xref: /openbmc/linux/arch/powerpc/kernel/fadump.c (revision 6abec12c65e8870d8cafe154a86240fe0bcdd4f7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 
28 #include <asm/debugfs.h>
29 #include <asm/page.h>
30 #include <asm/prom.h>
31 #include <asm/fadump.h>
32 #include <asm/fadump-internal.h>
33 #include <asm/setup.h>
34 
35 static struct fw_dump fw_dump;
36 
37 static DEFINE_MUTEX(fadump_mutex);
38 struct fad_crash_memory_ranges *crash_memory_ranges;
39 int crash_memory_ranges_size;
40 int crash_mem_ranges;
41 int max_crash_mem_ranges;
42 
43 #ifdef CONFIG_CMA
44 static struct cma *fadump_cma;
45 
46 /*
47  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
48  *
49  * This function initializes CMA area from fadump reserved memory.
50  * The total size of fadump reserved memory covers for boot memory size
51  * + cpu data size + hpte size and metadata.
52  * Initialize only the area equivalent to boot memory size for CMA use.
53  * The reamining portion of fadump reserved memory will be not given
54  * to CMA and pages for thoes will stay reserved. boot memory size is
55  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
56  * But for some reason even if it fails we still have the memory reservation
57  * with us and we can still continue doing fadump.
58  */
59 int __init fadump_cma_init(void)
60 {
61 	unsigned long long base, size;
62 	int rc;
63 
64 	if (!fw_dump.fadump_enabled)
65 		return 0;
66 
67 	/*
68 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
69 	 * Return 1 to continue with fadump old behaviour.
70 	 */
71 	if (fw_dump.nocma)
72 		return 1;
73 
74 	base = fw_dump.reserve_dump_area_start;
75 	size = fw_dump.boot_memory_size;
76 
77 	if (!size)
78 		return 0;
79 
80 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
81 	if (rc) {
82 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
83 		/*
84 		 * Though the CMA init has failed we still have memory
85 		 * reservation with us. The reserved memory will be
86 		 * blocked from production system usage.  Hence return 1,
87 		 * so that we can continue with fadump.
88 		 */
89 		return 1;
90 	}
91 
92 	/*
93 	 * So we now have successfully initialized cma area for fadump.
94 	 */
95 	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
96 		"bytes of memory reserved for firmware-assisted dump\n",
97 		cma_get_size(fadump_cma),
98 		(unsigned long)cma_get_base(fadump_cma) >> 20,
99 		fw_dump.reserve_dump_area_size);
100 	return 1;
101 }
102 #else
103 static int __init fadump_cma_init(void) { return 1; }
104 #endif /* CONFIG_CMA */
105 
106 /* Scan the Firmware Assisted dump configuration details. */
107 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
108 				      int depth, void *data)
109 {
110 	if (depth != 1)
111 		return 0;
112 
113 	if (strcmp(uname, "rtas") == 0) {
114 		rtas_fadump_dt_scan(&fw_dump, node);
115 		return 1;
116 	}
117 
118 	if (strcmp(uname, "ibm,opal") == 0) {
119 		opal_fadump_dt_scan(&fw_dump, node);
120 		return 1;
121 	}
122 
123 	return 0;
124 }
125 
126 /*
127  * If fadump is registered, check if the memory provided
128  * falls within boot memory area and reserved memory area.
129  */
130 int is_fadump_memory_area(u64 addr, ulong size)
131 {
132 	u64 d_start = fw_dump.reserve_dump_area_start;
133 	u64 d_end = d_start + fw_dump.reserve_dump_area_size;
134 
135 	if (!fw_dump.dump_registered)
136 		return 0;
137 
138 	if (((addr + size) > d_start) && (addr <= d_end))
139 		return 1;
140 
141 	return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
142 }
143 
144 int should_fadump_crash(void)
145 {
146 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
147 		return 0;
148 	return 1;
149 }
150 
151 int is_fadump_active(void)
152 {
153 	return fw_dump.dump_active;
154 }
155 
156 /*
157  * Returns true, if there are no holes in memory area between d_start to d_end,
158  * false otherwise.
159  */
160 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
161 {
162 	struct memblock_region *reg;
163 	bool ret = false;
164 	u64 start, end;
165 
166 	for_each_memblock(memory, reg) {
167 		start = max_t(u64, d_start, reg->base);
168 		end = min_t(u64, d_end, (reg->base + reg->size));
169 		if (d_start < end) {
170 			/* Memory hole from d_start to start */
171 			if (start > d_start)
172 				break;
173 
174 			if (end == d_end) {
175 				ret = true;
176 				break;
177 			}
178 
179 			d_start = end + 1;
180 		}
181 	}
182 
183 	return ret;
184 }
185 
186 /*
187  * Returns true, if there are no holes in boot memory area,
188  * false otherwise.
