xref: /openbmc/linux/arch/powerpc/kernel/kprobes.c (revision b76e59d1fb086c2fdac5d243e09786d6581f2026)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
37 
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40 
41 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
42 
43 int __kprobes arch_prepare_kprobe(struct kprobe *p)
44 {
45 	int ret = 0;
46 	kprobe_opcode_t insn = *p->addr;
47 
48 	if ((unsigned long)p->addr & 0x03) {
49 		printk("Attempt to register kprobe at an unaligned address\n");
50 		ret = -EINVAL;
51 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
52 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
53 		ret = -EINVAL;
54 	}
55 
56 	/* insn must be on a special executable page on ppc64 */
57 	if (!ret) {
58 		p->ainsn.insn = get_insn_slot();
59 		if (!p->ainsn.insn)
60 			ret = -ENOMEM;
61 	}
62 
63 	if (!ret) {
64 		memcpy(p->ainsn.insn, p->addr,
65 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
66 		p->opcode = *p->addr;
67 		flush_icache_range((unsigned long)p->ainsn.insn,
68 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
69 	}
70 
71 	p->ainsn.boostable = 0;
72 	return ret;
73 }
74 
75 void __kprobes arch_arm_kprobe(struct kprobe *p)
76 {
77 	*p->addr = BREAKPOINT_INSTRUCTION;
78 	flush_icache_range((unsigned long) p->addr,
79 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
80 }
81 
82 void __kprobes arch_disarm_kprobe(struct kprobe *p)
83 {
84 	*p->addr = p->opcode;
85 	flush_icache_range((unsigned long) p->addr,
86 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
87 }
88 
89 void __kprobes arch_remove_kprobe(struct kprobe *p)
90 {
91 	mutex_lock(&kprobe_mutex);
92 	free_insn_slot(p->ainsn.insn, 0);
93 	mutex_unlock(&kprobe_mutex);
94 }
95 
96 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
97 {
98 	/* We turn off async exceptions to ensure that the single step will
99 	 * be for the instruction we have the kprobe on, if we dont its
100 	 * possible we'd get the single step reported for an exception handler
101 	 * like Decrementer or External Interrupt */
102 	regs->msr &= ~MSR_EE;
103 	regs->msr |= MSR_SE;
104 
105 	/*
106 	 * On powerpc we should single step on the original
107 	 * instruction even if the probed insn is a trap
108 	 * variant as values in regs could play a part in
109 	 * if the trap is taken or not
110 	 */
111 	regs->nip = (unsigned long)p->ainsn.insn;
112 }
113 
114 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
115 {
116 	kcb->prev_kprobe.kp = kprobe_running();
117 	kcb->prev_kprobe.status = kcb->kprobe_status;
118 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
119 }
120 
121 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
122 {
123 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
124 	kcb->kprobe_status = kcb->prev_kprobe.status;
125 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
126 }
127 
128 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
129 				struct kprobe_ctlblk *kcb)
130 {
131 	__get_cpu_var(current_kprobe) = p;
132 	kcb->kprobe_saved_msr = regs->msr;
133 }
134 
135 /* Called with kretprobe_lock held */
136 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
137 				      struct pt_regs *regs)
138 {
139 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
140 
141 	/* Replace the return addr with trampoline addr */
142 	regs->link = (unsigned long)kretprobe_trampoline;
143 }
144 
145 static int __kprobes kprobe_handler(struct pt_regs *regs)
146 {
147 	struct kprobe *p;
148 	int ret = 0;
149 	unsigned int *addr = (unsigned int *)regs->nip;
150 	struct kprobe_ctlblk *kcb;
151 
152 	/*
153 	 * We don't want to be preempted for the entire
154 	 * duration of kprobe processing
155 	 */
156 	preempt_disable();
157 	kcb = get_kprobe_ctlblk();
158 
159 	/* Check we're not actually recursing */
160 	if (kprobe_running()) {
161 		p = get_kprobe(addr);
162 		if (p) {
163 			kprobe_opcode_t insn = *p->ainsn.insn;
164 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
165 					is_trap(insn)) {
166 				regs->msr &= ~MSR_SE;
167 				regs->msr |= kcb->kprobe_saved_msr;
168 				goto no_kprobe;
169 			}
170 			/* We have reentered the kprobe_handler(), since
171 			 * another probe was hit while within the handler.
