1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash 4 * dump with assistance from firmware. This approach does not use kexec, 5 * instead firmware assists in booting the kdump kernel while preserving 6 * memory contents. The most of the code implementation has been adapted 7 * from phyp assisted dump implementation written by Linas Vepstas and 8 * Manish Ahuja 9 * 10 * Copyright 2011 IBM Corporation 11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> 12 */ 13 14 #undef DEBUG 15 #define pr_fmt(fmt) "fadump: " fmt 16 17 #include <linux/string.h> 18 #include <linux/memblock.h> 19 #include <linux/delay.h> 20 #include <linux/seq_file.h> 21 #include <linux/crash_dump.h> 22 #include <linux/kobject.h> 23 #include <linux/sysfs.h> 24 #include <linux/slab.h> 25 #include <linux/cma.h> 26 #include <linux/hugetlb.h> 27 28 #include <asm/debugfs.h> 29 #include <asm/page.h> 30 #include <asm/prom.h> 31 #include <asm/fadump.h> 32 #include <asm/fadump-internal.h> 33 #include <asm/setup.h> 34 35 static struct fw_dump fw_dump; 36 37 static DEFINE_MUTEX(fadump_mutex); 38 struct fad_crash_memory_ranges *crash_memory_ranges; 39 int crash_memory_ranges_size; 40 int crash_mem_ranges; 41 int max_crash_mem_ranges; 42 43 #ifdef CONFIG_CMA 44 static struct cma *fadump_cma; 45 46 /* 47 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory 48 * 49 * This function initializes CMA area from fadump reserved memory. 50 * The total size of fadump reserved memory covers for boot memory size 51 * + cpu data size + hpte size and metadata. 52 * Initialize only the area equivalent to boot memory size for CMA use. 53 * The reamining portion of fadump reserved memory will be not given 54 * to CMA and pages for thoes will stay reserved. boot memory size is 55 * aligned per CMA requirement to satisy cma_init_reserved_mem() call. 56 * But for some reason even if it fails we still have the memory reservation 57 * with us and we can still continue doing fadump. 58 */ 59 int __init fadump_cma_init(void) 60 { 61 unsigned long long base, size; 62 int rc; 63 64 if (!fw_dump.fadump_enabled) 65 return 0; 66 67 /* 68 * Do not use CMA if user has provided fadump=nocma kernel parameter. 69 * Return 1 to continue with fadump old behaviour. 70 */ 71 if (fw_dump.nocma) 72 return 1; 73 74 base = fw_dump.reserve_dump_area_start; 75 size = fw_dump.boot_memory_size; 76 77 if (!size) 78 return 0; 79 80 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma); 81 if (rc) { 82 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc); 83 /* 84 * Though the CMA init has failed we still have memory 85 * reservation with us. The reserved memory will be 86 * blocked from production system usage. Hence return 1, 87 * so that we can continue with fadump. 88 */ 89 return 1; 90 } 91 92 /* 93 * So we now have successfully initialized cma area for fadump. 94 */ 95 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx " 96 "bytes of memory reserved for firmware-assisted dump\n", 97 cma_get_size(fadump_cma), 98 (unsigned long)cma_get_base(fadump_cma) >> 20, 99 fw_dump.reserve_dump_area_size); 100 return 1; 101 } 102 #else 103 static int __init fadump_cma_init(void) { return 1; } 104 #endif /* CONFIG_CMA */ 105 106 /* Scan the Firmware Assisted dump configuration details. */ 107 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 108 int depth, void *data) 109 { 110 if (depth != 1) 111 return 0; 112 113 if (strcmp(uname, "rtas") == 0) { 114 rtas_fadump_dt_scan(&fw_dump, node); 115 return 1; 116 } 117 118 if (strcmp(uname, "ibm,opal") == 0) { 119 opal_fadump_dt_scan(&fw_dump, node); 120 return 1; 121 } 122 123 return 0; 124 } 125 126 /* 127 * If fadump is registered, check if the memory provided 128 * falls within boot memory area and reserved memory area. 129 */ 130 int is_fadump_memory_area(u64 addr, ulong size) 131 { 132 u64 d_start = fw_dump.reserve_dump_area_start; 133 u64 d_end = d_start + fw_dump.reserve_dump_area_size; 134 135 if (!fw_dump.dump_registered) 136 return 0; 137 138 if (((addr + size) > d_start) && (addr <= d_end)) 139 return 1; 140 141 return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size; 142 } 143 144 int should_fadump_crash(void) 145 { 146 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) 147 return 0; 148 return 1; 149 } 150 151 int is_fadump_active(void) 152 { 153 return fw_dump.dump_active; 154 } 155 156 /* 157 * Returns true, if there are no holes in memory area between d_start to d_end, 158 * false otherwise. 