189  */
190 bool is_fadump_boot_mem_contiguous(void)
191 {
192 	return is_fadump_mem_area_contiguous(0, fw_dump.boot_memory_size);
193 }
194 
195 /*
196  * Returns true, if there are no holes in reserved memory area,
197  * false otherwise.
198  */
199 bool is_fadump_reserved_mem_contiguous(void)
200 {
201 	u64 d_start, d_end;
202 
203 	d_start	= fw_dump.reserve_dump_area_start;
204 	d_end	= d_start + fw_dump.reserve_dump_area_size;
205 	return is_fadump_mem_area_contiguous(d_start, d_end);
206 }
207 
208 /* Print firmware assisted dump configurations for debugging purpose. */
209 static void fadump_show_config(void)
210 {
211 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
212 			(fw_dump.fadump_supported ? "present" : "no support"));
213 
214 	if (!fw_dump.fadump_supported)
215 		return;
216 
217 	pr_debug("Fadump enabled    : %s\n",
218 				(fw_dump.fadump_enabled ? "yes" : "no"));
219 	pr_debug("Dump Active       : %s\n",
220 				(fw_dump.dump_active ? "yes" : "no"));
221 	pr_debug("Dump section sizes:\n");
222 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
223 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
224 	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
225 }
226 
227 /**
228  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
229  *
230  * Function to find the largest memory size we need to reserve during early
231  * boot process. This will be the size of the memory that is required for a
232  * kernel to boot successfully.
233  *
234  * This function has been taken from phyp-assisted dump feature implementation.
235  *
236  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
237  *
238  * TODO: Come up with better approach to find out more accurate memory size
239  * that is required for a kernel to boot successfully.
240  *
241  */
242 static inline unsigned long fadump_calculate_reserve_size(void)
243 {
244 	int ret;
245 	unsigned long long base, size;
246 
247 	if (fw_dump.reserve_bootvar)
248 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
249 
250 	/*
251 	 * Check if the size is specified through crashkernel= cmdline
252 	 * option. If yes, then use that but ignore base as fadump reserves
253 	 * memory at a predefined offset.
254 	 */
255 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
256 				&size, &base);
257 	if (ret == 0 && size > 0) {
258 		unsigned long max_size;
259 
260 		if (fw_dump.reserve_bootvar)
261 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
262 
263 		fw_dump.reserve_bootvar = (unsigned long)size;
264 
265 		/*
266 		 * Adjust if the boot memory size specified is above
267 		 * the upper limit.
268 		 */
269 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
270 		if (fw_dump.reserve_bootvar > max_size) {
271 			fw_dump.reserve_bootvar = max_size;
272 			pr_info("Adjusted boot memory size to %luMB\n",
273 				(fw_dump.reserve_bootvar >> 20));
274 		}
275 
276 		return fw_dump.reserve_bootvar;
277 	} else if (fw_dump.reserve_bootvar) {
278 		/*
279 		 * 'fadump_reserve_mem=' is being used to reserve memory
280 		 * for firmware-assisted dump.
281 		 */
282 		return fw_dump.reserve_bootvar;
283 	}
284 
285 	/* divide by 20 to get 5% of value */
286 	size = memblock_phys_mem_size() / 20;
287 
288 	/* round it down in multiples of 256 */
289 	size = size & ~0x0FFFFFFFUL;
290 
291 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
292 	if (memory_limit && size > memory_limit)
293 		size = memory_limit;
294 
295 	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
296 }
297 
298 /*
299  * Calculate the total memory size required to be reserved for
300  * firmware-assisted dump registration.
301  */
302 static unsigned long get_fadump_area_size(void)
303 {
304 	unsigned long size = 0;
305 
306 	size += fw_dump.cpu_state_data_size;
307 	size += fw_dump.hpte_region_size;
308 	size += fw_dump.boot_memory_size;
309 	size += sizeof(struct fadump_crash_info_header);
310 	size += sizeof(struct elfhdr); /* ELF core header.*/
311 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
312 	/* Program headers for crash memory regions. */
313 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
314 
315 	size = PAGE_ALIGN(size);
316 	return size;
317 }
318 
319 static void __init fadump_reserve_crash_area(unsigned long base,
320 					     unsigned long size)
321 {
322 	struct memblock_region *reg;
323 	unsigned long mstart, mend, msize;
324 
325 	for_each_memblock(memory, reg) {
326 		mstart = max_t(unsigned long, base, reg->base);
327 		mend = reg->base + reg->size;
328 		mend = min(base + size, mend);
329 
330 		if (mstart < mend) {
331 			msize = mend - mstart;
332 			memblock_reserve(mstart, msize);
333 			pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
334 				(msize >> 20), mstart);
335 		}
336 	}
337 }
338 
339 int __init fadump_reserve_mem(void)
340 {
341 	u64 base, size, mem_boundary;
342 	int ret = 1;
343 
344 	if (!fw_dump.fadump_enabled)
345 		return 0;
346 
347 	if (!fw_dump.fadump_supported) {
348 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
349 		goto error_out;
350 	}
351 	/*
352 	 * Initialize boot memory size
353 	 * If dump is active then we have already calculated the size during
354 	 * first kernel.
