1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash 4 * dump with assistance from firmware. This approach does not use kexec, 5 * instead firmware assists in booting the kdump kernel while preserving 6 * memory contents. The most of the code implementation has been adapted 7 * from phyp assisted dump implementation written by Linas Vepstas and 8 * Manish Ahuja 9 * 10 * Copyright 2011 IBM Corporation 11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> 12 */ 13 14 #undef DEBUG 15 #define pr_fmt(fmt) "fadump: " fmt 16 17 #include <linux/string.h> 18 #include <linux/memblock.h> 19 #include <linux/delay.h> 20 #include <linux/seq_file.h> 21 #include <linux/crash_dump.h> 22 #include <linux/kobject.h> 23 #include <linux/sysfs.h> 24 #include <linux/slab.h> 25 #include <linux/cma.h> 26 #include <linux/hugetlb.h> 27 #include <linux/debugfs.h> 28 29 #include <asm/page.h> 30 #include <asm/prom.h> 31 #include <asm/fadump.h> 32 #include <asm/fadump-internal.h> 33 #include <asm/setup.h> 34 #include <asm/interrupt.h> 35 36 /* 37 * The CPU who acquired the lock to trigger the fadump crash should 38 * wait for other CPUs to enter. 39 * 40 * The timeout is in milliseconds. 41 */ 42 #define CRASH_TIMEOUT 500 43 44 static struct fw_dump fw_dump; 45 46 static void __init fadump_reserve_crash_area(u64 base); 47 48 #ifndef CONFIG_PRESERVE_FA_DUMP 49 50 static struct kobject *fadump_kobj; 51 52 static atomic_t cpus_in_fadump; 53 static DEFINE_MUTEX(fadump_mutex); 54 55 static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false }; 56 57 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */ 58 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \ 59 sizeof(struct fadump_memory_range)) 60 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT]; 61 static struct fadump_mrange_info 62 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true }; 63 64 static void __init early_init_dt_scan_reserved_ranges(unsigned long node); 65 66 #ifdef CONFIG_CMA 67 static struct cma *fadump_cma; 68 69 /* 70 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory 71 * 72 * This function initializes CMA area from fadump reserved memory. 73 * The total size of fadump reserved memory covers for boot memory size 74 * + cpu data size + hpte size and metadata. 75 * Initialize only the area equivalent to boot memory size for CMA use. 76 * The remaining portion of fadump reserved memory will be not given 77 * to CMA and pages for those will stay reserved. boot memory size is 78 * aligned per CMA requirement to satisy cma_init_reserved_mem() call. 79 * But for some reason even if it fails we still have the memory reservation 80 * with us and we can still continue doing fadump. 81 */ 82 static int __init fadump_cma_init(void) 83 { 84 unsigned long long base, size; 85 int rc; 86 87 if (!fw_dump.fadump_enabled) 88 return 0; 89 90 /* 91 * Do not use CMA if user has provided fadump=nocma kernel parameter. 92 * Return 1 to continue with fadump old behaviour. 93 */ 94 if (fw_dump.nocma) 95 return 1; 96 97 base = fw_dump.reserve_dump_area_start; 98 size = fw_dump.boot_memory_size; 99 100 if (!size) 101 return 0; 102 103 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma); 104 if (rc) { 105 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc); 106 /* 107 * Though the CMA init has failed we still have memory 108 * reservation with us. The reserved memory will be 109 * blocked from production system usage. Hence return 1, 110 * so that we can continue with fadump. 111 */ 112 return 1; 113 } 114 115 /* 116 * If CMA activation fails, keep the pages reserved, instead of 117 * exposing them to buddy allocator. Same as 'fadump=nocma' case. 118 */ 119 cma_reserve_pages_on_error(fadump_cma); 120 121 /* 122 * So we now have successfully initialized cma area for fadump. 123 */ 124 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx " 125 "bytes of memory reserved for firmware-assisted dump\n", 126 cma_get_size(fadump_cma), 127 (unsigned long)cma_get_base(fadump_cma) >> 20, 128 fw_dump.reserve_dump_area_size); 129 return 1; 130 } 131 #else 132 static int __init fadump_cma_init(void) { return 1; } 133 #endif /* CONFIG_CMA */ 134 135 /* Scan the Firmware Assisted dump configuration details. */ 136 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 137 int depth, void *data) 138 { 139 if (depth == 0) { 140 early_init_dt_scan_reserved_ranges(node); 141 return 0; 142 } 143 144 if (depth != 1) 145 return 0; 146 147 if (strcmp(uname, "rtas") == 0) { 148 rtas_fadump_dt_scan(&fw_dump, node); 149 return 1; 150 } 151 152 if (strcmp(uname, "ibm,opal") == 0) { 153 opal_fadump_dt_scan(&fw_dump, node); 154 return 1; 155 } 156 157 return 0; 158 } 159 160 /* 161 * If fadump is registered, check if the memory provided 162 * falls within boot memory area and reserved memory area. 163 */ 164 int is_fadump_memory_area(u64 addr, unsigned long size) 165 { 166 u64 d_start, d_end; 167 168 if (!fw_dump.dump_registered) 169 return 0; 170 171 if (!size) 172 return 0; 173 174 d_start = fw_dump.reserve_dump_area_start; 175 d_end = d_start + fw_dump.reserve_dump_area_size; 176 if (((addr + size) > d_start) && (addr <= d_end)) 177 return 1; 178 179 return (addr <= fw_dump.boot_mem_top); 180 } 181 182 int should_fadump_crash(void) 183 { 184 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) 185 return 0; 186 return 1; 187 } 188 189 int is_fadump_active(void) 190 { 191 return fw_dump.dump_active; 192 } 193 194 /* 195 * Returns true, if there are no holes in memory area between d_start to d_end, 196 * false otherwise. 197 */ 198 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end) 199 { 200 phys_addr_t reg_start, reg_end; 201 bool ret = false; 202 u64 i, start, end; 203 204 for_each_mem_range(i, ®_start, ®_end) { 205 start = max_t(u64, d_start, reg_start); 206 end = min_t(u64, d_end, reg_end); 207 if (d_start < end) { 208 /* Memory hole from d_start to start */ 209 if (start > d_start) 210 break; 211 212 if (end == d_end) { 213 ret = true; 214 break; 215 } 216 217 d_start = end + 1; 218 } 219 } 220 221 return ret; 222 } 223 224 /* 225 * Returns true, if there are no holes in boot memory area, 226 * false otherwise. 