159 */ 160 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end) 161 { 162 struct memblock_region *reg; 163 bool ret = false; 164 u64 start, end; 165 166 for_each_memblock(memory, reg) { 167 start = max_t(u64, d_start, reg->base); 168 end = min_t(u64, d_end, (reg->base + reg->size)); 169 if (d_start < end) { 170 /* Memory hole from d_start to start */ 171 if (start > d_start) 172 break; 173 174 if (end == d_end) { 175 ret = true; 176 break; 177 } 178 179 d_start = end + 1; 180 } 181 } 182 183 return ret; 184 } 185 186 /* 187 * Returns true, if there are no holes in boot memory area, 188 * false otherwise. 189 */ 190 bool is_fadump_boot_mem_contiguous(void) 191 { 192 return is_fadump_mem_area_contiguous(0, fw_dump.boot_memory_size); 193 } 194 195 /* 196 * Returns true, if there are no holes in reserved memory area, 197 * false otherwise. 198 */ 199 bool is_fadump_reserved_mem_contiguous(void) 200 { 201 u64 d_start, d_end; 202 203 d_start = fw_dump.reserve_dump_area_start; 204 d_end = d_start + fw_dump.reserve_dump_area_size; 205 return is_fadump_mem_area_contiguous(d_start, d_end); 206 } 207 208 /* Print firmware assisted dump configurations for debugging purpose. */ 209 static void fadump_show_config(void) 210 { 211 pr_debug("Support for firmware-assisted dump (fadump): %s\n", 212 (fw_dump.fadump_supported ? "present" : "no support")); 213 214 if (!fw_dump.fadump_supported) 215 return; 216 217 pr_debug("Fadump enabled : %s\n", 218 (fw_dump.fadump_enabled ? "yes" : "no")); 219 pr_debug("Dump Active : %s\n", 220 (fw_dump.dump_active ? "yes" : "no")); 221 pr_debug("Dump section sizes:\n"); 222 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); 223 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); 224 pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size); 225 } 226 227 /** 228 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM 229 * 230 * Function to find the largest memory size we need to reserve during early 231 * boot process. This will be the size of the memory that is required for a 232 * kernel to boot successfully. 233 * 234 * This function has been taken from phyp-assisted dump feature implementation. 235 * 236 * returns larger of 256MB or 5% rounded down to multiples of 256MB. 237 * 238 * TODO: Come up with better approach to find out more accurate memory size 239 * that is required for a kernel to boot successfully. 240 * 241 */ 242 static inline unsigned long fadump_calculate_reserve_size(void) 243 { 244 int ret; 245 unsigned long long base, size; 246 247 if (fw_dump.reserve_bootvar) 248 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); 249 250 /* 251 * Check if the size is specified through crashkernel= cmdline 252 * option. If yes, then use that but ignore base as fadump reserves 253 * memory at a predefined offset. 254 */ 255 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 256 &size, &base); 257 if (ret == 0 && size > 0) { 258 unsigned long max_size; 259 260 if (fw_dump.reserve_bootvar) 261 pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); 262 263 fw_dump.reserve_bootvar = (unsigned long)size; 264 265 /* 266 * Adjust if the boot memory size specified is above 267 * the upper limit. 268 */ 269 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; 270 if (fw_dump.reserve_bootvar > max_size) { 271 fw_dump.reserve_bootvar = max_size; 272 pr_info("Adjusted boot memory size to %luMB\n", 273 (fw_dump.reserve_bootvar >> 20)); 274 } 275 276 return fw_dump.reserve_bootvar; 277 } else if (fw_dump.reserve_bootvar) { 278 /* 279 * 'fadump_reserve_mem=' is being used to reserve memory 280 * for firmware-assisted dump. 281 */ 282 return fw_dump.reserve_bootvar; 283 } 284 285 /* divide by 20 to get 5% of value */ 286 size = memblock_phys_mem_size() / 20; 287 288 /* round it down in multiples of 256 */ 289 size = size & ~0x0FFFFFFFUL; 290 291 /* Truncate to memory_limit. We don't want to over reserve the memory.*/ 292 if (memory_limit && size > memory_limit) 293 size = memory_limit; 294 295 return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM); 296 } 297 298 /* 299 * Calculate the total memory size required to be reserved for 300 * firmware-assisted dump registration. 