172 			 * We here save the original kprobes variables and
173 			 * just single step on the instruction of the new probe
174 			 * without calling any user handlers.
175 			 */
176 			save_previous_kprobe(kcb);
177 			set_current_kprobe(p, regs, kcb);
178 			kcb->kprobe_saved_msr = regs->msr;
179 			kprobes_inc_nmissed_count(p);
180 			prepare_singlestep(p, regs);
181 			kcb->kprobe_status = KPROBE_REENTER;
182 			return 1;
183 		} else {
184 			if (*addr != BREAKPOINT_INSTRUCTION) {
185 				/* If trap variant, then it belongs not to us */
186 				kprobe_opcode_t cur_insn = *addr;
187 				if (is_trap(cur_insn))
188 		       			goto no_kprobe;
189 				/* The breakpoint instruction was removed by
190 				 * another cpu right after we hit, no further
191 				 * handling of this interrupt is appropriate
192 				 */
193 				ret = 1;
194 				goto no_kprobe;
195 			}
196 			p = __get_cpu_var(current_kprobe);
197 			if (p->break_handler && p->break_handler(p, regs)) {
198 				goto ss_probe;
199 			}
200 		}
201 		goto no_kprobe;
202 	}
203 
204 	p = get_kprobe(addr);
205 	if (!p) {
206 		if (*addr != BREAKPOINT_INSTRUCTION) {
207 			/*
208 			 * PowerPC has multiple variants of the "trap"
209 			 * instruction. If the current instruction is a
210 			 * trap variant, it could belong to someone else
211 			 */
212 			kprobe_opcode_t cur_insn = *addr;
213 			if (is_trap(cur_insn))
214 		       		goto no_kprobe;
215 			/*
216 			 * The breakpoint instruction was removed right
217 			 * after we hit it.  Another cpu has removed
218 			 * either a probepoint or a debugger breakpoint
219 			 * at this address.  In either case, no further
220 			 * handling of this interrupt is appropriate.
221 			 */
222 			ret = 1;
223 		}
224 		/* Not one of ours: let kernel handle it */
225 		goto no_kprobe;
226 	}
227 
228 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
229 	set_current_kprobe(p, regs, kcb);
230 	if (p->pre_handler && p->pre_handler(p, regs))
231 		/* handler has already set things up, so skip ss setup */
232 		return 1;
233 
234 ss_probe:
235 	if (p->ainsn.boostable >= 0) {
236 		unsigned int insn = *p->ainsn.insn;
237 
238 		/* regs->nip is also adjusted if emulate_step returns 1 */
239 		ret = emulate_step(regs, insn);
240 		if (ret > 0) {
241 			/*
242 			 * Once this instruction has been boosted
243 			 * successfully, set the boostable flag
244 			 */
245 			if (unlikely(p->ainsn.boostable == 0))
246 				p->ainsn.boostable = 1;
247 
248 			if (p->post_handler)
249 				p->post_handler(p, regs, 0);
250 
251 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
252 			reset_current_kprobe();
253 			preempt_enable_no_resched();
254 			return 1;
255 		} else if (ret < 0) {
256 			/*
257 			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
258 			 * So, we should never get here... but, its still
259 			 * good to catch them, just in case...