227 */ 228 bool is_fadump_boot_mem_contiguous(void) 229 { 230 unsigned long d_start, d_end; 231 bool ret = false; 232 int i; 233 234 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 235 d_start = fw_dump.boot_mem_addr[i]; 236 d_end = d_start + fw_dump.boot_mem_sz[i]; 237 238 ret = is_fadump_mem_area_contiguous(d_start, d_end); 239 if (!ret) 240 break; 241 } 242 243 return ret; 244 } 245 246 /* 247 * Returns true, if there are no holes in reserved memory area, 248 * false otherwise. 249 */ 250 bool is_fadump_reserved_mem_contiguous(void) 251 { 252 u64 d_start, d_end; 253 254 d_start = fw_dump.reserve_dump_area_start; 255 d_end = d_start + fw_dump.reserve_dump_area_size; 256 return is_fadump_mem_area_contiguous(d_start, d_end); 257 } 258 259 /* Print firmware assisted dump configurations for debugging purpose. */ 260 static void __init fadump_show_config(void) 261 { 262 int i; 263 264 pr_debug("Support for firmware-assisted dump (fadump): %s\n", 265 (fw_dump.fadump_supported ? "present" : "no support")); 266 267 if (!fw_dump.fadump_supported) 268 return; 269 270 pr_debug("Fadump enabled : %s\n", 271 (fw_dump.fadump_enabled ? "yes" : "no")); 272 pr_debug("Dump Active : %s\n", 273 (fw_dump.dump_active ? "yes" : "no")); 274 pr_debug("Dump section sizes:\n"); 275 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); 276 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); 277 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size); 278 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top); 279 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt); 280 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 281 pr_debug("[%03d] base = %llx, size = %llx\n", i, 282 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]); 283 } 284 } 285 286 /** 287 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM 288 * 289 * Function to find the largest memory size we need to reserve during early 290 * boot process. This will be the size of the memory that is required for a 291 * kernel to boot successfully. 292 * 293 * This function has been taken from phyp-assisted dump feature implementation. 294 * 295 * returns larger of 256MB or 5% rounded down to multiples of 256MB. 296 * 297 * TODO: Come up with better approach to find out more accurate memory size 298 * that is required for a kernel to boot successfully. 299 * 300 */ 301 static __init u64 fadump_calculate_reserve_size(void) 302 { 303 u64 base, size, bootmem_min; 304 int ret; 305 306 if (fw_dump.reserve_bootvar) 307 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); 308 309 /* 310 * Check if the size is specified through crashkernel= cmdline 311 * option. If yes, then use that but ignore base as fadump reserves 312 * memory at a predefined offset. 313 */ 314 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 315 &size, &base); 316 if (ret == 0 && size > 0) { 317 unsigned long max_size; 318 319 if (fw_dump.reserve_bootvar) 320 pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); 321 322 fw_dump.reserve_bootvar = (unsigned long)size; 323 324 /* 325 * Adjust if the boot memory size specified is above 326 * the upper limit. 327 */ 328 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; 329 if (fw_dump.reserve_bootvar > max_size) { 330 fw_dump.reserve_bootvar = max_size; 331 pr_info("Adjusted boot memory size to %luMB\n", 332 (fw_dump.reserve_bootvar >> 20)); 333 } 334 335 return fw_dump.reserve_bootvar; 336 } else if (fw_dump.reserve_bootvar) { 337 /* 338 * 'fadump_reserve_mem=' is being used to reserve memory 339 * for firmware-assisted dump. 340 */ 341 return fw_dump.reserve_bootvar; 342 } 343 344 /* divide by 20 to get 5% of value */ 345 size = memblock_phys_mem_size() / 20; 346 347 /* round it down in multiples of 256 */ 348 size = size & ~0x0FFFFFFFUL; 349 350 /* Truncate to memory_limit. We don't want to over reserve the memory.*/ 351 if (memory_limit && size > memory_limit) 352 size = memory_limit; 353 354 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 355 return (size > bootmem_min ? size : bootmem_min); 356 } 357 358 /* 359 * Calculate the total memory size required to be reserved for 360 * firmware-assisted dump registration. 361 */ 362 static unsigned long __init get_fadump_area_size(void) 363 { 364 unsigned long size = 0; 365 366 size += fw_dump.cpu_state_data_size; 367 size += fw_dump.hpte_region_size; 368 /* 369 * Account for pagesize alignment of boot memory area destination address. 370 * This faciliates in mmap reading of first kernel's memory. 371 */ 372 size = PAGE_ALIGN(size); 373 size += fw_dump.boot_memory_size; 374 size += sizeof(struct fadump_crash_info_header); 375 size += sizeof(struct elfhdr); /* ELF core header.*/ 376 size += sizeof(struct elf_phdr); /* place holder for cpu notes */ 377 /* Program headers for crash memory regions. */ 378 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); 379 380 size = PAGE_ALIGN(size); 381 382 /* This is to hold kernel metadata on platforms that support it */ 383 size += (fw_dump.ops->fadump_get_metadata_size ? 384 fw_dump.ops->fadump_get_metadata_size() : 0); 385 return size; 386 } 387 388 static int __init add_boot_mem_region(unsigned long rstart, 389 unsigned long rsize) 390 { 391 int i = fw_dump.boot_mem_regs_cnt++; 392 393 if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) { 394 fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS; 395 return 0; 396 } 397 398 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n", 399 i, rstart, (rstart + rsize)); 400 fw_dump.boot_mem_addr[i] = rstart; 401 fw_dump.boot_mem_sz[i] = rsize; 402 return 1; 403 } 404 405 /* 406 * Firmware usually has a hard limit on the data it can copy per region. 407 * Honour that by splitting a memory range into multiple regions. 