301 */ 302 static unsigned long get_fadump_area_size(void) 303 { 304 unsigned long size = 0; 305 306 size += fw_dump.cpu_state_data_size; 307 size += fw_dump.hpte_region_size; 308 size += fw_dump.boot_memory_size; 309 size += sizeof(struct fadump_crash_info_header); 310 size += sizeof(struct elfhdr); /* ELF core header.*/ 311 size += sizeof(struct elf_phdr); /* place holder for cpu notes */ 312 /* Program headers for crash memory regions. */ 313 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); 314 315 size = PAGE_ALIGN(size); 316 return size; 317 } 318 319 static void __init fadump_reserve_crash_area(unsigned long base, 320 unsigned long size) 321 { 322 struct memblock_region *reg; 323 unsigned long mstart, mend, msize; 324 325 for_each_memblock(memory, reg) { 326 mstart = max_t(unsigned long, base, reg->base); 327 mend = reg->base + reg->size; 328 mend = min(base + size, mend); 329 330 if (mstart < mend) { 331 msize = mend - mstart; 332 memblock_reserve(mstart, msize); 333 pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n", 334 (msize >> 20), mstart); 335 } 336 } 337 } 338 339 int __init fadump_reserve_mem(void) 340 { 341 unsigned long base, size, memory_boundary; 342 343 if (!fw_dump.fadump_enabled) 344 return 0; 345 346 if (!fw_dump.fadump_supported) { 347 printk(KERN_INFO "Firmware-assisted dump is not supported on" 348 " this hardware\n"); 349 fw_dump.fadump_enabled = 0; 350 return 0; 351 } 352 /* 353 * Initialize boot memory size 354 * If dump is active then we have already calculated the size during 355 * first kernel. 356 */ 357 if (!fw_dump.dump_active) { 358 fw_dump.boot_memory_size = fadump_calculate_reserve_size(); 359 #ifdef CONFIG_CMA 360 if (!fw_dump.nocma) 361 fw_dump.boot_memory_size = 362 ALIGN(fw_dump.boot_memory_size, 363 FADUMP_CMA_ALIGNMENT); 364 #endif 365 } 366 367 /* 368 * Calculate the memory boundary. 369 * If memory_limit is less than actual memory boundary then reserve 370 * the memory for fadump beyond the memory_limit and adjust the 371 * memory_limit accordingly, so that the running kernel can run with 372 * specified memory_limit. 373 */ 374 if (memory_limit && memory_limit < memblock_end_of_DRAM()) { 375 size = get_fadump_area_size(); 376 if ((memory_limit + size) < memblock_end_of_DRAM()) 377 memory_limit += size; 378 else 379 memory_limit = memblock_end_of_DRAM(); 380 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" 381 " dump, now %#016llx\n", memory_limit); 382 } 383 if (memory_limit) 384 memory_boundary = memory_limit; 385 else 386 memory_boundary = memblock_end_of_DRAM(); 387 388 size = get_fadump_area_size(); 389 fw_dump.reserve_dump_area_size = size; 390 if (fw_dump.dump_active) { 391 pr_info("Firmware-assisted dump is active.\n"); 392 393 #ifdef CONFIG_HUGETLB_PAGE 394 /* 395 * FADump capture kernel doesn't care much about hugepages. 396 * In fact, handling hugepages in capture kernel is asking for 397 * trouble. So, disable HugeTLB support when fadump is active. 398 */ 399 hugetlb_disabled = true; 400 #endif 401 /* 402 * If last boot has crashed then reserve all the memory 403 * above boot_memory_size so that we don't touch it until 404 * dump is written to disk by userspace tool. This memory 405 * will be released for general use once the dump is saved. 406 */ 407 base = fw_dump.boot_memory_size; 408 size = memory_boundary - base; 409 fadump_reserve_crash_area(base, size); 410 411 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr); 412 pr_debug("Reserve dump area start address: 0x%lx\n", 413 fw_dump.reserve_dump_area_start); 414 } else { 415 /* 416 * Reserve memory at an offset closer to bottom of the RAM to 417 * minimize the impact of memory hot-remove operation. We can't 418 * use memblock_find_in_range() here since it doesn't allocate 419 * from bottom to top. 420 */ 421 for (base = fw_dump.boot_memory_size; 422 base <= (memory_boundary - size); 423 base += size) { 424 if (memblock_is_region_memory(base, size) && 425 !memblock_is_region_reserved(base, size)) 426 break; 427 } 428 if ((base > (memory_boundary - size)) || 429 memblock_reserve(base, size)) { 430 pr_err("Failed to reserve memory\n"); 431 return 0; 432 } 433 434 pr_info("Reserved %ldMB of memory at %ldMB for firmware-" 435 "assisted dump (System RAM: %ldMB)\n", 436 (unsigned long)(size >> 20), 