355 	 */
356 	if (!fw_dump.dump_active) {
357 		fw_dump.boot_memory_size =
358 			PAGE_ALIGN(fadump_calculate_reserve_size());
359 #ifdef CONFIG_CMA
360 		if (!fw_dump.nocma)
361 			fw_dump.boot_memory_size =
362 				ALIGN(fw_dump.boot_memory_size,
363 							FADUMP_CMA_ALIGNMENT);
364 #endif
365 	}
366 
367 	/*
368 	 * Calculate the memory boundary.
369 	 * If memory_limit is less than actual memory boundary then reserve
370 	 * the memory for fadump beyond the memory_limit and adjust the
371 	 * memory_limit accordingly, so that the running kernel can run with
372 	 * specified memory_limit.
373 	 */
374 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
375 		size = get_fadump_area_size();
376 		if ((memory_limit + size) < memblock_end_of_DRAM())
377 			memory_limit += size;
378 		else
379 			memory_limit = memblock_end_of_DRAM();
380 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
381 				" dump, now %#016llx\n", memory_limit);
382 	}
383 	if (memory_limit)
384 		mem_boundary = memory_limit;
385 	else
386 		mem_boundary = memblock_end_of_DRAM();
387 
388 	base = fw_dump.boot_memory_size;
389 	size = get_fadump_area_size();
390 	fw_dump.reserve_dump_area_size = size;
391 	if (fw_dump.dump_active) {
392 		pr_info("Firmware-assisted dump is active.\n");
393 
394 #ifdef CONFIG_HUGETLB_PAGE
395 		/*
396 		 * FADump capture kernel doesn't care much about hugepages.
397 		 * In fact, handling hugepages in capture kernel is asking for
398 		 * trouble. So, disable HugeTLB support when fadump is active.
399 		 */
400 		hugetlb_disabled = true;
401 #endif
402 		/*
403 		 * If last boot has crashed then reserve all the memory
404 		 * above boot_memory_size so that we don't touch it until
405 		 * dump is written to disk by userspace tool. This memory
406 		 * will be released for general use once the dump is saved.
407 		 */
408 		size = mem_boundary - base;
409 		fadump_reserve_crash_area(base, size);
410 
411 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
412 		pr_debug("Reserve dump area start address: 0x%lx\n",
413 			 fw_dump.reserve_dump_area_start);
414 	} else {
415 		/*
416 		 * Reserve memory at an offset closer to bottom of the RAM to
417 		 * minimize the impact of memory hot-remove operation. We can't
418 		 * use memblock_find_in_range() here since it doesn't allocate
419 		 * from bottom to top.
420 		 */
421 		while (base <= (mem_boundary - size)) {
422 			if (memblock_is_region_memory(base, size) &&
423 			    !memblock_is_region_reserved(base, size))
424 				break;
425 
426 			base += size;
427 		}
428 
429 		if ((base > (mem_boundary - size)) ||
430 		    memblock_reserve(base, size)) {
431 			pr_err("Failed to reserve memory!\n");
432 			goto error_out;
433 		}
434 
435 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
436 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
437 
438 		fw_dump.reserve_dump_area_start = base;
439 		ret = fadump_cma_init();
440 	}
441 
442 	return ret;
443 error_out:
444 	fw_dump.fadump_enabled = 0;
445 	return 0;
446 }
447 
448 unsigned long __init arch_reserved_kernel_pages(void)
449 {
450 	return memblock_reserved_size() / PAGE_SIZE;
451 }
452 
453 /* Look for fadump= cmdline option. */
454 static int __init early_fadump_param(char *p)
455 {
456 	if (!p)
457 		return 1;
458 
459 	if (strncmp(p, "on", 2) == 0)
460 		fw_dump.fadump_enabled = 1;
461 	else if (strncmp(p, "off", 3) == 0)
462 		fw_dump.fadump_enabled = 0;
463 	else if (strncmp(p, "nocma", 5) == 0) {
464 		fw_dump.fadump_enabled = 1;
465 		fw_dump.nocma = 1;
466 	}
467 
468 	return 0;
469 }
470 early_param("fadump", early_fadump_param);
471 
472 /*
473  * Look for fadump_reserve_mem= cmdline option
474  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
475  *       the sooner 'crashkernel=' parameter is accustomed to.