408 */ 409 static int __init add_boot_mem_regions(unsigned long mstart, 410 unsigned long msize) 411 { 412 unsigned long rstart, rsize, max_size; 413 int ret = 1; 414 415 rstart = mstart; 416 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize; 417 while (msize) { 418 if (msize > max_size) 419 rsize = max_size; 420 else 421 rsize = msize; 422 423 ret = add_boot_mem_region(rstart, rsize); 424 if (!ret) 425 break; 426 427 msize -= rsize; 428 rstart += rsize; 429 } 430 431 return ret; 432 } 433 434 static int __init fadump_get_boot_mem_regions(void) 435 { 436 unsigned long size, cur_size, hole_size, last_end; 437 unsigned long mem_size = fw_dump.boot_memory_size; 438 phys_addr_t reg_start, reg_end; 439 int ret = 1; 440 u64 i; 441 442 fw_dump.boot_mem_regs_cnt = 0; 443 444 last_end = 0; 445 hole_size = 0; 446 cur_size = 0; 447 for_each_mem_range(i, ®_start, ®_end) { 448 size = reg_end - reg_start; 449 hole_size += (reg_start - last_end); 450 451 if ((cur_size + size) >= mem_size) { 452 size = (mem_size - cur_size); 453 ret = add_boot_mem_regions(reg_start, size); 454 break; 455 } 456 457 mem_size -= size; 458 cur_size += size; 459 ret = add_boot_mem_regions(reg_start, size); 460 if (!ret) 461 break; 462 463 last_end = reg_end; 464 } 465 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size); 466 467 return ret; 468 } 469 470 /* 471 * Returns true, if the given range overlaps with reserved memory ranges 472 * starting at idx. Also, updates idx to index of overlapping memory range 473 * with the given memory range. 474 * False, otherwise. 475 */ 476 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx) 477 { 478 bool ret = false; 479 int i; 480 481 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) { 482 u64 rbase = reserved_mrange_info.mem_ranges[i].base; 483 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size; 484 485 if (end <= rbase) 486 break; 487 488 if ((end > rbase) && (base < rend)) { 489 *idx = i; 490 ret = true; 491 break; 492 } 493 } 494 495 return ret; 496 } 497 498 /* 499 * Locate a suitable memory area to reserve memory for FADump. While at it, 500 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W. 501 */ 502 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size) 503 { 504 struct fadump_memory_range *mrngs; 505 phys_addr_t mstart, mend; 506 int idx = 0; 507 u64 i, ret = 0; 508 509 mrngs = reserved_mrange_info.mem_ranges; 510 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 511 &mstart, &mend, NULL) { 512 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n", 513 i, mstart, mend, base); 514 515 if (mstart > base) 516 base = PAGE_ALIGN(mstart); 517 518 while ((mend > base) && ((mend - base) >= size)) { 519 if (!overlaps_reserved_ranges(base, base+size, &idx)) { 520 ret = base; 521 goto out; 522 } 523 524 base = mrngs[idx].base + mrngs[idx].size; 525 base = PAGE_ALIGN(base); 526 } 527 } 528 529 out: 530 return ret; 531 } 532 533 int __init fadump_reserve_mem(void) 534 { 535 u64 base, size, mem_boundary, bootmem_min; 536 int ret = 1; 537 538 if (!fw_dump.fadump_enabled) 539 return 0; 540 541 if (!fw_dump.fadump_supported) { 542 pr_info("Firmware-Assisted Dump is not supported on this hardware\n"); 543 goto error_out; 544 } 545 546 /* 547 * Initialize boot memory size 548 * If dump is active then we have already calculated the size during 549 * first kernel. 550 */ 551 if (!fw_dump.dump_active) { 552 fw_dump.boot_memory_size = 553 PAGE_ALIGN(fadump_calculate_reserve_size()); 554 #ifdef CONFIG_CMA 555 if (!fw_dump.nocma) { 556 fw_dump.boot_memory_size = 557 ALIGN(fw_dump.boot_memory_size, 558 CMA_MIN_ALIGNMENT_BYTES); 559 } 560 #endif 561 562 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 563 if (fw_dump.boot_memory_size < bootmem_min) { 564 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n", 565 fw_dump.boot_memory_size, bootmem_min); 566 goto error_out; 567 } 568 569 if (!fadump_get_boot_mem_regions()) { 570 pr_err("Too many holes in boot memory area to enable fadump\n"); 571 goto error_out; 572 } 573 } 574 575 /* 576 * Calculate the memory boundary. 577 * If memory_limit is less than actual memory boundary then reserve 578 * the memory for fadump beyond the memory_limit and adjust the 579 * memory_limit accordingly, so that the running kernel can run with 580 * specified memory_limit. 581 */ 582 if (memory_limit && memory_limit < memblock_end_of_DRAM()) { 583 size = get_fadump_area_size(); 584 if ((memory_limit + size) < memblock_end_of_DRAM()) 585 memory_limit += size; 586 else 587 memory_limit = memblock_end_of_DRAM(); 588 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" 589 " dump, now %#016llx\n", memory_limit); 590 } 591 if (memory_limit) 592 mem_boundary = memory_limit; 593 else 594 mem_boundary = memblock_end_of_DRAM(); 595 596 base = fw_dump.boot_mem_top; 597 size = get_fadump_area_size(); 598 fw_dump.reserve_dump_area_size = size; 599 if (fw_dump.dump_active) { 600 pr_info("Firmware-assisted dump is active.\n"); 601 602 #ifdef CONFIG_HUGETLB_PAGE 603 /* 604 * FADump capture kernel doesn't care much about hugepages. 605 * In fact, handling hugepages in capture kernel is asking for 606 * trouble. So, disable HugeTLB support when fadump is active. 607 */ 608 hugetlb_disabled = true; 609 #endif 610 /* 611 * If last boot has crashed then reserve all the memory 612 * above boot memory size so that we don't touch it until 613 * dump is written to disk by userspace tool. This memory 614 * can be released for general use by invalidating fadump. 615 */ 616 fadump_reserve_crash_area(base); 617 618 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr); 619 pr_debug("Reserve dump area start address: 0x%lx\n", 620 fw_dump.reserve_dump_area_start); 621 } else { 622 /* 623 * Reserve memory at an offset closer to bottom of the RAM to 624 * minimize the impact of memory hot-remove operation. 625 */ 626 base = fadump_locate_reserve_mem(base, size); 627 628 if (!base || (base + size > mem_boundary)) { 629 pr_err("Failed to find memory chunk for reservation!\n"); 630 goto error_out; 631 } 632 fw_dump.reserve_dump_area_start = base; 633 634 /* 635 * Calculate the kernel metadata address and register it with 636 * f/w if the platform supports. 637 */ 638 if (fw_dump.ops->fadump_setup_metadata && 639 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 640 goto error_out; 641 642 if (memblock_reserve(base, size)) { 643 pr_err("Failed to reserve memory!