437 (unsigned long)(base >> 20), 438 (unsigned long)(memblock_phys_mem_size() >> 20)); 439 440 fw_dump.reserve_dump_area_start = base; 441 return fadump_cma_init(); 442 } 443 return 1; 444 } 445 446 unsigned long __init arch_reserved_kernel_pages(void) 447 { 448 return memblock_reserved_size() / PAGE_SIZE; 449 } 450 451 /* Look for fadump= cmdline option. */ 452 static int __init early_fadump_param(char *p) 453 { 454 if (!p) 455 return 1; 456 457 if (strncmp(p, "on", 2) == 0) 458 fw_dump.fadump_enabled = 1; 459 else if (strncmp(p, "off", 3) == 0) 460 fw_dump.fadump_enabled = 0; 461 else if (strncmp(p, "nocma", 5) == 0) { 462 fw_dump.fadump_enabled = 1; 463 fw_dump.nocma = 1; 464 } 465 466 return 0; 467 } 468 early_param("fadump", early_fadump_param); 469 470 /* 471 * Look for fadump_reserve_mem= cmdline option 472 * TODO: Remove references to 'fadump_reserve_mem=' parameter, 473 * the sooner 'crashkernel=' parameter is accustomed to. 474 */ 475 static int __init early_fadump_reserve_mem(char *p) 476 { 477 if (p) 478 fw_dump.reserve_bootvar = memparse(p, &p); 479 return 0; 480 } 481 early_param("fadump_reserve_mem", early_fadump_reserve_mem); 482 483 void crash_fadump(struct pt_regs *regs, const char *str) 484 { 485 struct fadump_crash_info_header *fdh = NULL; 486 int old_cpu, this_cpu; 487 488 if (!should_fadump_crash()) 489 return; 490 491 /* 492 * old_cpu == -1 means this is the first CPU which has come here, 493 * go ahead and trigger fadump. 494 * 495 * old_cpu != -1 means some other CPU has already on it's way 496 * to trigger fadump, just keep looping here. 497 */ 498 this_cpu = smp_processor_id(); 499 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); 500 501 if (old_cpu != -1) { 502 /* 503 * We can't loop here indefinitely. Wait as long as fadump 504 * is in force. If we race with fadump un-registration this 505 * loop will break and then we go down to normal panic path 506 * and reboot. If fadump is in force the first crashing 507 * cpu will definitely trigger fadump. 508 */ 509 while (fw_dump.dump_registered) 510 cpu_relax(); 511 return; 512 } 513 514 fdh = __va(fw_dump.fadumphdr_addr); 515 fdh->crashing_cpu = crashing_cpu; 516 crash_save_vmcoreinfo(); 517 518 if (regs) 519 fdh->regs = *regs; 520 else 521 ppc_save_regs(&fdh->regs); 522 523 fdh->online_mask = *cpu_online_mask; 524 525 fw_dump.ops->fadump_trigger(fdh, str); 526 } 527 528 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) 529 { 530 struct elf_prstatus prstatus; 531 532 memset(&prstatus, 0, sizeof(prstatus)); 533 /* 534 * FIXME: How do i get PID? Do I really need it? 535 * prstatus.pr_pid = ???? 536 */ 537 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 538 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, 539 &prstatus, sizeof(prstatus)); 540 return buf; 541 } 542 543 void fadump_update_elfcore_header(char *bufp) 544 { 545 struct elfhdr *elf; 546 struct elf_phdr *phdr; 547 548 elf = (struct elfhdr *)bufp; 549 bufp += sizeof(struct elfhdr); 550 551 /* First note is a place holder for cpu notes info. */ 552 phdr = (struct elf_phdr *)bufp; 553 554 if (phdr->p_type == PT_NOTE) { 555 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr); 556 phdr->p_offset = phdr->p_paddr; 557 phdr->p_filesz = fw_dump.cpu_notes_buf_size; 558 phdr->p_memsz = fw_dump.cpu_notes_buf_size; 559 } 560 return; 561 } 562 563 static void *fadump_alloc_buffer(unsigned long size) 564 { 565 unsigned long count, i; 566 struct page *page; 567 void *vaddr; 568 569 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); 570 if (!vaddr) 571 return NULL; 572 573 count = PAGE_ALIGN(size) / PAGE_SIZE; 574 page = virt_to_page(vaddr); 575 for (i = 0; i < count; i++) 576 mark_page_reserved(page + i); 577 return vaddr; 578 } 579 580 static void fadump_free_buffer(unsigned long vaddr, unsigned long size) 581 { 582 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL); 583 } 584 585 s32 fadump_setup_cpu_notes_buf(u32 num_cpus) 586 { 587 /* Allocate buffer to hold cpu crash notes. */ 588 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); 589 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); 590 fw_dump.cpu_notes_buf_vaddr = 591 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size); 592 if (!fw_dump.cpu_notes_buf_vaddr) { 593 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n", 