xref: /openbmc/linux/arch/powerpc/kernel/fadump.c (revision b71a693d3db3abd1ddf7d29be967a1180c3ebb22)
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26 
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29 
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/seq_file.h>
34 #include <linux/crash_dump.h>
35 #include <linux/kobject.h>
36 #include <linux/sysfs.h>
37 
38 #include <asm/debugfs.h>
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/setup.h>
44 
45 static struct fw_dump fw_dump;
46 static struct fadump_mem_struct fdm;
47 static const struct fadump_mem_struct *fdm_active;
48 
49 static DEFINE_MUTEX(fadump_mutex);
50 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
51 int crash_mem_ranges;
52 
53 /* Scan the Firmware Assisted dump configuration details. */
54 int __init early_init_dt_scan_fw_dump(unsigned long node,
55 			const char *uname, int depth, void *data)
56 {
57 	const __be32 *sections;
58 	int i, num_sections;
59 	int size;
60 	const __be32 *token;
61 
62 	if (depth != 1 || strcmp(uname, "rtas") != 0)
63 		return 0;
64 
65 	/*
66 	 * Check if Firmware Assisted dump is supported. if yes, check
67 	 * if dump has been initiated on last reboot.
68 	 */
69 	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
70 	if (!token)
71 		return 1;
72 
73 	fw_dump.fadump_supported = 1;
74 	fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
75 
76 	/*
77 	 * The 'ibm,kernel-dump' rtas node is present only if there is
78 	 * dump data waiting for us.
79 	 */
80 	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
81 	if (fdm_active)
82 		fw_dump.dump_active = 1;
83 
84 	/* Get the sizes required to store dump data for the firmware provided
85 	 * dump sections.
86 	 * For each dump section type supported, a 32bit cell which defines
87 	 * the ID of a supported section followed by two 32 bit cells which
88 	 * gives teh size of the section in bytes.
89 	 */
90 	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
91 					&size);
92 
93 	if (!sections)
94 		return 1;
95 
96 	num_sections = size / (3 * sizeof(u32));
97 
98 	for (i = 0; i < num_sections; i++, sections += 3) {
99 		u32 type = (u32)of_read_number(sections, 1);
100 
101 		switch (type) {
102 		case FADUMP_CPU_STATE_DATA:
103 			fw_dump.cpu_state_data_size =
104 					of_read_ulong(&sections[1], 2);
105 			break;
106 		case FADUMP_HPTE_REGION:
107 			fw_dump.hpte_region_size =
108 					of_read_ulong(&sections[1], 2);
109 			break;
110 		}
111 	}
112 
113 	return 1;
114 }
115 
116 /*
117  * If fadump is registered, check if the memory provided
118  * falls within boot memory area.
119  */
120 int is_fadump_boot_memory_area(u64 addr, ulong size)
121 {
122 	if (!fw_dump.dump_registered)
123 		return 0;
124 
125 	return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
126 }
127 
128 int should_fadump_crash(void)
129 {
130 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
131 		return 0;
132 	return 1;
133 }
134 
135 int is_fadump_active(void)
136 {
137 	return fw_dump.dump_active;
138 }
139 
140 /*
141  * Returns 1, if there are no holes in boot memory area,
142  * 0 otherwise.
143  */
144 static int is_boot_memory_area_contiguous(void)
145 {
146 	struct memblock_region *reg;
147 	unsigned long tstart, tend;
148 	unsigned long start_pfn = PHYS_PFN(RMA_START);
149 	unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
150 	unsigned int ret = 0;
151 
152 	for_each_memblock(memory, reg) {
153 		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
154 		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
155 		if (tstart < tend) {
156 			/* Memory hole from start_pfn to tstart */
157 			if (tstart > start_pfn)
158 				break;
159 
160 			if (tend == end_pfn) {
161 				ret = 1;
162 				break;
163 			}
164 
165 			start_pfn = tend + 1;
166 		}
167 	}
168 
169 	return ret;
170 }
171 
172 /* Print firmware assisted dump configurations for debugging purpose. */
173 static void fadump_show_config(void)
174 {
175 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
176 			(fw_dump.fadump_supported ? "present" : "no support"));
177 
178 	if (!fw_dump.fadump_supported)
179 		return;
180 
181 	pr_debug("Fadump enabled    : %s\n",
182 				(fw_dump.fadump_enabled ? "yes" : "no"));
183 	pr_debug("Dump Active       : %s\n",
184 				(fw_dump.dump_active ? "yes" : "no"));
185 	pr_debug("Dump section sizes:\n");
186 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
187 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
188 	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
189 }
190 
191 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
192 				unsigned long addr)
193 {
194 	if (!fdm)
195 		return 0;
196 
197 	memset(fdm, 0, sizeof(struct fadump_mem_struct));
198 	addr = addr & PAGE_MASK;
199 
200 	fdm->header.dump_format_version = cpu_to_be32(0x00000001);
201 	fdm->header.dump_num_sections = cpu_to_be16(3);
202 	fdm->header.dump_status_flag = 0;
203 	fdm->header.offset_first_dump_section =
204 		cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
205 
206 	/*
207 	 * Fields for disk dump option.
208 	 * We are not using disk dump option, hence set these fields to 0.
209 	 */
210 	fdm->header.dd_block_size = 0;
211 	fdm->header.dd_block_offset = 0;
212 	fdm->header.dd_num_blocks = 0;
213 	fdm->header.dd_offset_disk_path = 0;
214 
215 	/* set 0 to disable an automatic dump-reboot. */
216 	fdm->header.max_time_auto = 0;
217 
218 	/* Kernel dump sections */
219 	/* cpu state data section. */
220 	fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
221 	fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
222 	fdm->cpu_state_data.source_address = 0;
223 	fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
224 	fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
225 	addr += fw_dump.cpu_state_data_size;
226 
227 	/* hpte region section */
228 	fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
229 	fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
230 	fdm->hpte_region.source_address = 0;
231 	fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
232 	fdm->hpte_region.destination_address = cpu_to_be64(addr);
233 	addr += fw_dump.hpte_region_size;
234 
235 	/* RMA region section */
236 	fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
237 	fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
238 	fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
239 	fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
240 	fdm->rmr_region.destination_address = cpu_to_be64(addr);
241 	addr += fw_dump.boot_memory_size;
242 
243 	return addr;
244 }
245 
246 /**
247  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
248  *
249  * Function to find the largest memory size we need to reserve during early
250  * boot process. This will be the size of the memory that is required for a
251  * kernel to boot successfully.