\n"); 644 goto error_out; 645 } 646 647 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n", 648 (size >> 20), base, (memblock_phys_mem_size() >> 20)); 649 650 ret = fadump_cma_init(); 651 } 652 653 return ret; 654 error_out: 655 fw_dump.fadump_enabled = 0; 656 return 0; 657 } 658 659 /* Look for fadump= cmdline option. */ 660 static int __init early_fadump_param(char *p) 661 { 662 if (!p) 663 return 1; 664 665 if (strncmp(p, "on", 2) == 0) 666 fw_dump.fadump_enabled = 1; 667 else if (strncmp(p, "off", 3) == 0) 668 fw_dump.fadump_enabled = 0; 669 else if (strncmp(p, "nocma", 5) == 0) { 670 fw_dump.fadump_enabled = 1; 671 fw_dump.nocma = 1; 672 } 673 674 return 0; 675 } 676 early_param("fadump", early_fadump_param); 677 678 /* 679 * Look for fadump_reserve_mem= cmdline option 680 * TODO: Remove references to 'fadump_reserve_mem=' parameter, 681 * the sooner 'crashkernel=' parameter is accustomed to. 682 */ 683 static int __init early_fadump_reserve_mem(char *p) 684 { 685 if (p) 686 fw_dump.reserve_bootvar = memparse(p, &p); 687 return 0; 688 } 689 early_param("fadump_reserve_mem", early_fadump_reserve_mem); 690 691 void crash_fadump(struct pt_regs *regs, const char *str) 692 { 693 unsigned int msecs; 694 struct fadump_crash_info_header *fdh = NULL; 695 int old_cpu, this_cpu; 696 /* Do not include first CPU */ 697 unsigned int ncpus = num_online_cpus() - 1; 698 699 if (!should_fadump_crash()) 700 return; 701 702 /* 703 * old_cpu == -1 means this is the first CPU which has come here, 704 * go ahead and trigger fadump. 705 * 706 * old_cpu != -1 means some other CPU has already on it's way 707 * to trigger fadump, just keep looping here. 708 */ 709 this_cpu = smp_processor_id(); 710 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); 711 712 if (old_cpu != -1) { 713 atomic_inc(&cpus_in_fadump); 714 715 /* 716 * We can't loop here indefinitely. Wait as long as fadump 717 * is in force. If we race with fadump un-registration this 718 * loop will break and then we go down to normal panic path 719 * and reboot. If fadump is in force the first crashing 720 * cpu will definitely trigger fadump. 721 */ 722 while (fw_dump.dump_registered) 723 cpu_relax(); 724 return; 725 } 726 727 fdh = __va(fw_dump.fadumphdr_addr); 728 fdh->crashing_cpu = crashing_cpu; 729 crash_save_vmcoreinfo(); 730 731 if (regs) 732 fdh->regs = *regs; 733 else 734 ppc_save_regs(&fdh->regs); 735 736 fdh->cpu_mask = *cpu_online_mask; 737 738 /* 739 * If we came in via system reset, wait a while for the secondary 740 * CPUs to enter. 741 */ 742 if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) { 743 msecs = CRASH_TIMEOUT; 744 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0)) 745 mdelay(1); 746 } 747 748 fw_dump.ops->fadump_trigger(fdh, str); 749 } 750 751 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) 752 { 753 struct elf_prstatus prstatus; 754 755 memset(&prstatus, 0, sizeof(prstatus)); 756 /* 757 * FIXME: How do i get PID? Do I really need it? 758 * prstatus.pr_pid = ???? 759 */ 760 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 761 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, 762 &prstatus, sizeof(prstatus)); 763 return buf; 764 } 765 766 void __init fadump_update_elfcore_header(char *bufp) 767 { 768 struct elf_phdr *phdr; 769 770 bufp += sizeof(struct elfhdr); 771 772 /* First note is a place holder for cpu notes info. */ 773 phdr = (struct elf_phdr *)bufp; 774 775 if (phdr->p_type == PT_NOTE) { 776 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr); 777 phdr->p_offset = phdr->p_paddr; 778 phdr->p_filesz = fw_dump.cpu_notes_buf_size; 779 phdr->p_memsz = fw_dump.cpu_notes_buf_size; 780 } 781 return; 782 } 783 784 static void *__init fadump_alloc_buffer(unsigned long size) 785 { 786 unsigned long count, i; 787 struct page *page; 788 void *vaddr; 789 790 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); 791 if (!vaddr) 792 return NULL; 793 794 count = PAGE_ALIGN(size) / PAGE_SIZE; 795 page = virt_to_page(vaddr); 796 for (i = 0; i < count; i++) 797 mark_page_reserved(page + i); 798 return vaddr; 799 } 800 801 static void fadump_free_buffer(unsigned long vaddr, unsigned long size) 802 { 803 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL); 804 } 805 806 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus) 807 { 808 /* Allocate buffer to hold cpu crash notes. */ 809 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); 810 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); 811 fw_dump.cpu_notes_buf_vaddr = 812 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size); 813 if (!fw_dump.cpu_notes_buf_vaddr) { 814 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n", 815 fw_dump.cpu_notes_buf_size); 816 return -ENOMEM; 817 } 818 819 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n", 820 fw_dump.cpu_notes_buf_size, 821 fw_dump.cpu_notes_buf_vaddr); 822 return 0; 823 } 824 825 void fadump_free_cpu_notes_buf(void) 826 { 827 if (!fw_dump.cpu_notes_buf_vaddr) 828 return; 829 830 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr, 831 fw_dump.cpu_notes_buf_size); 832 fw_dump.cpu_notes_buf_vaddr = 0; 833 fw_dump.cpu_notes_buf_size = 0; 834 } 835 836 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info) 837 { 838 if (mrange_info->is_static) { 839 mrange_info->mem_range_cnt = 0; 840 return; 841 } 842 843 kfree(mrange_info->mem_ranges); 844 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0, 845 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ)); 846 } 847 848 /* 849 * Allocate or reallocate mem_ranges array in incremental units 850 * of PAGE_SIZE. 851 */ 852 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info) 853 { 854 struct fadump_memory_range *new_array; 855 u64 new_size; 856 857 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE; 858 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n", 859 new_size, mrange_info->name); 860 861 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL); 862 if (new_array == NULL) { 863 pr_err("Insufficient memory for setting up %s memory ranges\n", 864 mrange_info->name); 865 fadump_free_mem_ranges(mrange_info); 866 return -ENOMEM; 867 } 868 869 mrange_info->mem_ranges = new_array; 870 mrange_info->mem_ranges_sz = new_size; 871 mrange_info->max_mem_ranges = (new_size / 872 sizeof(struct fadump_memory_range)); 873 return 0; 874 } 875 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info, 876 u64 base, u64 end) 877 { 878 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges; 879 bool is_adjacent = false; 880 u64 start, size; 881 882 if (base == end) 883 return 0; 884 885 /* 886 * Fold adjacent memory ranges to bring down the memory ranges/ 887 * PT_LOAD segments count. 