594 fw_dump.cpu_notes_buf_size); 595 return -ENOMEM; 596 } 597 598 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n", 599 fw_dump.cpu_notes_buf_size, 600 fw_dump.cpu_notes_buf_vaddr); 601 return 0; 602 } 603 604 void fadump_free_cpu_notes_buf(void) 605 { 606 if (!fw_dump.cpu_notes_buf_vaddr) 607 return; 608 609 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr, 610 fw_dump.cpu_notes_buf_size); 611 fw_dump.cpu_notes_buf_vaddr = 0; 612 fw_dump.cpu_notes_buf_size = 0; 613 } 614 615 static void free_crash_memory_ranges(void) 616 { 617 kfree(crash_memory_ranges); 618 crash_memory_ranges = NULL; 619 crash_memory_ranges_size = 0; 620 max_crash_mem_ranges = 0; 621 } 622 623 /* 624 * Allocate or reallocate crash memory ranges array in incremental units 625 * of PAGE_SIZE. 626 */ 627 static int allocate_crash_memory_ranges(void) 628 { 629 struct fad_crash_memory_ranges *new_array; 630 u64 new_size; 631 632 new_size = crash_memory_ranges_size + PAGE_SIZE; 633 pr_debug("Allocating %llu bytes of memory for crash memory ranges\n", 634 new_size); 635 636 new_array = krealloc(crash_memory_ranges, new_size, GFP_KERNEL); 637 if (new_array == NULL) { 638 pr_err("Insufficient memory for setting up crash memory ranges\n"); 639 free_crash_memory_ranges(); 640 return -ENOMEM; 641 } 642 643 crash_memory_ranges = new_array; 644 crash_memory_ranges_size = new_size; 645 max_crash_mem_ranges = (new_size / 646 sizeof(struct fad_crash_memory_ranges)); 647 return 0; 648 } 649 650 static inline int fadump_add_crash_memory(unsigned long long base, 651 unsigned long long end) 652 { 653 u64 start, size; 654 bool is_adjacent = false; 655 656 if (base == end) 657 return 0; 658 659 /* 660 * Fold adjacent memory ranges to bring down the memory ranges/ 661 * PT_LOAD segments count. 662 */ 663 if (crash_mem_ranges) { 664 start = crash_memory_ranges[crash_mem_ranges - 1].base; 665 size = crash_memory_ranges[crash_mem_ranges - 1].size; 666 667 if ((start + size) == base) 668 is_adjacent = true; 669 } 670 if (!is_adjacent) { 671 /* resize the array on reaching the limit */ 672 if (crash_mem_ranges == max_crash_mem_ranges) { 673 int ret; 674 675 ret = allocate_crash_memory_ranges(); 676 if (ret) 677 return ret; 678 } 679 680 start = base; 681 crash_memory_ranges[crash_mem_ranges].base = start; 682 crash_mem_ranges++; 683 } 684 685 crash_memory_ranges[crash_mem_ranges - 1].size = (end - start); 686 pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", 687 (crash_mem_ranges - 1), start, end - 1, (end - start)); 688 return 0; 689 } 690 691 static int fadump_exclude_reserved_area(unsigned long long start, 692 unsigned long long end) 693 { 694 unsigned long long ra_start, ra_end; 695 int ret = 0; 696 697 ra_start = fw_dump.reserve_dump_area_start; 698 ra_end = ra_start + fw_dump.reserve_dump_area_size; 699 700 if ((ra_start < end) && (ra_end > start)) { 701 if ((start < ra_start) && (end > ra_end)) { 702 ret = fadump_add_crash_memory(start, ra_start); 703 if (ret) 704 return ret; 705 706 ret = fadump_add_crash_memory(ra_end, end); 707 } else if (start < ra_start) { 708 ret = fadump_add_crash_memory(start, ra_start); 709 } else if (ra_end < end) { 710 ret = fadump_add_crash_memory(ra_end, end); 711 } 712 } else 713 ret = fadump_add_crash_memory(start, end); 714 715 return ret; 716 } 717 718 static int fadump_init_elfcore_header(char *bufp) 719 { 720 struct elfhdr *elf; 721 722 elf = (struct elfhdr *) bufp; 723 bufp += sizeof(struct elfhdr); 724 memcpy(elf->e_ident, ELFMAG, SELFMAG); 725 elf->e_ident[EI_CLASS] = ELF_CLASS; 726 elf->e_ident[EI_DATA] = ELF_DATA; 727 elf->e_ident[EI_VERSION] = EV_CURRENT; 728 elf->e_ident[EI_OSABI] = ELF_OSABI; 729 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); 730 elf->e_type = ET_CORE; 731 elf->e_machine = ELF_ARCH; 732 elf->e_version = EV_CURRENT; 733 elf->e_entry = 0; 734 elf->e_phoff = sizeof(struct elfhdr); 735 elf->e_shoff = 0; 736 #if defined(_CALL_ELF) 737 elf->e_flags = _CALL_ELF; 738 #else 739 elf->e_flags = 0; 740 #endif 741 elf->e_ehsize = sizeof(struct elfhdr); 742 elf->e_phentsize = sizeof(struct elf_phdr); 743 elf->e_phnum = 0; 744 elf->e_shentsize = 0; 745 elf->e_shnum = 0; 746 elf->e_shstrndx = 0; 747 748 return 0; 749 } 750 751 /* 752 * Traverse through memblock structure and setup crash memory ranges. These 753 * ranges will be used create PT_LOAD program headers in elfcore header. 