252  *
253  * This function has been taken from phyp-assisted dump feature implementation.
254  *
255  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
256  *
257  * TODO: Come up with better approach to find out more accurate memory size
258  * that is required for a kernel to boot successfully.
259  *
260  */
261 static inline unsigned long fadump_calculate_reserve_size(void)
262 {
263 	int ret;
264 	unsigned long long base, size;
265 
266 	if (fw_dump.reserve_bootvar)
267 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
268 
269 	/*
270 	 * Check if the size is specified through crashkernel= cmdline
271 	 * option. If yes, then use that but ignore base as fadump reserves
272 	 * memory at a predefined offset.
273 	 */
274 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
275 				&size, &base);
276 	if (ret == 0 && size > 0) {
277 		unsigned long max_size;
278 
279 		if (fw_dump.reserve_bootvar)
280 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
281 
282 		fw_dump.reserve_bootvar = (unsigned long)size;
283 
284 		/*
285 		 * Adjust if the boot memory size specified is above
286 		 * the upper limit.
287 		 */
288 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
289 		if (fw_dump.reserve_bootvar > max_size) {
290 			fw_dump.reserve_bootvar = max_size;
291 			pr_info("Adjusted boot memory size to %luMB\n",
292 				(fw_dump.reserve_bootvar >> 20));
293 		}
294 
295 		return fw_dump.reserve_bootvar;
296 	} else if (fw_dump.reserve_bootvar) {
297 		/*
298 		 * 'fadump_reserve_mem=' is being used to reserve memory
299 		 * for firmware-assisted dump.
300 		 */
301 		return fw_dump.reserve_bootvar;
302 	}
303 
304 	/* divide by 20 to get 5% of value */
305 	size = memblock_phys_mem_size() / 20;
306 
307 	/* round it down in multiples of 256 */
308 	size = size & ~0x0FFFFFFFUL;
309 
310 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
311 	if (memory_limit && size > memory_limit)
312 		size = memory_limit;
313 
314 	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
315 }
316 
317 /*
318  * Calculate the total memory size required to be reserved for
319  * firmware-assisted dump registration.
320  */
321 static unsigned long get_fadump_area_size(void)
322 {
323 	unsigned long size = 0;
324 
325 	size += fw_dump.cpu_state_data_size;
326 	size += fw_dump.hpte_region_size;
327 	size += fw_dump.boot_memory_size;
328 	size += sizeof(struct fadump_crash_info_header);
329 	size += sizeof(struct elfhdr); /* ELF core header.*/
330 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
331 	/* Program headers for crash memory regions. */
332 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
333 
334 	size = PAGE_ALIGN(size);
335 	return size;
336 }
337 
338 static void __init fadump_reserve_crash_area(unsigned long base,
339 					     unsigned long size)
340 {
341 	struct memblock_region *reg;
342 	unsigned long mstart, mend, msize;
343 
344 	for_each_memblock(memory, reg) {
345 		mstart = max_t(unsigned long, base, reg->base);
346 		mend = reg->base + reg->size;
347 		mend = min(base + size, mend);
348 
349 		if (mstart < mend) {
350 			msize = mend - mstart;
351 			memblock_reserve(mstart, msize);
352 			pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
353 				(msize >> 20), mstart);
354 		}
355 	}
356 }
357 
358 int __init fadump_reserve_mem(void)
359 {
360 	unsigned long base, size, memory_boundary;
361 
362 	if (!fw_dump.fadump_enabled)
363 		return 0;
364 
365 	if (!fw_dump.fadump_supported) {
366 		printk(KERN_INFO "Firmware-assisted dump is not supported on"
367 				" this hardware\n");
368 		fw_dump.fadump_enabled = 0;
369 		return 0;
370 	}
371 	/*
372 	 * Initialize boot memory size
373 	 * If dump is active then we have already calculated the size during
374 	 * first kernel.
375 	 */
376 	if (fdm_active)
377 		fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
378 	else
379 		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
380 
381 	/*
382 	 * Calculate the memory boundary.
383 	 * If memory_limit is less than actual memory boundary then reserve
384 	 * the memory for fadump beyond the memory_limit and adjust the
385 	 * memory_limit accordingly, so that the running kernel can run with
386 	 * specified memory_limit.
387 	 */
388 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
389 		size = get_fadump_area_size();
390 		if ((memory_limit + size) < memblock_end_of_DRAM())
391 			memory_limit += size;
392 		else
393 			memory_limit = memblock_end_of_DRAM();
394 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
395 				" dump, now %#016llx\n", memory_limit);
396 	}
397 	if (memory_limit)
398 		memory_boundary = memory_limit;
399 	else
400 		memory_boundary = memblock_end_of_DRAM();
401 
402 	if (fw_dump.dump_active) {
403 		pr_info("Firmware-assisted dump is active.\n");
404 
405 		/*
406 		 * If last boot has crashed then reserve all the memory
407 		 * above boot_memory_size so that we don't touch it until
408 		 * dump is written to disk by userspace tool. This memory
409 		 * will be released for general use once the dump is saved.