888 */ 889 if (mrange_info->mem_range_cnt) { 890 start = mem_ranges[mrange_info->mem_range_cnt - 1].base; 891 size = mem_ranges[mrange_info->mem_range_cnt - 1].size; 892 893 /* 894 * Boot memory area needs separate PT_LOAD segment(s) as it 895 * is moved to a different location at the time of crash. 896 * So, fold only if the region is not boot memory area. 897 */ 898 if ((start + size) == base && start >= fw_dump.boot_mem_top) 899 is_adjacent = true; 900 } 901 if (!is_adjacent) { 902 /* resize the array on reaching the limit */ 903 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) { 904 int ret; 905 906 if (mrange_info->is_static) { 907 pr_err("Reached array size limit for %s memory ranges\n", 908 mrange_info->name); 909 return -ENOSPC; 910 } 911 912 ret = fadump_alloc_mem_ranges(mrange_info); 913 if (ret) 914 return ret; 915 916 /* Update to the new resized array */ 917 mem_ranges = mrange_info->mem_ranges; 918 } 919 920 start = base; 921 mem_ranges[mrange_info->mem_range_cnt].base = start; 922 mrange_info->mem_range_cnt++; 923 } 924 925 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start); 926 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", 927 mrange_info->name, (mrange_info->mem_range_cnt - 1), 928 start, end - 1, (end - start)); 929 return 0; 930 } 931 932 static int fadump_exclude_reserved_area(u64 start, u64 end) 933 { 934 u64 ra_start, ra_end; 935 int ret = 0; 936 937 ra_start = fw_dump.reserve_dump_area_start; 938 ra_end = ra_start + fw_dump.reserve_dump_area_size; 939 940 if ((ra_start < end) && (ra_end > start)) { 941 if ((start < ra_start) && (end > ra_end)) { 942 ret = fadump_add_mem_range(&crash_mrange_info, 943 start, ra_start); 944 if (ret) 945 return ret; 946 947 ret = fadump_add_mem_range(&crash_mrange_info, 948 ra_end, end); 949 } else if (start < ra_start) { 950 ret = fadump_add_mem_range(&crash_mrange_info, 951 start, ra_start); 952 } else if (ra_end < end) { 953 ret = fadump_add_mem_range(&crash_mrange_info, 954 ra_end, end); 955 } 956 } else 957 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 958 959 return ret; 960 } 961 962 static int fadump_init_elfcore_header(char *bufp) 963 { 964 struct elfhdr *elf; 965 966 elf = (struct elfhdr *) bufp; 967 bufp += sizeof(struct elfhdr); 968 memcpy(elf->e_ident, ELFMAG, SELFMAG); 969 elf->e_ident[EI_CLASS] = ELF_CLASS; 970 elf->e_ident[EI_DATA] = ELF_DATA; 971 elf->e_ident[EI_VERSION] = EV_CURRENT; 972 elf->e_ident[EI_OSABI] = ELF_OSABI; 973 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); 974 elf->e_type = ET_CORE; 975 elf->e_machine = ELF_ARCH; 976 elf->e_version = EV_CURRENT; 977 elf->e_entry = 0; 978 elf->e_phoff = sizeof(struct elfhdr); 979 elf->e_shoff = 0; 980 #if defined(_CALL_ELF) 981 elf->e_flags = _CALL_ELF; 982 #else 983 elf->e_flags = 0; 984 #endif 985 elf->e_ehsize = sizeof(struct elfhdr); 986 elf->e_phentsize = sizeof(struct elf_phdr); 987 elf->e_phnum = 0; 988 elf->e_shentsize = 0; 989 elf->e_shnum = 0; 990 elf->e_shstrndx = 0; 991 992 return 0; 993 } 994 995 /* 996 * Traverse through memblock structure and setup crash memory ranges. These 997 * ranges will be used create PT_LOAD program headers in elfcore header. 998 */ 999 static int fadump_setup_crash_memory_ranges(void) 1000 { 1001 u64 i, start, end; 1002 int ret; 1003 1004 pr_debug("Setup crash memory ranges.\n"); 1005 crash_mrange_info.mem_range_cnt = 0; 1006 1007 /* 1008 * Boot memory region(s) registered with firmware are moved to 1009 * different location at the time of crash. Create separate program 1010 * header(s) for this memory chunk(s) with the correct offset. 1011 */ 1012 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 1013 start = fw_dump.boot_mem_addr[i]; 1014 end = start + fw_dump.boot_mem_sz[i]; 1015 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 1016 if (ret) 1017 return ret; 1018 } 1019 1020 for_each_mem_range(i, &start, &end) { 1021 /* 1022 * skip the memory chunk that is already added 1023 * (0 through boot_memory_top). 1024 */ 1025 if (start < fw_dump.boot_mem_top) { 1026 if (end > fw_dump.boot_mem_top) 1027 start = fw_dump.boot_mem_top; 1028 else 1029 continue; 1030 } 1031 1032 /* add this range excluding the reserved dump area. */ 1033 ret = fadump_exclude_reserved_area(start, end); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 return 0; 1039 } 1040 1041 /* 1042 * If the given physical address falls within the boot memory region then 1043 * return the relocated address that points to the dump region reserved 1044 * for saving initial boot memory contents. 1045 */ 1046 static inline unsigned long fadump_relocate(unsigned long paddr) 1047 { 1048 unsigned long raddr, rstart, rend, rlast, hole_size; 1049 int i; 1050 1051 hole_size = 0; 1052 rlast = 0; 1053 raddr = paddr; 1054 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 1055 rstart = fw_dump.boot_mem_addr[i]; 1056 rend = rstart + fw_dump.boot_mem_sz[i]; 1057 hole_size += (rstart - rlast); 1058 1059 if (paddr >= rstart && paddr < rend) { 1060 raddr += fw_dump.boot_mem_dest_addr - hole_size; 1061 break; 1062 } 1063 1064 rlast = rend; 1065 } 1066 1067 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr); 1068 return raddr; 1069 } 1070 1071 static int fadump_create_elfcore_headers(char *bufp) 1072 { 1073 unsigned long long raddr, offset; 1074 struct elf_phdr *phdr; 1075 struct elfhdr *elf; 1076 int i, j; 1077 1078 fadump_init_elfcore_header(bufp); 1079 elf = (struct elfhdr *)bufp; 1080 bufp += sizeof(struct elfhdr); 1081 1082 /* 1083 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info 1084 * will be populated during second kernel