476  */
477 static int __init early_fadump_reserve_mem(char *p)
478 {
479 	if (p)
480 		fw_dump.reserve_bootvar = memparse(p, &p);
481 	return 0;
482 }
483 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
484 
485 void crash_fadump(struct pt_regs *regs, const char *str)
486 {
487 	struct fadump_crash_info_header *fdh = NULL;
488 	int old_cpu, this_cpu;
489 
490 	if (!should_fadump_crash())
491 		return;
492 
493 	/*
494 	 * old_cpu == -1 means this is the first CPU which has come here,
495 	 * go ahead and trigger fadump.
496 	 *
497 	 * old_cpu != -1 means some other CPU has already on it's way
498 	 * to trigger fadump, just keep looping here.
499 	 */
500 	this_cpu = smp_processor_id();
501 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
502 
503 	if (old_cpu != -1) {
504 		/*
505 		 * We can't loop here indefinitely. Wait as long as fadump
506 		 * is in force. If we race with fadump un-registration this
507 		 * loop will break and then we go down to normal panic path
508 		 * and reboot. If fadump is in force the first crashing
509 		 * cpu will definitely trigger fadump.
510 		 */
511 		while (fw_dump.dump_registered)
512 			cpu_relax();
513 		return;
514 	}
515 
516 	fdh = __va(fw_dump.fadumphdr_addr);
517 	fdh->crashing_cpu = crashing_cpu;
518 	crash_save_vmcoreinfo();
519 
520 	if (regs)
521 		fdh->regs = *regs;
522 	else
523 		ppc_save_regs(&fdh->regs);
524 
525 	fdh->online_mask = *cpu_online_mask;
526 
527 	fw_dump.ops->fadump_trigger(fdh, str);
528 }
529 
530 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
531 {
532 	struct elf_prstatus prstatus;
533 
534 	memset(&prstatus, 0, sizeof(prstatus));
535 	/*
536 	 * FIXME: How do i get PID? Do I really need it?
537 	 * prstatus.pr_pid = ????
538 	 */
539 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
540 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
541 			      &prstatus, sizeof(prstatus));
542 	return buf;
543 }
544 
545 void fadump_update_elfcore_header(char *bufp)
546 {
547 	struct elfhdr *elf;
548 	struct elf_phdr *phdr;
549 
550 	elf = (struct elfhdr *)bufp;
551 	bufp += sizeof(struct elfhdr);
552 
553 	/* First note is a place holder for cpu notes info. */
554 	phdr = (struct elf_phdr *)bufp;
555 
556 	if (phdr->p_type == PT_NOTE) {
557 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
558 		phdr->p_offset	= phdr->p_paddr;
559 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
560 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
561 	}
562 	return;
563 }
564 
565 static void *fadump_alloc_buffer(unsigned long size)
566 {
567 	unsigned long count, i;
568 	struct page *page;
569 	void *vaddr;
570 
571 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
572 	if (!vaddr)
573 		return NULL;
574 
575 	count = PAGE_ALIGN(size) / PAGE_SIZE;
576 	page = virt_to_page(vaddr);
577 	for (i = 0; i < count; i++)
578 		mark_page_reserved(page + i);
579 	return vaddr;
580 }
581 
582 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
583 {
584 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
585 }
586 
587 s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
588 {
589 	/* Allocate buffer to hold cpu crash notes. */
590 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
591 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
592 	fw_dump.cpu_notes_buf_vaddr =
593 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
594 	if (!fw_dump.cpu_notes_buf_vaddr) {
595 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
596 		       fw_dump.cpu_notes_buf_size);
597 		return -ENOMEM;
598 	}
599 
600 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
601 		 fw_dump.cpu_notes_buf_size,
602 		 fw_dump.cpu_notes_buf_vaddr);
603 	return 0;
604 }
605 
606 void fadump_free_cpu_notes_buf(void)
607 {
608 	if (!fw_dump.cpu_notes_buf_vaddr)
609 		return;
610 
611 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
612 			   fw_dump.cpu_notes_buf_size);
613 	fw_dump.cpu_notes_buf_vaddr = 0;
614 	fw_dump.cpu_notes_buf_size = 0;
615 }
616 
617 static void free_crash_memory_ranges(void)
618 {
619 	kfree(crash_memory_ranges);
620 	crash_memory_ranges = NULL;
621 	crash_memory_ranges_size = 0;
622 	max_crash_mem_ranges = 0;
623 }
624 
625 /*
626  * Allocate or reallocate crash memory ranges array in incremental units
627  * of PAGE_SIZE.