410 		 */
411 		base = fw_dump.boot_memory_size;
412 		size = memory_boundary - base;
413 		fadump_reserve_crash_area(base, size);
414 
415 		fw_dump.fadumphdr_addr =
416 				be64_to_cpu(fdm_active->rmr_region.destination_address) +
417 				be64_to_cpu(fdm_active->rmr_region.source_len);
418 		pr_debug("fadumphdr_addr = %p\n",
419 				(void *) fw_dump.fadumphdr_addr);
420 	} else {
421 		size = get_fadump_area_size();
422 
423 		/*
424 		 * Reserve memory at an offset closer to bottom of the RAM to
425 		 * minimize the impact of memory hot-remove operation. We can't
426 		 * use memblock_find_in_range() here since it doesn't allocate
427 		 * from bottom to top.
428 		 */
429 		for (base = fw_dump.boot_memory_size;
430 		     base <= (memory_boundary - size);
431 		     base += size) {
432 			if (memblock_is_region_memory(base, size) &&
433 			    !memblock_is_region_reserved(base, size))
434 				break;
435 		}
436 		if ((base > (memory_boundary - size)) ||
437 		    memblock_reserve(base, size)) {
438 			pr_err("Failed to reserve memory\n");
439 			return 0;
440 		}
441 
442 		pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
443 			"assisted dump (System RAM: %ldMB)\n",
444 			(unsigned long)(size >> 20),
445 			(unsigned long)(base >> 20),
446 			(unsigned long)(memblock_phys_mem_size() >> 20));
447 	}
448 
449 	fw_dump.reserve_dump_area_start = base;
450 	fw_dump.reserve_dump_area_size = size;
451 	return 1;
452 }
453 
454 unsigned long __init arch_reserved_kernel_pages(void)
455 {
456 	return memblock_reserved_size() / PAGE_SIZE;
457 }
458 
459 /* Look for fadump= cmdline option. */
460 static int __init early_fadump_param(char *p)
461 {
462 	if (!p)
463 		return 1;
464 
465 	if (strncmp(p, "on", 2) == 0)
466 		fw_dump.fadump_enabled = 1;
467 	else if (strncmp(p, "off", 3) == 0)
468 		fw_dump.fadump_enabled = 0;
469 
470 	return 0;
471 }
472 early_param("fadump", early_fadump_param);
473 
474 /*
475  * Look for fadump_reserve_mem= cmdline option
476  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
477  *       the sooner 'crashkernel=' parameter is accustomed to.
478  */
479 static int __init early_fadump_reserve_mem(char *p)
480 {
481 	if (p)
482 		fw_dump.reserve_bootvar = memparse(p, &p);
483 	return 0;
484 }
485 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
486 
487 static int register_fw_dump(struct fadump_mem_struct *fdm)
488 {
489 	int rc, err;
490 	unsigned int wait_time;
491 
492 	pr_debug("Registering for firmware-assisted kernel dump...\n");
493 
494 	/* TODO: Add upper time limit for the delay */
495 	do {
496 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
497 			FADUMP_REGISTER, fdm,
498 			sizeof(struct fadump_mem_struct));
499 
500 		wait_time = rtas_busy_delay_time(rc);
501 		if (wait_time)
502 			mdelay(wait_time);
503 
504 	} while (wait_time);
505 
506 	err = -EIO;
507 	switch (rc) {
508 	default:
509 		pr_err("Failed to register. Unknown Error(%d).\n", rc);
510 		break;
511 	case -1:
512 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
513 			" dump. Hardware Error(%d).\n", rc);
514 		break;
515 	case -3:
516 		if (!is_boot_memory_area_contiguous())
517 			pr_err("Can't have holes in boot memory area while "
518 			       "registering fadump\n");
519 
520 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
521 			" dump. Parameter Error(%d).\n", rc);
522 		err = -EINVAL;
523 		break;
524 	case -9:
525 		printk(KERN_ERR "firmware-assisted kernel dump is already "
526 			" registered.");
527 		fw_dump.dump_registered = 1;
528 		err = -EEXIST;
529 		break;
530 	case 0:
531 		printk(KERN_INFO "firmware-assisted kernel dump registration"
532 			" is successful\n");
533 		fw_dump.dump_registered = 1;
534 		err = 0;
535 		break;
536 	}
537 	return err;
538 }
539 
540 void crash_fadump(struct pt_regs *regs, const char *str)
541 {
542 	struct fadump_crash_info_header *fdh = NULL;
543 	int old_cpu, this_cpu;
544 
545 	if (!should_fadump_crash())
546 		return;
547 
548 	/*
549 	 * old_cpu == -1 means this is the first CPU which has come here,
550 	 * go ahead and trigger fadump.
551 	 *
552 	 * old_cpu != -1 means some other CPU has already on it's way
553 	 * to trigger fadump, just keep looping here.
554 	 */
555 	this_cpu = smp_processor_id();
556 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
557 
558 	if (old_cpu != -1) {
559 		/*
560 		 * We can't loop here indefinitely. Wait as long as fadump
561 		 * is in force. If we race with fadump un-registration this
562 		 * loop will break and then we go down to normal panic path
563 		 * and reboot. If fadump is in force the first crashing
564 		 * cpu will definitely trigger fadump.