754 */ 755 static int fadump_setup_crash_memory_ranges(void) 756 { 757 struct memblock_region *reg; 758 unsigned long long start, end; 759 int ret; 760 761 pr_debug("Setup crash memory ranges.\n"); 762 crash_mem_ranges = 0; 763 764 /* 765 * add the first memory chunk (RMA_START through boot_memory_size) as 766 * a separate memory chunk. The reason is, at the time crash firmware 767 * will move the content of this memory chunk to different location 768 * specified during fadump registration. We need to create a separate 769 * program header for this chunk with the correct offset. 770 */ 771 ret = fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size); 772 if (ret) 773 return ret; 774 775 for_each_memblock(memory, reg) { 776 start = (unsigned long long)reg->base; 777 end = start + (unsigned long long)reg->size; 778 779 /* 780 * skip the first memory chunk that is already added (RMA_START 781 * through boot_memory_size). This logic needs a relook if and 782 * when RMA_START changes to a non-zero value. 783 */ 784 BUILD_BUG_ON(RMA_START != 0); 785 if (start < fw_dump.boot_memory_size) { 786 if (end > fw_dump.boot_memory_size) 787 start = fw_dump.boot_memory_size; 788 else 789 continue; 790 } 791 792 /* add this range excluding the reserved dump area. */ 793 ret = fadump_exclude_reserved_area(start, end); 794 if (ret) 795 return ret; 796 } 797 798 return 0; 799 } 800 801 /* 802 * If the given physical address falls within the boot memory region then 803 * return the relocated address that points to the dump region reserved 804 * for saving initial boot memory contents. 805 */ 806 static inline unsigned long fadump_relocate(unsigned long paddr) 807 { 808 if (paddr > RMA_START && paddr < fw_dump.boot_memory_size) 809 return fw_dump.boot_mem_dest_addr + paddr; 810 else 811 return paddr; 812 } 813 814 static int fadump_create_elfcore_headers(char *bufp) 815 { 816 struct elfhdr *elf; 817 struct elf_phdr *phdr; 818 int i; 819 820 fadump_init_elfcore_header(bufp); 821 elf = (struct elfhdr *)bufp; 822 bufp += sizeof(struct elfhdr); 823 824 /* 825 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info 826 * will be populated during second kernel boot after crash. Hence 827 * this PT_NOTE will always be the first elf note. 828 * 829 * NOTE: Any new ELF note addition should be placed after this note. 830 */ 831 phdr = (struct elf_phdr *)bufp; 832 bufp += sizeof(struct elf_phdr); 833 phdr->p_type = PT_NOTE; 834 phdr->p_flags = 0; 835 phdr->p_vaddr = 0; 836 phdr->p_align = 0; 837 838 phdr->p_offset = 0; 839 phdr->p_paddr = 0; 840 phdr->p_filesz = 0; 841 phdr->p_memsz = 0; 842 843 (elf->e_phnum)++; 844 845 /* setup ELF PT_NOTE for vmcoreinfo */ 846 phdr = (struct elf_phdr *)bufp; 847 bufp += sizeof(struct elf_phdr); 848 phdr->p_type = PT_NOTE; 849 phdr->p_flags = 0; 850 phdr->p_vaddr = 0; 851 phdr->p_align = 0; 852 853 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note()); 854 phdr->p_offset = phdr->p_paddr; 855 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE; 856 857 /* Increment number of program headers. */ 858 (elf->e_phnum)++; 859 860 /* setup PT_LOAD sections. */ 861 862 for (i = 0; i < crash_mem_ranges; i++) { 863 unsigned long long mbase, msize; 864 mbase = crash_memory_ranges[i].base; 865 msize = crash_memory_ranges[i].size; 866 867 if (!msize) 868 continue; 869 870 phdr = (struct elf_phdr *)bufp; 871 bufp += sizeof(struct elf_phdr); 872 phdr->p_type = PT_LOAD; 873 phdr->p_flags = PF_R|PF_W|PF_X; 874 phdr->p_offset = mbase; 875 876 if (mbase == RMA_START) { 877 /* 878 * The entire RMA region will be moved by firmware 879 * to the specified destination_address. Hence set 880 * the correct offset. 