628  */
629 static int allocate_crash_memory_ranges(void)
630 {
631 	struct fad_crash_memory_ranges *new_array;
632 	u64 new_size;
633 
634 	new_size = crash_memory_ranges_size + PAGE_SIZE;
635 	pr_debug("Allocating %llu bytes of memory for crash memory ranges\n",
636 		 new_size);
637 
638 	new_array = krealloc(crash_memory_ranges, new_size, GFP_KERNEL);
639 	if (new_array == NULL) {
640 		pr_err("Insufficient memory for setting up crash memory ranges\n");
641 		free_crash_memory_ranges();
642 		return -ENOMEM;
643 	}
644 
645 	crash_memory_ranges = new_array;
646 	crash_memory_ranges_size = new_size;
647 	max_crash_mem_ranges = (new_size /
648 				sizeof(struct fad_crash_memory_ranges));
649 	return 0;
650 }
651 
652 static inline int fadump_add_crash_memory(unsigned long long base,
653 					  unsigned long long end)
654 {
655 	u64  start, size;
656 	bool is_adjacent = false;
657 
658 	if (base == end)
659 		return 0;
660 
661 	/*
662 	 * Fold adjacent memory ranges to bring down the memory ranges/
663 	 * PT_LOAD segments count.
664 	 */
665 	if (crash_mem_ranges) {
666 		start = crash_memory_ranges[crash_mem_ranges - 1].base;
667 		size = crash_memory_ranges[crash_mem_ranges - 1].size;
668 
669 		if ((start + size) == base)
670 			is_adjacent = true;
671 	}
672 	if (!is_adjacent) {
673 		/* resize the array on reaching the limit */
674 		if (crash_mem_ranges == max_crash_mem_ranges) {
675 			int ret;
676 
677 			ret = allocate_crash_memory_ranges();
678 			if (ret)
679 				return ret;
680 		}
681 
682 		start = base;
683 		crash_memory_ranges[crash_mem_ranges].base = start;
684 		crash_mem_ranges++;
685 	}
686 
687 	crash_memory_ranges[crash_mem_ranges - 1].size = (end - start);
688 	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
689 		(crash_mem_ranges - 1), start, end - 1, (end - start));
690 	return 0;
691 }
692 
693 static int fadump_exclude_reserved_area(unsigned long long start,
694 					unsigned long long end)
695 {
696 	unsigned long long ra_start, ra_end;
697 	int ret = 0;
698 
699 	ra_start = fw_dump.reserve_dump_area_start;
700 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
701 
702 	if ((ra_start < end) && (ra_end > start)) {
703 		if ((start < ra_start) && (end > ra_end)) {
704 			ret = fadump_add_crash_memory(start, ra_start);
705 			if (ret)
706 				return ret;
707 
708 			ret = fadump_add_crash_memory(ra_end, end);
709 		} else if (start < ra_start) {
710 			ret = fadump_add_crash_memory(start, ra_start);
711 		} else if (ra_end < end) {
712 			ret = fadump_add_crash_memory(ra_end, end);
713 		}
714 	} else
715 		ret = fadump_add_crash_memory(start, end);
716 
717 	return ret;
718 }
719 
720 static int fadump_init_elfcore_header(char *bufp)
721 {
722 	struct elfhdr *elf;
723 
724 	elf = (struct elfhdr *) bufp;
725 	bufp += sizeof(struct elfhdr);
726 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
727 	elf->e_ident[EI_CLASS] = ELF_CLASS;
728 	elf->e_ident[EI_DATA] = ELF_DATA;
729 	elf->e_ident[EI_VERSION] = EV_CURRENT;
730 	elf->e_ident[EI_OSABI] = ELF_OSABI;
731 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
732 	elf->e_type = ET_CORE;
733 	elf->e_machine = ELF_ARCH;
734 	elf->e_version = EV_CURRENT;
735 	elf->e_entry = 0;
736 	elf->e_phoff = sizeof(struct elfhdr);
737 	elf->e_shoff = 0;
738 #if defined(_CALL_ELF)
739 	elf->e_flags = _CALL_ELF;
740 #else
741 	elf->e_flags = 0;
742 #endif
743 	elf->e_ehsize = sizeof(struct elfhdr);
744 	elf->e_phentsize = sizeof(struct elf_phdr);
745 	elf->e_phnum = 0;
746 	elf->e_shentsize = 0;
747 	elf->e_shnum = 0;
748 	elf->e_shstrndx = 0;
749 
750 	return 0;
751 }
752 
753 /*
754  * Traverse through memblock structure and setup crash memory ranges. These
755  * ranges will be used create PT_LOAD program headers in elfcore header.
756  */
757 static int fadump_setup_crash_memory_ranges(void)
758 {
759 	struct memblock_region *reg;
760 	unsigned long long start, end;
761 	int ret;
762 
763 	pr_debug("Setup crash memory ranges.\n");
764 	crash_mem_ranges = 0;
765 
766 	/*
767 	 * add the first memory chunk (RMA_START through boot_memory_size) as
768 	 * a separate memory chunk. The reason is, at the time crash firmware
769 	 * will move the content of this memory chunk to different location
770 	 * specified during fadump registration. We need to create a separate
771 	 * program header for this chunk with the correct offset.