565 		 */
566 		while (fw_dump.dump_registered)
567 			cpu_relax();
568 		return;
569 	}
570 
571 	fdh = __va(fw_dump.fadumphdr_addr);
572 	fdh->crashing_cpu = crashing_cpu;
573 	crash_save_vmcoreinfo();
574 
575 	if (regs)
576 		fdh->regs = *regs;
577 	else
578 		ppc_save_regs(&fdh->regs);
579 
580 	fdh->online_mask = *cpu_online_mask;
581 
582 	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
583 	rtas_os_term((char *)str);
584 }
585 
586 #define GPR_MASK	0xffffff0000000000
587 static inline int fadump_gpr_index(u64 id)
588 {
589 	int i = -1;
590 	char str[3];
591 
592 	if ((id & GPR_MASK) == REG_ID("GPR")) {
593 		/* get the digits at the end */
594 		id &= ~GPR_MASK;
595 		id >>= 24;
596 		str[2] = '\0';
597 		str[1] = id & 0xff;
598 		str[0] = (id >> 8) & 0xff;
599 		sscanf(str, "%d", &i);
600 		if (i > 31)
601 			i = -1;
602 	}
603 	return i;
604 }
605 
606 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
607 								u64 reg_val)
608 {
609 	int i;
610 
611 	i = fadump_gpr_index(reg_id);
612 	if (i >= 0)
613 		regs->gpr[i] = (unsigned long)reg_val;
614 	else if (reg_id == REG_ID("NIA"))
615 		regs->nip = (unsigned long)reg_val;
616 	else if (reg_id == REG_ID("MSR"))
617 		regs->msr = (unsigned long)reg_val;
618 	else if (reg_id == REG_ID("CTR"))
619 		regs->ctr = (unsigned long)reg_val;
620 	else if (reg_id == REG_ID("LR"))
621 		regs->link = (unsigned long)reg_val;
622 	else if (reg_id == REG_ID("XER"))
623 		regs->xer = (unsigned long)reg_val;
624 	else if (reg_id == REG_ID("CR"))
625 		regs->ccr = (unsigned long)reg_val;
626 	else if (reg_id == REG_ID("DAR"))
627 		regs->dar = (unsigned long)reg_val;
628 	else if (reg_id == REG_ID("DSISR"))
629 		regs->dsisr = (unsigned long)reg_val;
630 }
631 
632 static struct fadump_reg_entry*
633 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
634 {
635 	memset(regs, 0, sizeof(struct pt_regs));
636 
637 	while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
638 		fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
639 					be64_to_cpu(reg_entry->reg_value));
640 		reg_entry++;
641 	}
642 	reg_entry++;
643 	return reg_entry;
644 }
645 
646 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
647 {
648 	struct elf_prstatus prstatus;
649 
650 	memset(&prstatus, 0, sizeof(prstatus));
651 	/*
652 	 * FIXME: How do i get PID? Do I really need it?
653 	 * prstatus.pr_pid = ????
654 	 */
655 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
656 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
657 			      &prstatus, sizeof(prstatus));
658 	return buf;
659 }
660 
661 static void fadump_update_elfcore_header(char *bufp)
662 {
663 	struct elfhdr *elf;
664 	struct elf_phdr *phdr;
665 
666 	elf = (struct elfhdr *)bufp;
667 	bufp += sizeof(struct elfhdr);
668 
669 	/* First note is a place holder for cpu notes info. */
670 	phdr = (struct elf_phdr *)bufp;
671 
672 	if (phdr->p_type == PT_NOTE) {
673 		phdr->p_paddr = fw_dump.cpu_notes_buf;
674 		phdr->p_offset	= phdr->p_paddr;
675 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
676 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
677 	}
678 	return;
679 }
680 
681 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
682 {
683 	void *vaddr;
684 	struct page *page;
685 	unsigned long order, count, i;
686 
687 	order = get_order(size);
688 	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
689 	if (!vaddr)
690 		return NULL;
691 
692 	count = 1 << order;
693 	page = virt_to_page(vaddr);
694 	for (i = 0; i < count; i++)
695 		SetPageReserved(page + i);
696 	return vaddr;
697 }
698 
699 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
700 {
701 	struct page *page;
702 	unsigned long order, count, i;
703 
704 	order = get_order(size);
705 	count = 1 << order;
706 	page = virt_to_page(vaddr);
707 	for (i = 0; i < count; i++)
708 		ClearPageReserved(page + i);
709 	__free_pages(page, order);
710 }
711 
712 /*
713  * Read CPU state dump data and convert it into ELF notes.
714  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
715  * used to access the data to allow for additional fields to be added without
716  * affecting compatibility. Each list of registers for a CPU starts with
717  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
718  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
719  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
720  * of register value. For more details refer to PAPR document.
721  *
722  * Only for the crashing cpu we ignore the CPU dump data and get exact
723  * state from fadump crash info structure populated by first kernel at the
724  * time of crash.
725  */
726 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
727 {
728 	struct fadump_reg_save_area_header *reg_header;
729 	struct fadump_reg_entry *reg_entry;
730 	struct fadump_crash_info_header *fdh = NULL;
731 	void *vaddr;
732 	unsigned long addr;
733 	u32 num_cpus, *note_buf;
734 	struct pt_regs regs;
735 	int i, rc = 0, cpu = 0;
736 
737 	if (!fdm->cpu_state_data.bytes_dumped)
738 		return -EINVAL;
739 
740 	addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
741 	vaddr = __va(addr);
742 
743 	reg_header = vaddr;
744 	if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
745 		printk(KERN_ERR "Unable to read register save area.\n");
746 		return -ENOENT;
747 	}
748 	pr_debug("--------CPU State Data------------\n");
749 	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
750 	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
751 
752 	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
753 	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
754 	pr_debug("NumCpus     : %u\n", num_cpus);
755 	vaddr += sizeof(u32);
756 	reg_entry = (struct fadump_reg_entry *)vaddr;
757 
758 	/* Allocate buffer to hold cpu crash notes. */
759 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
760 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
761 	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
762 	if (!note_buf) {
763 		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
764 			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
765 		return -ENOMEM;
766 	}
767 	fw_dump.cpu_notes_buf = __pa(note_buf);
768 
769 	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
770 			(num_cpus * sizeof(note_buf_t)), note_buf);
771 
772 	if (fw_dump.fadumphdr_addr)
773 		fdh = __va(fw_dump.fadumphdr_addr);
774 
775 	for (i = 0; i < num_cpus; i++) {
776 		if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
777 			printk(KERN_ERR "Unable to read CPU state data\n");
778 			rc = -ENOENT;
779 			goto error_out;
780 		}
781 		/* Lower 4 bytes of reg_value contains logical cpu id */
782 		cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
783 		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
784 			SKIP_TO_NEXT_CPU(reg_entry);
785 			continue;
786 		}
787 		pr_debug("Reading register data for cpu %d...\n", cpu);
788 		if (fdh && fdh->crashing_cpu == cpu) {
789 			regs = fdh->regs;
790 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
791 			SKIP_TO_NEXT_CPU(reg_entry);
792 		} else {
793 			reg_entry++;
794 			reg_entry = fadump_read_registers(reg_entry, &regs);
795 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
796 		}
797 	}
798 	final_note(note_buf);
799 
800 	if (fdh) {
801 		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
802 							fdh->elfcorehdr_addr);
803 		fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
804 	}
805 	return 0;
806 
807 error_out:
808 	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
809 					fw_dump.cpu_notes_buf_size);
810 	fw_dump.cpu_notes_buf = 0;
811 	fw_dump.cpu_notes_buf_size = 0;
812 	return rc;
813 
814 }
815 
816 /*
817  * Validate and process the dump data stored by firmware before exporting
818  * it through '/proc/vmcore'.