881 */ 882 phdr->p_offset = fw_dump.boot_mem_dest_addr; 883 } 884 885 phdr->p_paddr = mbase; 886 phdr->p_vaddr = (unsigned long)__va(mbase); 887 phdr->p_filesz = msize; 888 phdr->p_memsz = msize; 889 phdr->p_align = 0; 890 891 /* Increment number of program headers. */ 892 (elf->e_phnum)++; 893 } 894 return 0; 895 } 896 897 static unsigned long init_fadump_header(unsigned long addr) 898 { 899 struct fadump_crash_info_header *fdh; 900 901 if (!addr) 902 return 0; 903 904 fdh = __va(addr); 905 addr += sizeof(struct fadump_crash_info_header); 906 907 memset(fdh, 0, sizeof(struct fadump_crash_info_header)); 908 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; 909 fdh->elfcorehdr_addr = addr; 910 /* We will set the crashing cpu id in crash_fadump() during crash. */ 911 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN; 912 913 return addr; 914 } 915 916 static int register_fadump(void) 917 { 918 unsigned long addr; 919 void *vaddr; 920 int ret; 921 922 /* 923 * If no memory is reserved then we can not register for firmware- 924 * assisted dump. 925 */ 926 if (!fw_dump.reserve_dump_area_size) 927 return -ENODEV; 928 929 ret = fadump_setup_crash_memory_ranges(); 930 if (ret) 931 return ret; 932 933 addr = fw_dump.fadumphdr_addr; 934 935 /* Initialize fadump crash info header. */ 936 addr = init_fadump_header(addr); 937 vaddr = __va(addr); 938 939 pr_debug("Creating ELF core headers at %#016lx\n", addr); 940 fadump_create_elfcore_headers(vaddr); 941 942 /* register the future kernel dump with firmware. */ 943 pr_debug("Registering for firmware-assisted kernel dump...\n"); 944 return fw_dump.ops->fadump_register(&fw_dump); 945 } 946 947 void fadump_cleanup(void) 948 { 949 /* Invalidate the registration only if dump is active. */ 950 if (fw_dump.dump_active) { 951 pr_debug("Invalidating firmware-assisted dump registration\n"); 952 fw_dump.ops->fadump_invalidate(&fw_dump); 953 } else if (fw_dump.dump_registered) { 954 /* Un-register Firmware-assisted dump if it was registered. */ 955 fw_dump.ops->fadump_unregister(&fw_dump); 956 free_crash_memory_ranges(); 957 } 958 } 959 960 static void fadump_free_reserved_memory(unsigned long start_pfn, 961 unsigned long end_pfn) 962 { 963 unsigned long pfn; 964 unsigned long time_limit = jiffies + HZ; 965 966 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", 967 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); 968 969 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 970 free_reserved_page(pfn_to_page(pfn)); 971 972 if (time_after(jiffies, time_limit)) { 973 cond_resched(); 974 time_limit = jiffies + HZ; 975 } 976 } 977 } 978 979 /* 980 * Skip memory holes and free memory that was actually reserved. 981 */ 982 static void fadump_release_reserved_area(unsigned long start, unsigned long end) 983 { 984 struct memblock_region *reg; 985 unsigned long tstart, tend; 986 unsigned long start_pfn = PHYS_PFN(start); 987 unsigned long end_pfn = PHYS_PFN(end); 988 989 for_each_memblock(memory, reg) { 990 tstart = max(start_pfn, memblock_region_memory_base_pfn(reg)); 991 tend = min(end_pfn, memblock_region_memory_end_pfn(reg)); 992 if (tstart < tend) { 993 fadump_free_reserved_memory(tstart, tend); 994 995 if (tend == end_pfn) 996 break; 997 998 start_pfn = tend + 1; 999 } 1000 } 1001 } 1002 1003 /* 1004 * Release the memory that was reserved in early boot to preserve the memory 1005 * contents. The released memory will be available for general use. 1006 */ 1007 static void fadump_release_memory(unsigned long begin, unsigned long end) 1008 { 1009 unsigned long ra_start, ra_end; 1010 1011 ra_start = fw_dump.reserve_dump_area_start; 1012 ra_end = ra_start + fw_dump.reserve_dump_area_size; 1013 1014 /* 1015 * exclude the dump reserve area. Will reuse it for next 1016 * fadump registration. 1017 */ 1018 if (begin < ra_end && end > ra_start) { 1019 if (begin < ra_start) 1020 fadump_release_reserved_area(begin, ra_start); 1021 if (end > ra_end) 1022 fadump_release_reserved_area(ra_end, end); 1023 } else 1024 fadump_release_reserved_area(begin, end); 1025 } 1026 1027 static void fadump_invalidate_release_mem(void) 1028 { 1029 mutex_lock(&fadump_mutex); 1030 if (!fw_dump.dump_active) { 1031 mutex_unlock(&fadump_mutex); 1032 return; 1033 } 1034 1035 fadump_cleanup(); 1036 mutex_unlock(&fadump_mutex); 1037 1038 fadump_release_memory(fw_dump.boot_memory_size, memblock_end_of_DRAM()); 1039 fadump_free_cpu_notes_buf(); 1040 1041 /* Initialize the kernel dump memory structure for FAD registration. */ 1042 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1043 } 1044 1045 static ssize_t fadump_release_memory_store(struct kobject *kobj, 1046 struct kobj_attribute *attr, 1047 const char *buf, size_t count) 1048 { 1049 int input = -1; 1050 1051 if (!fw_dump.dump_active) 1052 return -EPERM; 1053 1054 if (kstrtoint(buf, 0, &input)) 1055 return -EINVAL; 1056 1057 if (input == 1) { 1058 /* 1059 * Take away the '/proc/vmcore'. We are releasing the dump 1060 * memory, hence it will not be valid anymore. 