772 	 */
773 	ret = fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
774 	if (ret)
775 		return ret;
776 
777 	for_each_memblock(memory, reg) {
778 		start = (unsigned long long)reg->base;
779 		end = start + (unsigned long long)reg->size;
780 
781 		/*
782 		 * skip the first memory chunk that is already added (RMA_START
783 		 * through boot_memory_size). This logic needs a relook if and
784 		 * when RMA_START changes to a non-zero value.
785 		 */
786 		BUILD_BUG_ON(RMA_START != 0);
787 		if (start < fw_dump.boot_memory_size) {
788 			if (end > fw_dump.boot_memory_size)
789 				start = fw_dump.boot_memory_size;
790 			else
791 				continue;
792 		}
793 
794 		/* add this range excluding the reserved dump area. */
795 		ret = fadump_exclude_reserved_area(start, end);
796 		if (ret)
797 			return ret;
798 	}
799 
800 	return 0;
801 }
802 
803 /*
804  * If the given physical address falls within the boot memory region then
805  * return the relocated address that points to the dump region reserved
806  * for saving initial boot memory contents.
807  */
808 static inline unsigned long fadump_relocate(unsigned long paddr)
809 {
810 	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
811 		return fw_dump.boot_mem_dest_addr + paddr;
812 	else
813 		return paddr;
814 }
815 
816 static int fadump_create_elfcore_headers(char *bufp)
817 {
818 	struct elfhdr *elf;
819 	struct elf_phdr *phdr;
820 	int i;
821 
822 	fadump_init_elfcore_header(bufp);
823 	elf = (struct elfhdr *)bufp;
824 	bufp += sizeof(struct elfhdr);
825 
826 	/*
827 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
828 	 * will be populated during second kernel boot after crash. Hence
829 	 * this PT_NOTE will always be the first elf note.
830 	 *
831 	 * NOTE: Any new ELF note addition should be placed after this note.
832 	 */
833 	phdr = (struct elf_phdr *)bufp;
834 	bufp += sizeof(struct elf_phdr);
835 	phdr->p_type = PT_NOTE;
836 	phdr->p_flags = 0;
837 	phdr->p_vaddr = 0;
838 	phdr->p_align = 0;
839 
840 	phdr->p_offset = 0;
841 	phdr->p_paddr = 0;
842 	phdr->p_filesz = 0;
843 	phdr->p_memsz = 0;
844 
845 	(elf->e_phnum)++;
846 
847 	/* setup ELF PT_NOTE for vmcoreinfo */
848 	phdr = (struct elf_phdr *)bufp;
849 	bufp += sizeof(struct elf_phdr);
850 	phdr->p_type	= PT_NOTE;
851 	phdr->p_flags	= 0;
852 	phdr->p_vaddr	= 0;
853 	phdr->p_align	= 0;
854 
855 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
856 	phdr->p_offset	= phdr->p_paddr;
857 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
858 
859 	/* Increment number of program headers. */
860 	(elf->e_phnum)++;
861 
862 	/* setup PT_LOAD sections. */
863 
864 	for (i = 0; i < crash_mem_ranges; i++) {
865 		unsigned long long mbase, msize;
866 		mbase = crash_memory_ranges[i].base;
867 		msize = crash_memory_ranges[i].size;
868 
869 		if (!msize)
870 			continue;
871 
872 		phdr = (struct elf_phdr *)bufp;
873 		bufp += sizeof(struct elf_phdr);
874 		phdr->p_type	= PT_LOAD;
875 		phdr->p_flags	= PF_R|PF_W|PF_X;
876 		phdr->p_offset	= mbase;
877 
878 		if (mbase == RMA_START) {
879 			/*
880 			 * The entire RMA region will be moved by firmware
881 			 * to the specified destination_address. Hence set
882 			 * the correct offset.
883 			 */
884 			phdr->p_offset = fw_dump.boot_mem_dest_addr;
885 		}
886 
887 		phdr->p_paddr = mbase;
888 		phdr->p_vaddr = (unsigned long)__va(mbase);
889 		phdr->p_filesz = msize;
890 		phdr->p_memsz = msize;
891 		phdr->p_align = 0;
892 
893 		/* Increment number of program headers. */
894 		(elf->e_phnum)++;
895 	}
896 	return 0;
897 }
898 
899 static unsigned long init_fadump_header(unsigned long addr)
900 {
901 	struct fadump_crash_info_header *fdh;
902 
903 	if (!addr)
904 		return 0;
905 
906 	fdh = __va(addr);
907 	addr += sizeof(struct fadump_crash_info_header);
908 
909 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
910 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
911 	fdh->elfcorehdr_addr = addr;
912 	/* We will set the crashing cpu id in crash_fadump() during crash. */
913 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
914 
915 	return addr;
916 }
917 
918 static int register_fadump(void)
919 {
920 	unsigned long addr;
921 	void *vaddr;
922 	int ret;
923 
924 	/*
925 	 * If no memory is reserved then we can not register for firmware-
926 	 * assisted dump.