819  */
820 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
821 {
822 	struct fadump_crash_info_header *fdh;
823 	int rc = 0;
824 
825 	if (!fdm_active || !fw_dump.fadumphdr_addr)
826 		return -EINVAL;
827 
828 	/* Check if the dump data is valid. */
829 	if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
830 			(fdm_active->cpu_state_data.error_flags != 0) ||
831 			(fdm_active->rmr_region.error_flags != 0)) {
832 		printk(KERN_ERR "Dump taken by platform is not valid\n");
833 		return -EINVAL;
834 	}
835 	if ((fdm_active->rmr_region.bytes_dumped !=
836 			fdm_active->rmr_region.source_len) ||
837 			!fdm_active->cpu_state_data.bytes_dumped) {
838 		printk(KERN_ERR "Dump taken by platform is incomplete\n");
839 		return -EINVAL;
840 	}
841 
842 	/* Validate the fadump crash info header */
843 	fdh = __va(fw_dump.fadumphdr_addr);
844 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
845 		printk(KERN_ERR "Crash info header is not valid.\n");
846 		return -EINVAL;
847 	}
848 
849 	rc = fadump_build_cpu_notes(fdm_active);
850 	if (rc)
851 		return rc;
852 
853 	/*
854 	 * We are done validating dump info and elfcore header is now ready
855 	 * to be exported. set elfcorehdr_addr so that vmcore module will
856 	 * export the elfcore header through '/proc/vmcore'.
857 	 */
858 	elfcorehdr_addr = fdh->elfcorehdr_addr;
859 
860 	return 0;
861 }
862 
863 static inline void fadump_add_crash_memory(unsigned long long base,
864 					unsigned long long end)
865 {
866 	if (base == end)
867 		return;
868 
869 	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
870 		crash_mem_ranges, base, end - 1, (end - base));
871 	crash_memory_ranges[crash_mem_ranges].base = base;
872 	crash_memory_ranges[crash_mem_ranges].size = end - base;
873 	crash_mem_ranges++;
874 }
875 
876 static void fadump_exclude_reserved_area(unsigned long long start,
877 					unsigned long long end)
878 {
879 	unsigned long long ra_start, ra_end;
880 
881 	ra_start = fw_dump.reserve_dump_area_start;
882 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
883 
884 	if ((ra_start < end) && (ra_end > start)) {
885 		if ((start < ra_start) && (end > ra_end)) {
886 			fadump_add_crash_memory(start, ra_start);
887 			fadump_add_crash_memory(ra_end, end);
888 		} else if (start < ra_start) {
889 			fadump_add_crash_memory(start, ra_start);
890 		} else if (ra_end < end) {
891 			fadump_add_crash_memory(ra_end, end);
892 		}
893 	} else
894 		fadump_add_crash_memory(start, end);
895 }
896 
897 static int fadump_init_elfcore_header(char *bufp)
898 {
899 	struct elfhdr *elf;
900 
901 	elf = (struct elfhdr *) bufp;
902 	bufp += sizeof(struct elfhdr);
903 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
904 	elf->e_ident[EI_CLASS] = ELF_CLASS;
905 	elf->e_ident[EI_DATA] = ELF_DATA;
906 	elf->e_ident[EI_VERSION] = EV_CURRENT;
907 	elf->e_ident[EI_OSABI] = ELF_OSABI;
908 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
909 	elf->e_type = ET_CORE;
910 	elf->e_machine = ELF_ARCH;
911 	elf->e_version = EV_CURRENT;
912 	elf->e_entry = 0;
913 	elf->e_phoff = sizeof(struct elfhdr);
914 	elf->e_shoff = 0;
915 #if defined(_CALL_ELF)
916 	elf->e_flags = _CALL_ELF;
917 #else
918 	elf->e_flags = 0;
919 #endif
920 	elf->e_ehsize = sizeof(struct elfhdr);
921 	elf->e_phentsize = sizeof(struct elf_phdr);
922 	elf->e_phnum = 0;
923 	elf->e_shentsize = 0;
924 	elf->e_shnum = 0;
925 	elf->e_shstrndx = 0;
926 
927 	return 0;
928 }
929 
930 /*
931  * Traverse through memblock structure and setup crash memory ranges. These
932  * ranges will be used create PT_LOAD program headers in elfcore header.
933  */
934 static void fadump_setup_crash_memory_ranges(void)
935 {
936 	struct memblock_region *reg;
937 	unsigned long long start, end;
938 
939 	pr_debug("Setup crash memory ranges.\n");
940 	crash_mem_ranges = 0;
941 	/*
942 	 * add the first memory chunk (RMA_START through boot_memory_size) as
943 	 * a separate memory chunk. The reason is, at the time crash firmware
944 	 * will move the content of this memory chunk to different location
945 	 * specified during fadump registration. We need to create a separate
946 	 * program header for this chunk with the correct offset.
947 	 */
948 	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
949 
950 	for_each_memblock(memory, reg) {
951 		start = (unsigned long long)reg->base;
952 		end = start + (unsigned long long)reg->size;
953 
954 		/*
955 		 * skip the first memory chunk that is already added (RMA_START
956 		 * through boot_memory_size). This logic needs a relook if and
957 		 * when RMA_START changes to a non-zero value.
