SPaul Mackerras ppc_tb_freq = 1000000000; 69396c44507SPaul Mackerras tb_last_stamp = get_rtcl(); 69496c44507SPaul Mackerras tb_last_jiffy = tb_last_stamp; 69596c44507SPaul Mackerras } else { 69696c44507SPaul Mackerras /* Normal PowerPC with timebase register */ 697f2783c15SPaul Mackerras ppc_md.calibrate_decr(); 698374e99d4SPaul Mackerras printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", 699374e99d4SPaul Mackerras ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); 700374e99d4SPaul Mackerras printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n", 701374e99d4SPaul Mackerras ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); 70296c44507SPaul Mackerras tb_last_stamp = tb_last_jiffy = get_tb(); 70396c44507SPaul Mackerras } 704374e99d4SPaul Mackerras 705374e99d4SPaul Mackerras tb_ticks_per_jiffy = ppc_tb_freq / HZ; 706*092b8f34SPaul Mackerras tb_ticks_per_sec = ppc_tb_freq; 707374e99d4SPaul Mackerras tb_ticks_per_usec = ppc_tb_freq / 1000000; 708374e99d4SPaul Mackerras tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); 709*092b8f34SPaul Mackerras 710*092b8f34SPaul Mackerras /* 711*092b8f34SPaul Mackerras * Calculate the length of each tick in ns. It will not be 712*092b8f34SPaul Mackerras * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. 713*092b8f34SPaul Mackerras * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, 714*092b8f34SPaul Mackerras * rounded up. 715*092b8f34SPaul Mackerras */ 716*092b8f34SPaul Mackerras x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; 717*092b8f34SPaul Mackerras do_div(x, ppc_tb_freq); 718*092b8f34SPaul Mackerras tick_nsec = x; 719*092b8f34SPaul Mackerras last_tick_len = x << TICKLEN_SCALE; 720*092b8f34SPaul Mackerras 721*092b8f34SPaul Mackerras /* 722*092b8f34SPaul Mackerras * Compute ticklen_to_xs, which is a factor which gets multiplied 723*092b8f34SPaul Mackerras * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. 724*092b8f34SPaul Mackerras * It is computed as: 725*092b8f34SPaul Mackerras * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) 726*092b8f34SPaul Mackerras * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT 727*092b8f34SPaul Mackerras * so as to give the result as a 0.64 fixed-point fraction. 728*092b8f34SPaul Mackerras */ 729*092b8f34SPaul Mackerras div128_by_32(1ULL << (64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT), 0, 730*092b8f34SPaul Mackerras tb_ticks_per_jiffy, &res); 731*092b8f34SPaul Mackerras div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); 732*092b8f34SPaul Mackerras ticklen_to_xs = res.result_low; 733*092b8f34SPaul Mackerras 734*092b8f34SPaul Mackerras /* Compute tb_to_xs from tick_nsec */ 735*092b8f34SPaul Mackerras tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); 736374e99d4SPaul Mackerras 737f2783c15SPaul Mackerras /* 738f2783c15SPaul Mackerras * Compute scale factor for sched_clock. 739f2783c15SPaul Mackerras * The calibrate_decr() function has set tb_ticks_per_sec, 740f2783c15SPaul Mackerras * which is the timebase frequency. 741f2783c15SPaul Mackerras * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret 742f2783c15SPaul Mackerras * the 128-bit result as a 64.64 fixed-point number. 743f2783c15SPaul Mackerras * We then shift that number right until it is less than 1.0, 744f2783c15SPaul Mackerras * giving us the scale factor and shift count to use in 745f2783c15SPaul Mackerras * sched_clock(). 