927 	 */
928 	if (!fw_dump.reserve_dump_area_size)
929 		return -ENODEV;
930 
931 	ret = fadump_setup_crash_memory_ranges();
932 	if (ret)
933 		return ret;
934 
935 	addr = fw_dump.fadumphdr_addr;
936 
937 	/* Initialize fadump crash info header. */
938 	addr = init_fadump_header(addr);
939 	vaddr = __va(addr);
940 
941 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
942 	fadump_create_elfcore_headers(vaddr);
943 
944 	/* register the future kernel dump with firmware. */
945 	pr_debug("Registering for firmware-assisted kernel dump...\n");
946 	return fw_dump.ops->fadump_register(&fw_dump);
947 }
948 
949 void fadump_cleanup(void)
950 {
951 	/* Invalidate the registration only if dump is active. */
952 	if (fw_dump.dump_active) {
953 		pr_debug("Invalidating firmware-assisted dump registration\n");
954 		fw_dump.ops->fadump_invalidate(&fw_dump);
955 	} else if (fw_dump.dump_registered) {
956 		/* Un-register Firmware-assisted dump if it was registered. */
957 		fw_dump.ops->fadump_unregister(&fw_dump);
958 		free_crash_memory_ranges();
959 	}
960 }
961 
962 static void fadump_free_reserved_memory(unsigned long start_pfn,
963 					unsigned long end_pfn)
964 {
965 	unsigned long pfn;
966 	unsigned long time_limit = jiffies + HZ;
967 
968 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
969 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
970 
971 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
972 		free_reserved_page(pfn_to_page(pfn));
973 
974 		if (time_after(jiffies, time_limit)) {
975 			cond_resched();
976 			time_limit = jiffies + HZ;
977 		}
978 	}
979 }
980 
981 /*
982  * Skip memory holes and free memory that was actually reserved.
983  */
984 static void fadump_release_reserved_area(unsigned long start, unsigned long end)
985 {
986 	struct memblock_region *reg;
987 	unsigned long tstart, tend;
988 	unsigned long start_pfn = PHYS_PFN(start);
989 	unsigned long end_pfn = PHYS_PFN(end);
990 
991 	for_each_memblock(memory, reg) {
992 		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
993 		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
994 		if (tstart < tend) {
995 			fadump_free_reserved_memory(tstart, tend);
996 
997 			if (tend == end_pfn)
998 				break;
999 
1000 			start_pfn = tend + 1;
1001 		}
1002 	}
1003 }
1004 
1005 /*
1006  * Release the memory that was reserved in early boot to preserve the memory
1007  * contents. The released memory will be available for general use.
1008  */
1009 static void fadump_release_memory(unsigned long begin, unsigned long end)
1010 {
1011 	unsigned long ra_start, ra_end;
1012 
1013 	ra_start = fw_dump.reserve_dump_area_start;
1014 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1015 
1016 	/*
1017 	 * exclude the dump reserve area. Will reuse it for next
1018 	 * fadump registration.
1019 	 */
1020 	if (begin < ra_end && end > ra_start) {
1021 		if (begin < ra_start)
1022 			fadump_release_reserved_area(begin, ra_start);
1023 		if (end > ra_end)
1024 			fadump_release_reserved_area(ra_end, end);
1025 	} else
1026 		fadump_release_reserved_area(begin, end);
1027 }
1028 
1029 static void fadump_invalidate_release_mem(void)
1030 {
1031 	mutex_lock(&fadump_mutex);
1032 	if (!fw_dump.dump_active) {
1033 		mutex_unlock(&fadump_mutex);
1034 		return;
1035 	}
1036 
1037 	fadump_cleanup();
1038 	mutex_unlock(&fadump_mutex);
1039 
1040 	fadump_release_memory(fw_dump.boot_memory_size, memblock_end_of_DRAM());
1041 	fadump_free_cpu_notes_buf();
1042 
1043 	/* Initialize the kernel dump memory structure for FAD registration. */
1044 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1045 }
1046 
1047 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1048 					struct kobj_attribute *attr,
1049 					const char *buf, size_t count)
1050 {
1051 	int input = -1;
1052 
1053 	if (!fw_dump.dump_active)
1054 		return -EPERM;
1055 
1056 	if (kstrtoint(buf, 0, &input))
1057 		return -EINVAL;
1058 
1059 	if (input == 1) {
1060 		/*
1061 		 * Take away the '/proc/vmcore'. We are releasing the dump
1062 		 * memory, hence it will not be valid anymore.