958 		 */
959 		BUILD_BUG_ON(RMA_START != 0);
960 		if (start < fw_dump.boot_memory_size) {
961 			if (end > fw_dump.boot_memory_size)
962 				start = fw_dump.boot_memory_size;
963 			else
964 				continue;
965 		}
966 
967 		/* add this range excluding the reserved dump area. */
968 		fadump_exclude_reserved_area(start, end);
969 	}
970 }
971 
972 /*
973  * If the given physical address falls within the boot memory region then
974  * return the relocated address that points to the dump region reserved
975  * for saving initial boot memory contents.
976  */
977 static inline unsigned long fadump_relocate(unsigned long paddr)
978 {
979 	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
980 		return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
981 	else
982 		return paddr;
983 }
984 
985 static int fadump_create_elfcore_headers(char *bufp)
986 {
987 	struct elfhdr *elf;
988 	struct elf_phdr *phdr;
989 	int i;
990 
991 	fadump_init_elfcore_header(bufp);
992 	elf = (struct elfhdr *)bufp;
993 	bufp += sizeof(struct elfhdr);
994 
995 	/*
996 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
997 	 * will be populated during second kernel boot after crash. Hence
998 	 * this PT_NOTE will always be the first elf note.
999 	 *
1000 	 * NOTE: Any new ELF note addition should be placed after this note.
1001 	 */
1002 	phdr = (struct elf_phdr *)bufp;
1003 	bufp += sizeof(struct elf_phdr);
1004 	phdr->p_type = PT_NOTE;
1005 	phdr->p_flags = 0;
1006 	phdr->p_vaddr = 0;
1007 	phdr->p_align = 0;
1008 
1009 	phdr->p_offset = 0;
1010 	phdr->p_paddr = 0;
1011 	phdr->p_filesz = 0;
1012 	phdr->p_memsz = 0;
1013 
1014 	(elf->e_phnum)++;
1015 
1016 	/* setup ELF PT_NOTE for vmcoreinfo */
1017 	phdr = (struct elf_phdr *)bufp;
1018 	bufp += sizeof(struct elf_phdr);
1019 	phdr->p_type	= PT_NOTE;
1020 	phdr->p_flags	= 0;
1021 	phdr->p_vaddr	= 0;
1022 	phdr->p_align	= 0;
1023 
1024 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1025 	phdr->p_offset	= phdr->p_paddr;
1026 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1027 
1028 	/* Increment number of program headers. */
1029 	(elf->e_phnum)++;
1030 
1031 	/* setup PT_LOAD sections. */
1032 
1033 	for (i = 0; i < crash_mem_ranges; i++) {
1034 		unsigned long long mbase, msize;
1035 		mbase = crash_memory_ranges[i].base;
1036 		msize = crash_memory_ranges[i].size;
1037 
1038 		if (!msize)
1039 			continue;
1040 
1041 		phdr = (struct elf_phdr *)bufp;
1042 		bufp += sizeof(struct elf_phdr);
1043 		phdr->p_type	= PT_LOAD;
1044 		phdr->p_flags	= PF_R|PF_W|PF_X;
1045 		phdr->p_offset	= mbase;
1046 
1047 		if (mbase == RMA_START) {
1048 			/*
1049 			 * The entire RMA region will be moved by firmware
1050 			 * to the specified destination_address. Hence set
1051 			 * the correct offset.
1052 			 */
1053 			phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
1054 		}
1055 
1056 		phdr->p_paddr = mbase;
1057 		phdr->p_vaddr = (unsigned long)__va(mbase);
1058 		phdr->p_filesz = msize;
1059 		phdr->p_memsz = msize;
1060 		phdr->p_align = 0;
1061 
1062 		/* Increment number of program headers. */
1063 		(elf->e_phnum)++;
1064 	}
1065 	return 0;
1066 }
1067 
1068 static unsigned long init_fadump_header(unsigned long addr)
1069 {
1070 	struct fadump_crash_info_header *fdh;
1071 
1072 	if (!addr)
1073 		return 0;
1074 
1075 	fw_dump.fadumphdr_addr = addr;
1076 	fdh = __va(addr);
1077 	addr += sizeof(struct fadump_crash_info_header);
1078 
1079 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1080 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1081 	fdh->elfcorehdr_addr = addr;
1082 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1083 	fdh->crashing_cpu = CPU_UNKNOWN;
1084 
1085 	return addr;
1086 }
1087 
1088 static int register_fadump(void)
1089 {
1090 	unsigned long addr;
1091 	void *vaddr;
1092 
1093 	/*
1094 	 * If no memory is reserved then we can not register for firmware-
1095 	 * assisted dump.