boot after crash. Hence 1085 * this PT_NOTE will always be the first elf note. 1086 * 1087 * NOTE: Any new ELF note addition should be placed after this note. 1088 */ 1089 phdr = (struct elf_phdr *)bufp; 1090 bufp += sizeof(struct elf_phdr); 1091 phdr->p_type = PT_NOTE; 1092 phdr->p_flags = 0; 1093 phdr->p_vaddr = 0; 1094 phdr->p_align = 0; 1095 1096 phdr->p_offset = 0; 1097 phdr->p_paddr = 0; 1098 phdr->p_filesz = 0; 1099 phdr->p_memsz = 0; 1100 1101 (elf->e_phnum)++; 1102 1103 /* setup ELF PT_NOTE for vmcoreinfo */ 1104 phdr = (struct elf_phdr *)bufp; 1105 bufp += sizeof(struct elf_phdr); 1106 phdr->p_type = PT_NOTE; 1107 phdr->p_flags = 0; 1108 phdr->p_vaddr = 0; 1109 phdr->p_align = 0; 1110 1111 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note()); 1112 phdr->p_offset = phdr->p_paddr; 1113 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE; 1114 1115 /* Increment number of program headers. */ 1116 (elf->e_phnum)++; 1117 1118 /* setup PT_LOAD sections. */ 1119 j = 0; 1120 offset = 0; 1121 raddr = fw_dump.boot_mem_addr[0]; 1122 for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) { 1123 u64 mbase, msize; 1124 1125 mbase = crash_mrange_info.mem_ranges[i].base; 1126 msize = crash_mrange_info.mem_ranges[i].size; 1127 if (!msize) 1128 continue; 1129 1130 phdr = (struct elf_phdr *)bufp; 1131 bufp += sizeof(struct elf_phdr); 1132 phdr->p_type = PT_LOAD; 1133 phdr->p_flags = PF_R|PF_W|PF_X; 1134 phdr->p_offset = mbase; 1135 1136 if (mbase == raddr) { 1137 /* 1138 * The entire real memory region will be moved by 1139 * firmware to the specified destination_address. 1140 * Hence set the correct offset. 1141 */ 1142 phdr->p_offset = fw_dump.boot_mem_dest_addr + offset; 1143 if (j < (fw_dump.boot_mem_regs_cnt - 1)) { 1144 offset += fw_dump.boot_mem_sz[j]; 1145 raddr = fw_dump.boot_mem_addr[++j]; 1146 } 1147 } 1148 1149 phdr->p_paddr = mbase; 1150 phdr->p_vaddr = (unsigned long)__va(mbase); 1151 phdr->p_filesz = msize; 1152 phdr->p_memsz = msize; 1153 phdr->p_align = 0; 1154 1155 /* Increment number of program headers. */ 1156 (elf->e_phnum)++; 1157 } 1158 return 0; 1159 } 1160 1161 static unsigned long init_fadump_header(unsigned long addr) 1162 { 1163 struct fadump_crash_info_header *fdh; 1164 1165 if (!addr) 1166 return 0; 1167 1168 fdh = __va(addr); 1169 addr += sizeof(struct fadump_crash_info_header); 1170 1171 memset(fdh, 0, sizeof(struct fadump_crash_info_header)); 1172 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; 1173 fdh->elfcorehdr_addr = addr; 1174 /* We will set the crashing cpu id in crash_fadump() during crash. */ 1175 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN; 1176 /* 1177 * When LPAR is terminated by PYHP, ensure all possible CPUs' 1178 * register data is processed while exporting the vmcore. 1179 */ 1180 fdh->cpu_mask = *cpu_possible_mask; 1181 1182 return addr; 1183 } 1184 1185 static int register_fadump(void) 1186 { 1187 unsigned long addr; 1188 void *vaddr; 1189 int ret; 1190 1191 /* 1192 * If no memory is reserved then we can not register for firmware- 1193 * assisted dump. 1194 */ 1195 if (!fw_dump.reserve_dump_area_size) 1196 return -ENODEV; 1197 1198 ret = fadump_setup_crash_memory_ranges(); 1199 if (ret) 1200 return ret; 1201 1202 addr = fw_dump.fadumphdr_addr; 1203 1204 /* Initialize fadump crash info header. */ 1205 addr = init_fadump_header(addr); 1206 vaddr = __va(addr); 1207 1208 pr_debug("Creating ELF core headers at %#016lx\n", addr); 1209 fadump_create_elfcore_headers(vaddr); 1210 1211 /* register the future kernel dump with firmware. */ 1212 pr_debug("Registering for firmware-assisted kernel dump...\n"); 1213 return fw_dump.ops->fadump_register(&fw_dump); 1214 } 1215 1216 void fadump_cleanup(void) 1217 { 1218 if (!fw_dump.fadump_supported) 1219 return; 1220 1221 /* Invalidate the registration only if dump is active. */ 1222 if (fw_dump.dump_active) { 1223 pr_debug("Invalidating firmware-assisted dump registration\n"); 1224 fw_dump.ops->fadump_invalidate(&fw_dump); 1225 } else if (fw_dump.dump_registered) { 1226 /* Un-register Firmware-assisted dump if it was registered. */ 1227 fw_dump.ops->fadump_unregister(&fw_dump); 1228 fadump_free_mem_ranges(&crash_mrange_info); 1229 } 1230 1231 if (fw_dump.ops->fadump_cleanup) 1232 fw_dump.ops->fadump_cleanup(&fw_dump); 1233 } 1234 1235 static void fadump_free_reserved_memory(unsigned long start_pfn, 1236 unsigned long end_pfn) 1237 { 1238 unsigned long pfn; 1239 unsigned long time_limit = jiffies + HZ; 1240 1241 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", 1242 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); 1243 1244 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1245 free_reserved_page(pfn_to_page(pfn)); 1246 1247 if (time_after(jiffies, time_limit)) { 1248 cond_resched(); 1249 time_limit = jiffies + HZ; 1250 } 1251 } 1252 } 1253 1254 /* 1255 * Skip memory holes and free memory that was actually reserved. 1256 */ 1257 static void fadump_release_reserved_area(u64 start, u64 end) 1258 { 1259 unsigned long reg_spfn, reg_epfn; 1260 u64 tstart, tend, spfn, epfn; 1261 int i; 1262 1263 spfn = PHYS_PFN(start); 1264 epfn = PHYS_PFN(end); 1265 1266 for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) { 1267 tstart = max_t(u64, spfn, reg_spfn); 1268 tend = min_t(u64, epfn, reg_epfn); 1269 1270 if (tstart < tend) { 1271 fadump_free_reserved_memory(tstart, tend); 1272 1273 if (tend == epfn) 1274 break; 1275 1276 spfn = tend; 1277 } 1278 } 1279 } 1280 1281 /* 1282 * Sort the mem ranges in-place and merge adjacent ranges 1283 * to minimize the memory ranges count. 