746f2783c15SPaul Mackerras */ 747f2783c15SPaul Mackerras div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); 748f2783c15SPaul Mackerras scale = res.result_low; 749f2783c15SPaul Mackerras for (shift = 0; res.result_high != 0; ++shift) { 750f2783c15SPaul Mackerras scale = (scale >> 1) | (res.result_high << 63); 751f2783c15SPaul Mackerras res.result_high >>= 1; 752f2783c15SPaul Mackerras } 753f2783c15SPaul Mackerras tb_to_ns_scale = scale; 754f2783c15SPaul Mackerras tb_to_ns_shift = shift; 755f2783c15SPaul Mackerras 756f2783c15SPaul Mackerras #ifdef CONFIG_PPC_ISERIES 757f2783c15SPaul Mackerras if (!piranha_simulator) 758f2783c15SPaul Mackerras #endif 759f2783c15SPaul Mackerras tm = get_boot_time(); 760f2783c15SPaul Mackerras 761f2783c15SPaul Mackerras write_seqlock_irqsave(&xtime_lock, flags); 762*092b8f34SPaul Mackerras 763*092b8f34SPaul Mackerras /* If platform provided a timezone (pmac), we correct the time */ 764*092b8f34SPaul Mackerras if (timezone_offset) { 765*092b8f34SPaul Mackerras sys_tz.tz_minuteswest = -timezone_offset / 60; 766*092b8f34SPaul Mackerras sys_tz.tz_dsttime = 0; 767*092b8f34SPaul Mackerras tm -= timezone_offset; 768*092b8f34SPaul Mackerras } 769*092b8f34SPaul Mackerras 770f2783c15SPaul Mackerras xtime.tv_sec = tm; 771f2783c15SPaul Mackerras xtime.tv_nsec = 0; 772f2783c15SPaul Mackerras do_gtod.varp = &do_gtod.vars[0]; 773f2783c15SPaul Mackerras do_gtod.var_idx = 0; 77496c44507SPaul Mackerras do_gtod.varp->tb_orig_stamp = tb_last_jiffy; 775f2783c15SPaul Mackerras __get_cpu_var(last_jiffy) = tb_last_stamp; 776f2783c15SPaul Mackerras do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 777f2783c15SPaul Mackerras do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; 778f2783c15SPaul Mackerras do_gtod.varp->tb_to_xs = tb_to_xs; 779f2783c15SPaul Mackerras do_gtod.tb_to_us = tb_to_us; 780a7f290daSBenjamin Herrenschmidt 781a7f290daSBenjamin Herrenschmidt vdso_data->tb_orig_stamp = tb_last_jiffy; 782a7f290daSBenjamin Herrenschmidt vdso_data->tb_update_count = 0; 783a7f290daSBenjamin Herrenschmidt vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; 784*092b8f34SPaul Mackerras vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; 785a7f290daSBenjamin Herrenschmidt vdso_data->tb_to_xs = tb_to_xs; 786f2783c15SPaul Mackerras 787f2783c15SPaul Mackerras time_freq = 0; 788f2783c15SPaul Mackerras 789f2783c15SPaul Mackerras last_rtc_update = xtime.tv_sec; 790f2783c15SPaul Mackerras set_normalized_timespec(&wall_to_monotonic, 791f2783c15SPaul Mackerras -xtime.tv_sec, -xtime.tv_nsec); 792f2783c15SPaul Mackerras write_sequnlock_irqrestore(&xtime_lock, flags); 793f2783c15SPaul Mackerras 794f2783c15SPaul Mackerras /* Not exact, but the timer interrupt takes care of this */ 795f2783c15SPaul Mackerras set_dec(tb_ticks_per_jiffy); 796f2783c15SPaul Mackerras } 797f2783c15SPaul Mackerras 798f2783c15SPaul Mackerras 799f2783c15SPaul Mackerras #define FEBRUARY 2 800f2783c15SPaul Mackerras #define STARTOFTIME 1970 801f2783c15SPaul Mackerras #define SECDAY 86400L 802f2783c15SPaul Mackerras #define SECYR (SECDAY * 365) 803f2783c15SPaul Mackerras #define leapyear(year) ((year) % 4 == 0 && \ 804f2783c15SPaul Mackerras ((year) % 100 != 0 || (year) % 400 == 0)) 805f2783c15SPaul Mackerras #define days_in_year(a) (leapyear(a) ? 