1096 	 */
1097 	if (!fw_dump.reserve_dump_area_size)
1098 		return -ENODEV;
1099 
1100 	fadump_setup_crash_memory_ranges();
1101 
1102 	addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1103 	/* Initialize fadump crash info header. */
1104 	addr = init_fadump_header(addr);
1105 	vaddr = __va(addr);
1106 
1107 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1108 	fadump_create_elfcore_headers(vaddr);
1109 
1110 	/* register the future kernel dump with firmware. */
1111 	return register_fw_dump(&fdm);
1112 }
1113 
1114 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1115 {
1116 	int rc = 0;
1117 	unsigned int wait_time;
1118 
1119 	pr_debug("Un-register firmware-assisted dump\n");
1120 
1121 	/* TODO: Add upper time limit for the delay */
1122 	do {
1123 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1124 			FADUMP_UNREGISTER, fdm,
1125 			sizeof(struct fadump_mem_struct));
1126 
1127 		wait_time = rtas_busy_delay_time(rc);
1128 		if (wait_time)
1129 			mdelay(wait_time);
1130 	} while (wait_time);
1131 
1132 	if (rc) {
1133 		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1134 			" unexpected error(%d).\n", rc);
1135 		return rc;
1136 	}
1137 	fw_dump.dump_registered = 0;
1138 	return 0;
1139 }
1140 
1141 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1142 {
1143 	int rc = 0;
1144 	unsigned int wait_time;
1145 
1146 	pr_debug("Invalidating firmware-assisted dump registration\n");
1147 
1148 	/* TODO: Add upper time limit for the delay */
1149 	do {
1150 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1151 			FADUMP_INVALIDATE, fdm,
1152 			sizeof(struct fadump_mem_struct));
1153 
1154 		wait_time = rtas_busy_delay_time(rc);
1155 		if (wait_time)
1156 			mdelay(wait_time);
1157 	} while (wait_time);
1158 
1159 	if (rc) {
1160 		pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1161 		return rc;
1162 	}
1163 	fw_dump.dump_active = 0;
1164 	fdm_active = NULL;
1165 	return 0;
1166 }
1167 
1168 void fadump_cleanup(void)
1169 {
1170 	/* Invalidate the registration only if dump is active. */
1171 	if (fw_dump.dump_active) {
1172 		init_fadump_mem_struct(&fdm,
1173 			be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1174 		fadump_invalidate_dump(&fdm);
1175 	}
1176 }
1177 
1178 static void fadump_free_reserved_memory(unsigned long start_pfn,
1179 					unsigned long end_pfn)
1180 {
1181 	unsigned long pfn;
1182 	unsigned long time_limit = jiffies + HZ;
1183 
1184 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1185 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1186 
1187 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1188 		free_reserved_page(pfn_to_page(pfn));
1189 
1190 		if (time_after(jiffies, time_limit)) {
1191 			cond_resched();
1192 			time_limit = jiffies + HZ;
1193 		}
1194 	}
1195 }
1196 
1197 /*
1198  * Skip memory holes and free memory that was actually reserved.
1199  */
1200 static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1201 {
1202 	struct memblock_region *reg;
1203 	unsigned long tstart, tend;
1204 	unsigned long start_pfn = PHYS_PFN(start);
1205 	unsigned long end_pfn = PHYS_PFN(end);
1206 
1207 	for_each_memblock(memory, reg) {
1208 		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1209 		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1210 		if (tstart < tend) {
1211 			fadump_free_reserved_memory(tstart, tend);
1212 
1213 			if (tend == end_pfn)
1214 				break;
1215 
1216 			start_pfn = tend + 1;
1217 		}
1218 	}
1219 }
1220 
1221 /*
1222  * Release the memory that was reserved in early boot to preserve the memory
1223  * contents. The released memory will be available for general use.
1224  */
1225 static void fadump_release_memory(unsigned long begin, unsigned long end)
1226 {
1227 	unsigned long ra_start, ra_end;
1228 
1229 	ra_start = fw_dump.reserve_dump_area_start;
1230 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1231 
1232 	/*
1233 	 * exclude the dump reserve area. Will reuse it for next
1234 	 * fadump registration.
1235 	 */
1236 	if (begin < ra_end && end > ra_start) {
1237 		if (begin < ra_start)
1238 			fadump_release_reserved_area(begin, ra_start);
1239 		if (end > ra_end)
1240 			fadump_release_reserved_area(ra_end, end);
1241 	} else
1242 		fadump_release_reserved_area(begin, end);
1243 }
1244 
1245 static void fadump_invalidate_release_mem(void)
1246 {
1247 	unsigned long reserved_area_start, reserved_area_end;
1248 	unsigned long destination_address;
1249 
1250 	mutex_lock(&fadump_mutex);
1251 	if (!fw_dump.dump_active) {
1252 		mutex_unlock(&fadump_mutex);
1253 		return;
1254 	}
1255 
1256 	destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1257 	fadump_cleanup();
1258 	mutex_unlock(&fadump_mutex);
1259 
1260 	/*
1261 	 * Save the current reserved memory bounds we will require them
1262 	 * later for releasing the memory for general use.
1263 	 */
1264 	reserved_area_start = fw_dump.reserve_dump_area_start;
1265 	reserved_area_end = reserved_area_start +
1266 			fw_dump.reserve_dump_area_size;
1267 	/*
1268 	 * Setup reserve_dump_area_start and its size so that we can
1269 	 * reuse this reserved memory for Re-registration.
1270 	 */
1271 	fw_dump.reserve_dump_area_start = destination_address;
1272 	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1273 
1274 	fadump_release_memory(reserved_area_start, reserved_area_end);
1275 	if (fw_dump.cpu_notes_buf) {
1276 		fadump_cpu_notes_buf_free(
1277 				(unsigned long)__va(fw_dump.cpu_notes_buf),
1278 				fw_dump.cpu_notes_buf_size);
1279 		fw_dump.cpu_notes_buf = 0;
1280 		fw_dump.cpu_notes_buf_size = 0;
1281 	}
1282 	/* Initialize the kernel dump memory structure for FAD registration. */
1283 	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1284 }
1285 
1286 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1287 					struct kobj_attribute *attr,
1288 					const char *buf, size_t count)
1289 {
1290 	int input = -1;
1291 
1292 	if (!fw_dump.dump_active)
1293 		return -EPERM;
1294 
1295 	if (kstrtoint(buf, 0, &input))
1296 		return -EINVAL;
1297 
1298 	if (input == 1) {
1299 		/*
1300 		 * Take away the '/proc/vmcore'. We are releasing the dump
1301 		 * memory, hence it will not be valid anymore.