1284 */ 1285 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info) 1286 { 1287 struct fadump_memory_range *mem_ranges; 1288 struct fadump_memory_range tmp_range; 1289 u64 base, size; 1290 int i, j, idx; 1291 1292 if (!reserved_mrange_info.mem_range_cnt) 1293 return; 1294 1295 /* Sort the memory ranges */ 1296 mem_ranges = mrange_info->mem_ranges; 1297 for (i = 0; i < mrange_info->mem_range_cnt; i++) { 1298 idx = i; 1299 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) { 1300 if (mem_ranges[idx].base > mem_ranges[j].base) 1301 idx = j; 1302 } 1303 if (idx != i) { 1304 tmp_range = mem_ranges[idx]; 1305 mem_ranges[idx] = mem_ranges[i]; 1306 mem_ranges[i] = tmp_range; 1307 } 1308 } 1309 1310 /* Merge adjacent reserved ranges */ 1311 idx = 0; 1312 for (i = 1; i < mrange_info->mem_range_cnt; i++) { 1313 base = mem_ranges[i-1].base; 1314 size = mem_ranges[i-1].size; 1315 if (mem_ranges[i].base == (base + size)) 1316 mem_ranges[idx].size += mem_ranges[i].size; 1317 else { 1318 idx++; 1319 if (i == idx) 1320 continue; 1321 1322 mem_ranges[idx] = mem_ranges[i]; 1323 } 1324 } 1325 mrange_info->mem_range_cnt = idx + 1; 1326 } 1327 1328 /* 1329 * Scan reserved-ranges to consider them while reserving/releasing 1330 * memory for FADump. 1331 */ 1332 static void __init early_init_dt_scan_reserved_ranges(unsigned long node) 1333 { 1334 const __be32 *prop; 1335 int len, ret = -1; 1336 unsigned long i; 1337 1338 /* reserved-ranges already scanned */ 1339 if (reserved_mrange_info.mem_range_cnt != 0) 1340 return; 1341 1342 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len); 1343 if (!prop) 1344 return; 1345 1346 /* 1347 * Each reserved range is an (address,size) pair, 2 cells each, 1348 * totalling 4 cells per range. 1349 */ 1350 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 1351 u64 base, size; 1352 1353 base = of_read_number(prop + (i * 4) + 0, 2); 1354 size = of_read_number(prop + (i * 4) + 2, 2); 1355 1356 if (size) { 1357 ret = fadump_add_mem_range(&reserved_mrange_info, 1358 base, base + size); 1359 if (ret < 0) { 1360 pr_warn("some reserved ranges are ignored!\n"); 1361 break; 1362 } 1363 } 1364 } 1365 1366 /* Compact reserved ranges */ 1367 sort_and_merge_mem_ranges(&reserved_mrange_info); 1368 } 1369 1370 /* 1371 * Release the memory that was reserved during early boot to preserve the 1372 * crash'ed kernel's memory contents except reserved dump area (permanent 1373 * reservation) and reserved ranges used by F/W. The released memory will 1374 * be available for general use. 1375 */ 1376 static void fadump_release_memory(u64 begin, u64 end) 1377 { 1378 u64 ra_start, ra_end, tstart; 1379 int i, ret; 1380 1381 ra_start = fw_dump.reserve_dump_area_start; 1382 ra_end = ra_start + fw_dump.reserve_dump_area_size; 1383 1384 /* 1385 * If reserved ranges array limit is hit, overwrite the last reserved 1386 * memory range with reserved dump area to ensure it is excluded from 1387 * the memory being released (reused for next FADump registration). 1388 */ 1389 if (reserved_mrange_info.mem_range_cnt == 1390 reserved_mrange_info.max_mem_ranges) 1391 reserved_mrange_info.mem_range_cnt--; 1392 1393 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end); 1394 if (ret != 0) 1395 return; 1396 1397 /* Get the reserved ranges list in order first. */ 1398 sort_and_merge_mem_ranges(&reserved_mrange_info); 1399 1400 /* Exclude reserved ranges and release remaining memory */ 1401 tstart = begin; 1402 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) { 1403 ra_start = reserved_mrange_info.mem_ranges[i].base; 1404 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size; 1405 1406 if (tstart >= ra_end) 1407 continue; 1408 1409 if (tstart < ra_start) 1410 fadump_release_reserved_area(tstart, ra_start); 1411 tstart = ra_end; 1412 } 1413 1414 if (tstart < end) 1415 fadump_release_reserved_area(tstart, end); 1416 } 1417 1418 static void fadump_invalidate_release_mem(void) 1419 { 1420 mutex_lock(&fadump_mutex); 1421 if (!fw_dump.dump_active) { 1422 mutex_unlock(&fadump_mutex); 1423 return; 1424 } 1425 1426 fadump_cleanup(); 1427 mutex_unlock(&fadump_mutex); 1428 1429 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM()); 1430 fadump_free_cpu_notes_buf(); 1431 1432 /* 1433 * Setup kernel metadata and initialize the kernel dump 1434 * memory structure for FADump re-registration. 1435 */ 1436 if (fw_dump.ops->fadump_setup_metadata && 1437 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 1438 pr_warn("Failed to setup kernel metadata!\n"); 1439 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1440 } 1441 1442 static ssize_t release_mem_store(struct kobject *kobj, 1443 struct kobj_attribute *attr, 1444 const char *buf, size_t count) 1445 { 1446 int input = -1; 1447 1448 if (!fw_dump.dump_active) 1449 return -EPERM; 1450 1451 if (kstrtoint(buf, 0, &input)) 1452 return -EINVAL; 1453 1454 if (input == 1) { 1455 /* 1456 * Take away the '/proc/vmcore'. We are releasing the dump 1457 * memory, hence it will not be valid anymore. 1458 */ 1459 #ifdef CONFIG_PROC_VMCORE 1460 vmcore_cleanup(); 1461 #endif 1462 fadump_invalidate_release_mem(); 1463 1464 } else 1465 return -EINVAL; 1466 return count; 1467 } 1468 1469 /* Release the reserved memory and disable the FADump */ 1470 static void __init unregister_fadump(void) 1471 { 1472 fadump_cleanup(); 1473 fadump_release_memory(fw_dump.reserve_dump_area_start, 1474 fw_dump.reserve_dump_area_size); 1475 fw_dump.fadump_enabled = 0; 1476 kobject_put(fadump_kobj); 1477 } 1478 1479 static ssize_t enabled_show(struct kobject *kobj, 1480 struct kobj_attribute *attr, 1481 char *buf) 1482 { 1483 return sprintf(buf, "%d\n", fw_dump.fadump_enabled); 1484 } 1485 1486 static ssize_t mem_reserved_show(struct kobject *kobj, 1487 struct kobj_attribute *attr, 1488 char *buf) 1489 { 1490 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size); 1491 } 1492 1493 static ssize_t registered_show(struct kobject *kobj, 1494 struct kobj_attribute *attr, 1495 char *buf) 1496 { 1497 return sprintf(buf, "%d\n", fw_dump.dump_registered); 1498 } 1499 1500 static ssize_t registered_store(struct kobject *kobj, 1501 struct kobj_attribute *attr, 1502 const char *buf, size_t count) 1503 { 1504 int ret = 0; 1505 int input = -1; 1506 1507 if (!fw_dump.fadump_enabled || fw_dump.dump_active) 1508 return -EPERM; 1509 1510 if (kstrtoint(buf, 0, &input)) 1511 return -EINVAL; 1512 1513 mutex_lock(&fadump_mutex); 1514 1515 switch (input) { 1516 case 0: 1517 if (fw_dump.dump_registered == 0) { 1518 goto unlock_out; 1519 } 1520 1521 /* Un-register Firmware-assisted dump */ 1522 pr_debug("Un-register firmware-assisted dump\n"); 1523 