260 			 */
261 			printk("Can't step on instruction %x\n", insn);
262 			BUG();
263 		} else if (ret == 0)
264 			/* This instruction can't be boosted */
265 			p->ainsn.boostable = -1;
266 	}
267 	prepare_singlestep(p, regs);
268 	kcb->kprobe_status = KPROBE_HIT_SS;
269 	return 1;
270 
271 no_kprobe:
272 	preempt_enable_no_resched();
273 	return ret;
274 }
275 
276 /*
277  * Function return probe trampoline:
278  * 	- init_kprobes() establishes a probepoint here
279  * 	- When the probed function returns, this probe
280  * 		causes the handlers to fire
281  */
282 static void __used kretprobe_trampoline_holder(void)
283 {
284 	asm volatile(".global kretprobe_trampoline\n"
285 			"kretprobe_trampoline:\n"
286 			"nop\n");
287 }
288 
289 /*
290  * Called when the probe at kretprobe trampoline is hit
291  */
292 static int __kprobes trampoline_probe_handler(struct kprobe *p,
293 						struct pt_regs *regs)
294 {
295 	struct kretprobe_instance *ri = NULL;
296 	struct hlist_head *head, empty_rp;
297 	struct hlist_node *node, *tmp;
298 	unsigned long flags, orig_ret_address = 0;
299 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
300 
301 	INIT_HLIST_HEAD(&empty_rp);
302 	spin_lock_irqsave(&kretprobe_lock, flags);
303 	head = kretprobe_inst_table_head(current);
304 
305 	/*
306 	 * It is possible to have multiple instances associated with a given
307 	 * task either because an multiple functions in the call path
308 	 * have a return probe installed on them, and/or more then one return
309 	 * return probe was registered for a target function.
310 	 *
311 	 * We can handle this because:
312 	 *     - instances are always inserted at the head of the list
313 	 *     - when multiple return probes are registered for the same
314 	 *       function, the first instance's ret_addr will point to the
315 	 *       real return address, and all the rest will point to
316 	 *       kretprobe_trampoline
317 	 */
318 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
319 		if (ri->task != current)
320 			/* another task is sharing our hash bucket */
321 			continue;
322 
323 		if (ri->rp && ri->rp->handler)
324 			ri->rp->handler(ri, regs);
325 
326 		orig_ret_address = (unsigned long)ri->ret_addr;
327 		recycle_rp_inst(ri, &empty_rp);
328 
329 		if (orig_ret_address != trampoline_address)
330 			/*
331 			 * This is the real return address. Any other
332 			 * instances associated with this task are for
333 			 * other calls deeper on the call stack
334 			 */
335 			break;
336 	}
337 
338 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
339 	regs->nip = orig_ret_address;
340 
341 	reset_current_kprobe();
342 	spin_unlock_irqrestore(&kretprobe_lock, flags);
343 	preempt_enable_no_resched();
344 
345 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
346 		hlist_del(&ri->hlist);
347 		kfree(ri);
348 	}
349 	/*
350 	 * By returning a non-zero value, we are telling
351 	 * kprobe_handler() that we don't want the post_handler
352 	 * to run (and have re-enabled preemption)
353 	 */
354 	return 1;
355 }
356 
357 /*
358  * Called after single-stepping.  p->addr is the address of the
359  * instruction whose first byte has been replaced by the "breakpoint"
360  * instruction.  To avoid the SMP problems that can occur when we
361  * temporarily put back the original opcode to single-step, we
362  * single-stepped a copy of the instruction.  The address of this
363  * copy is p->ainsn.insn.
364  */
365 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
366 {
367 	int ret;
368 	unsigned int insn = *p->ainsn.insn;
369 
370 	regs->nip = (unsigned long)p->addr;
371 	ret = emulate_step(regs, insn);
372 	if (ret == 0)
373 		regs->nip = (unsigned long)p->addr + 4;
374 }
375 
376 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
377 {
378 	struct kprobe *cur = kprobe_running();
379 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
380 
381 	if (!cur)
382 		return 0;
383 
384 	/* make sure we got here for instruction we have a kprobe on */
385 	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
386 		return 0;
387 
388 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
389 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
390 		cur->post_handler(cur, regs, 0);
391 	}
392 
393 	resume_execution(cur, regs);
394 	regs->msr |= kcb->kprobe_saved_msr;
395 
396 	/*Restore back the original saved kprobes variables and continue. */
397 	if (kcb->kprobe_status == KPROBE_REENTER) {
398 		restore_previous_kprobe(kcb);
399 		goto out;
400 	}
401 	reset_current_kprobe();
402 out:
403 	preempt_enable_no_resched();
404 
405 	/*
406 	 * if somebody else is singlestepping across a probe point, msr
407 	 * will have SE set, in which case, continue the remaining processing
408 	 * of do_debug, as if this is not a probe hit.