1302 		 */
1303 #ifdef CONFIG_PROC_VMCORE
1304 		vmcore_cleanup();
1305 #endif
1306 		fadump_invalidate_release_mem();
1307 
1308 	} else
1309 		return -EINVAL;
1310 	return count;
1311 }
1312 
1313 static ssize_t fadump_enabled_show(struct kobject *kobj,
1314 					struct kobj_attribute *attr,
1315 					char *buf)
1316 {
1317 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1318 }
1319 
1320 static ssize_t fadump_register_show(struct kobject *kobj,
1321 					struct kobj_attribute *attr,
1322 					char *buf)
1323 {
1324 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1325 }
1326 
1327 static ssize_t fadump_register_store(struct kobject *kobj,
1328 					struct kobj_attribute *attr,
1329 					const char *buf, size_t count)
1330 {
1331 	int ret = 0;
1332 	int input = -1;
1333 
1334 	if (!fw_dump.fadump_enabled || fdm_active)
1335 		return -EPERM;
1336 
1337 	if (kstrtoint(buf, 0, &input))
1338 		return -EINVAL;
1339 
1340 	mutex_lock(&fadump_mutex);
1341 
1342 	switch (input) {
1343 	case 0:
1344 		if (fw_dump.dump_registered == 0) {
1345 			goto unlock_out;
1346 		}
1347 		/* Un-register Firmware-assisted dump */
1348 		fadump_unregister_dump(&fdm);
1349 		break;
1350 	case 1:
1351 		if (fw_dump.dump_registered == 1) {
1352 			ret = -EEXIST;
1353 			goto unlock_out;
1354 		}
1355 		/* Register Firmware-assisted dump */
1356 		ret = register_fadump();
1357 		break;
1358 	default:
1359 		ret = -EINVAL;
1360 		break;
1361 	}
1362 
1363 unlock_out:
1364 	mutex_unlock(&fadump_mutex);
1365 	return ret < 0 ? ret : count;
1366 }
1367 
1368 static int fadump_region_show(struct seq_file *m, void *private)
1369 {
1370 	const struct fadump_mem_struct *fdm_ptr;
1371 
1372 	if (!fw_dump.fadump_enabled)
1373 		return 0;
1374 
1375 	mutex_lock(&fadump_mutex);
1376 	if (fdm_active)
1377 		fdm_ptr = fdm_active;
1378 	else {
1379 		mutex_unlock(&fadump_mutex);
1380 		fdm_ptr = &fdm;
1381 	}
1382 
1383 	seq_printf(m,
1384 			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1385 			"Dumped: %#llx\n",
1386 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1387 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1388 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1389 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1390 			be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1391 	seq_printf(m,
1392 			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1393 			"Dumped: %#llx\n",
1394 			be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1395 			be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1396 			be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1397 			be64_to_cpu(fdm_ptr->hpte_region.source_len),
1398 			be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1399 	seq_printf(m,
1400 			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1401 			"Dumped: %#llx\n",
1402 			be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1403 			be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1404 			be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1405 			be64_to_cpu(fdm_ptr->rmr_region.source_len),
1406 			be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1407 
1408 	if (!fdm_active ||
1409 		(fw_dump.reserve_dump_area_start ==
1410 		be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1411 		goto out;
1412 
1413 	/* Dump is active. Show reserved memory region. */
1414 	seq_printf(m,
1415 			"    : [%#016llx-%#016llx] %#llx bytes, "
1416 			"Dumped: %#llx\n",
1417 			(unsigned long long)fw_dump.reserve_dump_area_start,
1418 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1419 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1420 			fw_dump.reserve_dump_area_start,
1421 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1422 			fw_dump.reserve_dump_area_start);
1423 out:
1424 	if (fdm_active)
1425 		mutex_unlock(&fadump_mutex);
1426 	return 0;
1427 }
1428 
1429 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1430 						0200, NULL,
1431 						fadump_release_memory_store);
1432 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1433 						0444, fadump_enabled_show,
1434 						NULL);
1435 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1436 						0644, fadump_register_show,
1437 						fadump_register_store);
1438 
1439 static int fadump_region_open(struct inode *inode, struct file *file)
1440 {
1441 	return single_open(file, fadump_region_show, inode->i_private);
1442 }
1443 
1444 static const struct file_operations fadump_region_fops = {
1445 	.open    = fadump_region_open,
1446 	.read    = seq_read,
1447 	.llseek  = seq_lseek,
1448 	.release = single_release,
1449 };
1450 
1451 static void fadump_init_files(void)
1452 {
1453 	struct dentry *debugfs_file;
1454 	int rc = 0;
1455 
1456 	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1457 	if (rc)
1458 		printk(KERN_ERR "fadump: unable to create sysfs file"
1459 			" fadump_enabled (%d)\n", rc);
1460 
1461 	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1462 	if (rc)
1463 		printk(KERN_ERR "fadump: unable to create sysfs file"
1464 			" fadump_registered (%d)\n", rc);
1465 
1466 	debugfs_file = debugfs_create_file("fadump_region", 0444,
1467 					powerpc_debugfs_root, NULL,
1468 					&fadump_region_fops);
1469 	if (!debugfs_file)
1470 		printk(KERN_ERR "fadump: unable to create debugfs file"
1471 				" fadump_region\n");
1472 
1473 	if (fw_dump.dump_active) {
1474 		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1475 		if (rc)
1476 			printk(KERN_ERR "fadump: unable to create sysfs file"
1477 				" fadump_release_mem (%d)\n", rc);
1478 	}
1479 	return;
1480 }
1481 
1482 /*
1483  * Prepare for firmware-assisted dump.
1484  */
1485 int __init setup_fadump(void)
1486 {
1487 	if (!fw_dump.fadump_enabled)
1488 		return 0;
1489 
1490 	if (!fw_dump.fadump_supported) {
1491 		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1492 			" this hardware\n");
1493 		return 0;
1494 	}
1495 
1496 	fadump_show_config();
1497 	/*
1498 	 * If dump data is available then see if it is valid and prepare for
1499 	 * saving it to the disk.
1500 	 */
1501 	if (fw_dump.dump_active) {
1502 		/*
1503 		 * if dump process fails then invalidate the registration
1504 		 * and release memory before proceeding for re-registration.
1505 		 */
1506 		if (process_fadump(fdm_active) < 0)
1507 			fadump_invalidate_release_mem();
1508 	}
1509 	/* Initialize the kernel dump memory structure for FAD registration. */
1510 	else if (fw_dump.reserve_dump_area_size)
1511 		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1512 	fadump_init_files();
1513 
1514 	return 1;
1515 }
1516 subsys_initcall(setup_fadump);
1517