fw_dump.ops->fadump_unregister(&fw_dump); 1524 break; 1525 case 1: 1526 if (fw_dump.dump_registered == 1) { 1527 /* Un-register Firmware-assisted dump */ 1528 fw_dump.ops->fadump_unregister(&fw_dump); 1529 } 1530 /* Register Firmware-assisted dump */ 1531 ret = register_fadump(); 1532 break; 1533 default: 1534 ret = -EINVAL; 1535 break; 1536 } 1537 1538 unlock_out: 1539 mutex_unlock(&fadump_mutex); 1540 return ret < 0 ? ret : count; 1541 } 1542 1543 static int fadump_region_show(struct seq_file *m, void *private) 1544 { 1545 if (!fw_dump.fadump_enabled) 1546 return 0; 1547 1548 mutex_lock(&fadump_mutex); 1549 fw_dump.ops->fadump_region_show(&fw_dump, m); 1550 mutex_unlock(&fadump_mutex); 1551 return 0; 1552 } 1553 1554 static struct kobj_attribute release_attr = __ATTR_WO(release_mem); 1555 static struct kobj_attribute enable_attr = __ATTR_RO(enabled); 1556 static struct kobj_attribute register_attr = __ATTR_RW(registered); 1557 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved); 1558 1559 static struct attribute *fadump_attrs[] = { 1560 &enable_attr.attr, 1561 ®ister_attr.attr, 1562 &mem_reserved_attr.attr, 1563 NULL, 1564 }; 1565 1566 ATTRIBUTE_GROUPS(fadump); 1567 1568 DEFINE_SHOW_ATTRIBUTE(fadump_region); 1569 1570 static void __init fadump_init_files(void) 1571 { 1572 int rc = 0; 1573 1574 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj); 1575 if (!fadump_kobj) { 1576 pr_err("failed to create fadump kobject\n"); 1577 return; 1578 } 1579 1580 debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL, 1581 &fadump_region_fops); 1582 1583 if (fw_dump.dump_active) { 1584 rc = sysfs_create_file(fadump_kobj, &release_attr.attr); 1585 if (rc) 1586 pr_err("unable to create release_mem sysfs file (%d)\n", 1587 rc); 1588 } 1589 1590 rc = sysfs_create_groups(fadump_kobj, fadump_groups); 1591 if (rc) { 1592 pr_err("sysfs group creation failed (%d), unregistering FADump", 1593 rc); 1594 unregister_fadump(); 1595 return; 1596 } 1597 1598 /* 1599 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to 1600 * create symlink at old location to maintain backward compatibility. 1601 * 1602 * - fadump_enabled -> fadump/enabled 1603 * - fadump_registered -> fadump/registered 1604 * - fadump_release_mem -> fadump/release_mem 1605 */ 1606 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1607 "enabled", "fadump_enabled"); 1608 if (rc) { 1609 pr_err("unable to create fadump_enabled symlink (%d)", rc); 1610 return; 1611 } 1612 1613 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1614 "registered", 1615 "fadump_registered"); 1616 if (rc) { 1617 pr_err("unable to create fadump_registered symlink (%d)", rc); 1618 sysfs_remove_link(kernel_kobj, "fadump_enabled"); 1619 return; 1620 } 1621 1622 if (fw_dump.dump_active) { 1623 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, 1624 fadump_kobj, 1625 "release_mem", 1626 "fadump_release_mem"); 1627 if (rc) 1628 pr_err("unable to create fadump_release_mem symlink (%d)", 1629 rc); 1630 } 1631 return; 1632 } 1633 1634 /* 1635 * Prepare for firmware-assisted dump. 1636 */ 1637 int __init setup_fadump(void) 1638 { 1639 if (!fw_dump.fadump_supported) 1640 return 0; 1641 1642 fadump_init_files(); 1643 fadump_show_config(); 1644 1645 if (!fw_dump.fadump_enabled) 1646 return 1; 1647 1648 /* 1649 * If dump data is available then see if it is valid and prepare for 1650 * saving it to the disk. 1651 */ 1652 if (fw_dump.dump_active) { 1653 /* 1654 * if dump process fails then invalidate the registration 1655 * and release memory before proceeding for re-registration. 1656 */ 1657 if (fw_dump.ops->fadump_process(&fw_dump) < 0) 1658 fadump_invalidate_release_mem(); 1659 } 1660 /* Initialize the kernel dump memory structure and register with f/w */ 1661 else if (fw_dump.reserve_dump_area_size) { 1662 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1663 register_fadump(); 1664 } 1665 1666 /* 1667 * In case of panic, fadump is triggered via ppc_panic_event() 1668 * panic notifier. Setting crash_kexec_post_notifiers to 'true' 1669 * lets panic() function take crash friendly path before panic 1670 * notifiers are invoked. 1671 */ 1672 crash_kexec_post_notifiers = true; 1673 1674 return 1; 1675 } 1676 /* 1677 * Use subsys_initcall_sync() here because there is dependency with 1678 * crash_save_vmcoreinfo_init(), which mush run first to ensure vmcoreinfo initialization 1679 * is done before regisering with f/w. 1680 */ 1681 subsys_initcall_sync(setup_fadump); 1682 #else /* !CONFIG_PRESERVE_FA_DUMP */ 1683 1684 /* Scan the Firmware Assisted dump configuration details. */ 1685 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 1686 int depth, void *data) 1687 { 1688 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0)) 1689 return 0; 1690 1691 opal_fadump_dt_scan(&fw_dump, node); 1692 return 1; 1693 } 1694 1695 /* 1696 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel, 1697 * preserve crash data. The subsequent memory preserving kernel boot 1698 * is likely to process this crash data. 1699 */ 1700 int __init fadump_reserve_mem(void) 1701 { 1702 if (fw_dump.dump_active) { 1703 /* 1704 * If last boot has crashed then reserve all the memory 1705 * above boot memory to preserve crash data. 1706 */ 1707 pr_info("Preserving crash data for processing in next boot.\n"); 1708 fadump_reserve_crash_area(fw_dump.boot_mem_top); 1709 } else 1710 pr_debug("FADump-aware kernel..\n"); 1711 1712 return 1; 1713 } 1714 #endif /* CONFIG_PRESERVE_FA_DUMP */ 1715 1716 /* Preserve everything above the base address */ 1717 static void __init fadump_reserve_crash_area(u64 base) 1718 { 1719 u64 i, mstart, mend, msize; 1720 1721 for_each_mem_range(i, &mstart, &mend) { 1722 msize = mend - mstart; 1723 1724 if ((mstart + msize) < base) 1725 continue; 1726 1727 if (mstart < base) { 1728 msize -= (base - mstart); 1729 mstart = base; 1730 } 1731 1732 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data", 1733 (msize >> 20), mstart); 1734 memblock_reserve(mstart, msize); 1735 } 1736 } 1737 1738 unsigned long __init arch_reserved_kernel_pages(void) 1739 { 1740 return memblock_reserved_size() / PAGE_SIZE; 1741 } 1742