409 	 */
410 	if (regs->msr & MSR_SE)
411 		return 0;
412 
413 	return 1;
414 }
415 
416 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
417 {
418 	struct kprobe *cur = kprobe_running();
419 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
420 	const struct exception_table_entry *entry;
421 
422 	switch(kcb->kprobe_status) {
423 	case KPROBE_HIT_SS:
424 	case KPROBE_REENTER:
425 		/*
426 		 * We are here because the instruction being single
427 		 * stepped caused a page fault. We reset the current
428 		 * kprobe and the nip points back to the probe address
429 		 * and allow the page fault handler to continue as a
430 		 * normal page fault.
431 		 */
432 		regs->nip = (unsigned long)cur->addr;
433 		regs->msr &= ~MSR_SE;
434 		regs->msr |= kcb->kprobe_saved_msr;
435 		if (kcb->kprobe_status == KPROBE_REENTER)
436 			restore_previous_kprobe(kcb);
437 		else
438 			reset_current_kprobe();
439 		preempt_enable_no_resched();
440 		break;
441 	case KPROBE_HIT_ACTIVE:
442 	case KPROBE_HIT_SSDONE:
443 		/*
444 		 * We increment the nmissed count for accounting,
445 		 * we can also use npre/npostfault count for accouting
446 		 * these specific fault cases.
447 		 */
448 		kprobes_inc_nmissed_count(cur);
449 
450 		/*
451 		 * We come here because instructions in the pre/post
452 		 * handler caused the page_fault, this could happen
453 		 * if handler tries to access user space by
454 		 * copy_from_user(), get_user() etc. Let the
455 		 * user-specified handler try to fix it first.
456 		 */
457 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
458 			return 1;
459 
460 		/*
461 		 * In case the user-specified fault handler returned
462 		 * zero, try to fix up.
463 		 */
464 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
465 			regs->nip = entry->fixup;
466 			return 1;
467 		}
468 
469 		/*
470 		 * fixup_exception() could not handle it,
471 		 * Let do_page_fault() fix it.
472 		 */
473 		break;
474 	default:
475 		break;
476 	}
477 	return 0;
478 }
479 
480 /*
481  * Wrapper routine to for handling exceptions.
482  */
483 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
484 				       unsigned long val, void *data)
485 {
486 	struct die_args *args = (struct die_args *)data;
487 	int ret = NOTIFY_DONE;
488 
489 	if (args->regs && user_mode(args->regs))
490 		return ret;
491 
492 	switch (val) {
493 	case DIE_BPT:
494 		if (kprobe_handler(args->regs))
495 			ret = NOTIFY_STOP;
496 		break;
497 	case DIE_SSTEP:
498 		if (post_kprobe_handler(args->regs))
499 			ret = NOTIFY_STOP;
500 		break;
501 	default:
502 		break;
503 	}
504 	return ret;
505 }
506 
507 #ifdef CONFIG_PPC64
508 unsigned long arch_deref_entry_point(void *entry)
509 {
510 	return ((func_descr_t *)entry)->entry;
511 }
512 #endif
513 
514 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
515 {
516 	struct jprobe *jp = container_of(p, struct jprobe, kp);
517 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
518 
519 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
520 
521 	/* setup return addr to the jprobe handler routine */
522 	regs->nip = arch_deref_entry_point(jp->entry);
523 #ifdef CONFIG_PPC64
524 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
525 #endif
526 
527 	return 1;
528 }
529 
530 void __used __kprobes jprobe_return(void)
531 {
532 	asm volatile("trap" ::: "memory");
533 }
534 
535 static void __used __kprobes jprobe_return_end(void)
536 {
537 };
538 
539 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
540 {
541 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
542 
543 	/*
544 	 * FIXME - we should ideally be validating that we got here 'cos
545 	 * of the "trap" in jprobe_return() above, before restoring the
546 	 * saved regs...
547 	 */
548 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
549 	preempt_enable_no_resched();
550 	return 1;
551 }
552 
553 static struct kprobe trampoline_p = {
554 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
555 	.pre_handler = trampoline_probe_handler
556 };
557 
558 int __init arch_init_kprobes(void)
559 {
560 	return register_kprobe(&trampoline_p);
561 }
562 
563 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
564 {
565 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
566 		return 1;
567 
568 	return 0;
569 }
570