1061 */ 1062 #ifdef CONFIG_PROC_VMCORE 1063 vmcore_cleanup(); 1064 #endif 1065 fadump_invalidate_release_mem(); 1066 1067 } else 1068 return -EINVAL; 1069 return count; 1070 } 1071 1072 static ssize_t fadump_enabled_show(struct kobject *kobj, 1073 struct kobj_attribute *attr, 1074 char *buf) 1075 { 1076 return sprintf(buf, "%d\n", fw_dump.fadump_enabled); 1077 } 1078 1079 static ssize_t fadump_register_show(struct kobject *kobj, 1080 struct kobj_attribute *attr, 1081 char *buf) 1082 { 1083 return sprintf(buf, "%d\n", fw_dump.dump_registered); 1084 } 1085 1086 static ssize_t fadump_register_store(struct kobject *kobj, 1087 struct kobj_attribute *attr, 1088 const char *buf, size_t count) 1089 { 1090 int ret = 0; 1091 int input = -1; 1092 1093 if (!fw_dump.fadump_enabled || fw_dump.dump_active) 1094 return -EPERM; 1095 1096 if (kstrtoint(buf, 0, &input)) 1097 return -EINVAL; 1098 1099 mutex_lock(&fadump_mutex); 1100 1101 switch (input) { 1102 case 0: 1103 if (fw_dump.dump_registered == 0) { 1104 goto unlock_out; 1105 } 1106 1107 /* Un-register Firmware-assisted dump */ 1108 pr_debug("Un-register firmware-assisted dump\n"); 1109 fw_dump.ops->fadump_unregister(&fw_dump); 1110 break; 1111 case 1: 1112 if (fw_dump.dump_registered == 1) { 1113 /* Un-register Firmware-assisted dump */ 1114 fw_dump.ops->fadump_unregister(&fw_dump); 1115 } 1116 /* Register Firmware-assisted dump */ 1117 ret = register_fadump(); 1118 break; 1119 default: 1120 ret = -EINVAL; 1121 break; 1122 } 1123 1124 unlock_out: 1125 mutex_unlock(&fadump_mutex); 1126 return ret < 0 ? ret : count; 1127 } 1128 1129 static int fadump_region_show(struct seq_file *m, void *private) 1130 { 1131 if (!fw_dump.fadump_enabled) 1132 return 0; 1133 1134 mutex_lock(&fadump_mutex); 1135 fw_dump.ops->fadump_region_show(&fw_dump, m); 1136 mutex_unlock(&fadump_mutex); 1137 return 0; 1138 } 1139 1140 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem, 1141 0200, NULL, 1142 fadump_release_memory_store); 1143 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled, 1144 0444, fadump_enabled_show, 1145 NULL); 1146 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered, 1147 0644, fadump_register_show, 1148 fadump_register_store); 1149 1150 DEFINE_SHOW_ATTRIBUTE(fadump_region); 1151 1152 static void fadump_init_files(void) 1153 { 1154 struct dentry *debugfs_file; 1155 int rc = 0; 1156 1157 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr); 1158 if (rc) 1159 printk(KERN_ERR "fadump: unable to create sysfs file" 1160 " fadump_enabled (%d)\n", rc); 1161 1162 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr); 1163 if (rc) 1164 printk(KERN_ERR "fadump: unable to create sysfs file" 1165 " fadump_registered (%d)\n", rc); 1166 1167 debugfs_file = debugfs_create_file("fadump_region", 0444, 1168 powerpc_debugfs_root, NULL, 1169 &fadump_region_fops); 1170 if (!debugfs_file) 1171 printk(KERN_ERR "fadump: unable to create debugfs file" 1172 " fadump_region\n"); 1173 1174 if (fw_dump.dump_active) { 1175 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr); 1176 if (rc) 1177 printk(KERN_ERR "fadump: unable to create sysfs file" 1178 " fadump_release_mem (%d)\n", rc); 1179 } 1180 return; 1181 } 1182 1183 /* 1184 * Prepare for firmware-assisted dump. 1185 */ 1186 int __init setup_fadump(void) 1187 { 1188 if (!fw_dump.fadump_enabled) 1189 return 0; 1190 1191 if (!fw_dump.fadump_supported) { 1192 printk(KERN_ERR "Firmware-assisted dump is not supported on" 1193 " this hardware\n"); 1194 return 0; 1195 } 1196 1197 fadump_show_config(); 1198 /* 1199 * If dump data is available then see if it is valid and prepare for 1200 * saving it to the disk. 1201 */ 1202 if (fw_dump.dump_active) { 1203 /* 1204 * if dump process fails then invalidate the registration 1205 * and release memory before proceeding for re-registration. 1206 */ 1207 if (fw_dump.ops->fadump_process(&fw_dump) < 0) 1208 fadump_invalidate_release_mem(); 1209 } 1210 /* Initialize the kernel dump memory structure for FAD registration. */ 1211 else if (fw_dump.reserve_dump_area_size) 1212 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1213 1214 fadump_init_files(); 1215 1216 return 1; 1217 } 1218 subsys_initcall(setup_fadump); 1219