366 : 365) 806f2783c15SPaul Mackerras #define days_in_month(a) (month_days[(a) - 1]) 807f2783c15SPaul Mackerras 808f2783c15SPaul Mackerras static int month_days[12] = { 809f2783c15SPaul Mackerras 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 810f2783c15SPaul Mackerras }; 811f2783c15SPaul Mackerras 812f2783c15SPaul Mackerras /* 813f2783c15SPaul Mackerras * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) 814f2783c15SPaul Mackerras */ 815f2783c15SPaul Mackerras void GregorianDay(struct rtc_time * tm) 816f2783c15SPaul Mackerras { 817f2783c15SPaul Mackerras int leapsToDate; 818f2783c15SPaul Mackerras int lastYear; 819f2783c15SPaul Mackerras int day; 820f2783c15SPaul Mackerras int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; 821f2783c15SPaul Mackerras 822f2783c15SPaul Mackerras lastYear = tm->tm_year - 1; 823f2783c15SPaul Mackerras 824f2783c15SPaul Mackerras /* 825f2783c15SPaul Mackerras * Number of leap corrections to apply up to end of last year 826f2783c15SPaul Mackerras */ 827f2783c15SPaul Mackerras leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; 828f2783c15SPaul Mackerras 829f2783c15SPaul Mackerras /* 830f2783c15SPaul Mackerras * This year is a leap year if it is divisible by 4 except when it is 831f2783c15SPaul Mackerras * divisible by 100 unless it is divisible by 400 832f2783c15SPaul Mackerras * 833f2783c15SPaul Mackerras * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was 834f2783c15SPaul Mackerras */ 835f2783c15SPaul Mackerras day = tm->tm_mon > 2 && leapyear(tm->tm_year); 836f2783c15SPaul Mackerras 837f2783c15SPaul Mackerras day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + 838f2783c15SPaul Mackerras tm->tm_mday; 839f2783c15SPaul Mackerras 840f2783c15SPaul Mackerras tm->tm_wday = day % 7; 841f2783c15SPaul Mackerras } 842f2783c15SPaul Mackerras 843f2783c15SPaul Mackerras void to_tm(int tim, struct rtc_time * tm) 844f2783c15SPaul Mackerras { 845f2783c15SPaul Mackerras register int i; 846f2783c15SPaul Mackerras register long hms, day; 847f2783c15SPaul Mackerras 848f2783c15SPaul Mackerras day = tim / SECDAY; 849f2783c15SPaul Mackerras hms = tim % SECDAY; 850f2783c15SPaul Mackerras 851f2783c15SPaul Mackerras /* Hours, minutes, seconds are easy */ 852f2783c15SPaul Mackerras tm->tm_hour = hms / 3600; 853f2783c15SPaul Mackerras tm->tm_min = (hms % 3600) / 60; 854f2783c15SPaul Mackerras tm->tm_sec = (hms % 3600) % 60; 855f2783c15SPaul Mackerras 856f2783c15SPaul Mackerras /* Number of years in days */ 857f2783c15SPaul Mackerras for (i = STARTOFTIME; day >= days_in_year(i); i++) 858f2783c15SPaul Mackerras day -= days_in_year(i); 859f2783c15SPaul Mackerras tm->tm_year = i; 860f2783c15SPaul Mackerras 861f2783c15SPaul Mackerras /* Number of months in days left */ 862f2783c15SPaul Mackerras if (leapyear(tm->tm_year)) 863f2783c15SPaul Mackerras days_in_month(FEBRUARY) = 29; 864f2783c15SPaul Mackerras for (i = 1; day >= days_in_month(i); i++) 865f2783c15SPaul Mackerras day -= days_in_month(i); 866f2783c15SPaul Mackerras days_in_month(FEBRUARY) = 28; 867f2783c15SPaul Mackerras tm->tm_mon = i; 868f2783c15SPaul Mackerras 869f2783c15SPaul Mackerras /* Days are what is left over (+1) from all that. */ 870f2783c15SPaul Mackerras tm->tm_mday = day + 1; 871f2783c15SPaul Mackerras 872f2783c15SPaul Mackerras /* 873f2783c15SPaul Mackerras * Determine the day of week 874f2783c15SPaul Mackerras */ 875f2783c15SPaul Mackerras GregorianDay(tm); 876f2783c15SPaul Mackerras } 877f2783c15SPaul Mackerras 878f2783c15SPaul Mackerras /* Auxiliary function