1063 		 */
1064 #ifdef CONFIG_PROC_VMCORE
1065 		vmcore_cleanup();
1066 #endif
1067 		fadump_invalidate_release_mem();
1068 
1069 	} else
1070 		return -EINVAL;
1071 	return count;
1072 }
1073 
1074 static ssize_t fadump_enabled_show(struct kobject *kobj,
1075 					struct kobj_attribute *attr,
1076 					char *buf)
1077 {
1078 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1079 }
1080 
1081 static ssize_t fadump_register_show(struct kobject *kobj,
1082 					struct kobj_attribute *attr,
1083 					char *buf)
1084 {
1085 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1086 }
1087 
1088 static ssize_t fadump_register_store(struct kobject *kobj,
1089 					struct kobj_attribute *attr,
1090 					const char *buf, size_t count)
1091 {
1092 	int ret = 0;
1093 	int input = -1;
1094 
1095 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1096 		return -EPERM;
1097 
1098 	if (kstrtoint(buf, 0, &input))
1099 		return -EINVAL;
1100 
1101 	mutex_lock(&fadump_mutex);
1102 
1103 	switch (input) {
1104 	case 0:
1105 		if (fw_dump.dump_registered == 0) {
1106 			goto unlock_out;
1107 		}
1108 
1109 		/* Un-register Firmware-assisted dump */
1110 		pr_debug("Un-register firmware-assisted dump\n");
1111 		fw_dump.ops->fadump_unregister(&fw_dump);
1112 		break;
1113 	case 1:
1114 		if (fw_dump.dump_registered == 1) {
1115 			/* Un-register Firmware-assisted dump */
1116 			fw_dump.ops->fadump_unregister(&fw_dump);
1117 		}
1118 		/* Register Firmware-assisted dump */
1119 		ret = register_fadump();
1120 		break;
1121 	default:
1122 		ret = -EINVAL;
1123 		break;
1124 	}
1125 
1126 unlock_out:
1127 	mutex_unlock(&fadump_mutex);
1128 	return ret < 0 ? ret : count;
1129 }
1130 
1131 static int fadump_region_show(struct seq_file *m, void *private)
1132 {
1133 	if (!fw_dump.fadump_enabled)
1134 		return 0;
1135 
1136 	mutex_lock(&fadump_mutex);
1137 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1138 	mutex_unlock(&fadump_mutex);
1139 	return 0;
1140 }
1141 
1142 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1143 						0200, NULL,
1144 						fadump_release_memory_store);
1145 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1146 						0444, fadump_enabled_show,
1147 						NULL);
1148 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1149 						0644, fadump_register_show,
1150 						fadump_register_store);
1151 
1152 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1153 
1154 static void fadump_init_files(void)
1155 {
1156 	struct dentry *debugfs_file;
1157 	int rc = 0;
1158 
1159 	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1160 	if (rc)
1161 		printk(KERN_ERR "fadump: unable to create sysfs file"
1162 			" fadump_enabled (%d)\n", rc);
1163 
1164 	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1165 	if (rc)
1166 		printk(KERN_ERR "fadump: unable to create sysfs file"
1167 			" fadump_registered (%d)\n", rc);
1168 
1169 	debugfs_file = debugfs_create_file("fadump_region", 0444,
1170 					powerpc_debugfs_root, NULL,
1171 					&fadump_region_fops);
1172 	if (!debugfs_file)
1173 		printk(KERN_ERR "fadump: unable to create debugfs file"
1174 				" fadump_region\n");
1175 
1176 	if (fw_dump.dump_active) {
1177 		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1178 		if (rc)
1179 			printk(KERN_ERR "fadump: unable to create sysfs file"
1180 				" fadump_release_mem (%d)\n", rc);
1181 	}
1182 	return;
1183 }
1184 
1185 /*
1186  * Prepare for firmware-assisted dump.
1187  */
1188 int __init setup_fadump(void)
1189 {
1190 	if (!fw_dump.fadump_enabled)
1191 		return 0;
1192 
1193 	if (!fw_dump.fadump_supported) {
1194 		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1195 			" this hardware\n");
1196 		return 0;
1197 	}
1198 
1199 	fadump_show_config();
1200 	/*
1201 	 * If dump data is available then see if it is valid and prepare for
1202 	 * saving it to the disk.
1203 	 */
1204 	if (fw_dump.dump_active) {
1205 		/*
1206 		 * if dump process fails then invalidate the registration
1207 		 * and release memory before proceeding for re-registration.
1208 		 */
1209 		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1210 			fadump_invalidate_release_mem();
1211 	}
1212 	/* Initialize the kernel dump memory structure for FAD registration. */
1213 	else if (fw_dump.reserve_dump_area_size)
1214 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1215 
1216 	fadump_init_files();
1217 
1218 	return 1;
1219 }
1220 subsys_initcall(setup_fadump);
1221