to compute scaling factors */ 879f2783c15SPaul Mackerras /* Actually the choice of a timebase running at 1/4 the of the bus 880f2783c15SPaul Mackerras * frequency giving resolution of a few tens of nanoseconds is quite nice. 881f2783c15SPaul Mackerras * It makes this computation very precise (27-28 bits typically) which 882f2783c15SPaul Mackerras * is optimistic considering the stability of most processor clock 883f2783c15SPaul Mackerras * oscillators and the precision with which the timebase frequency 884f2783c15SPaul Mackerras * is measured but does not harm. 885f2783c15SPaul Mackerras */ 886f2783c15SPaul Mackerras unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) 887f2783c15SPaul Mackerras { 888f2783c15SPaul Mackerras unsigned mlt=0, tmp, err; 889f2783c15SPaul Mackerras /* No concern for performance, it's done once: use a stupid 890f2783c15SPaul Mackerras * but safe and compact method to find the multiplier. 891f2783c15SPaul Mackerras */ 892f2783c15SPaul Mackerras 893f2783c15SPaul Mackerras for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { 894f2783c15SPaul Mackerras if (mulhwu(inscale, mlt|tmp) < outscale) 895f2783c15SPaul Mackerras mlt |= tmp; 896f2783c15SPaul Mackerras } 897f2783c15SPaul Mackerras 898f2783c15SPaul Mackerras /* We might still be off by 1 for the best approximation. 899f2783c15SPaul Mackerras * A side effect of this is that if outscale is too large 900f2783c15SPaul Mackerras * the returned value will be zero. 901f2783c15SPaul Mackerras * Many corner cases have been checked and seem to work, 902f2783c15SPaul Mackerras * some might have been forgotten in the test however. 903f2783c15SPaul Mackerras */ 904f2783c15SPaul Mackerras 905f2783c15SPaul Mackerras err = inscale * (mlt+1); 906f2783c15SPaul Mackerras if (err <= inscale/2) 907f2783c15SPaul Mackerras mlt++; 908f2783c15SPaul Mackerras return mlt; 909f2783c15SPaul Mackerras } 910f2783c15SPaul Mackerras 911f2783c15SPaul Mackerras /* 912f2783c15SPaul Mackerras * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit 913f2783c15SPaul Mackerras * result. 914f2783c15SPaul Mackerras */ 915f2783c15SPaul Mackerras void div128_by_32(u64 dividend_high, u64 dividend_low, 916f2783c15SPaul Mackerras unsigned divisor, struct div_result *dr) 917f2783c15SPaul Mackerras { 918f2783c15SPaul Mackerras unsigned long a, b, c, d; 919f2783c15SPaul Mackerras unsigned long w, x, y, z; 920f2783c15SPaul Mackerras u64 ra, rb, rc; 921f2783c15SPaul Mackerras 922f2783c15SPaul Mackerras a = dividend_high >> 32; 923f2783c15SPaul Mackerras b = dividend_high & 0xffffffff; 924f2783c15SPaul Mackerras c = dividend_low >> 32; 925f2783c15SPaul Mackerras d = dividend_low & 0xffffffff; 926f2783c15SPaul Mackerras 927f2783c15SPaul Mackerras w = a / divisor; 928f2783c15SPaul Mackerras ra = ((u64)(a - (w * divisor)) << 32) + b; 929f2783c15SPaul Mackerras 930f2783c15SPaul Mackerras rb = ((u64) do_div(ra, divisor) << 32) + c; 931f2783c15SPaul Mackerras x = ra; 932f2783c15SPaul Mackerras 933f2783c15SPaul Mackerras rc = ((u64) do_div(rb, divisor) << 32) + d; 934f2783c15SPaul Mackerras y = rb; 935f2783c15SPaul Mackerras 936f2783c15SPaul Mackerras do_div(rc, divisor); 937f2783c15SPaul Mackerras z = rc; 938f2783c15SPaul Mackerras 939f2783c15SPaul Mackerras dr->result_high = ((u64)w << 32) + x; 940f2783c15SPaul Mackerras dr->result_low = ((u64)y << 32) + z; 941f2783c15SPaul Mackerras 942f2783c15SPaul Mackerras } 943