xref: /openbmc/linux/arch/powerpc/kernel/crash_dump.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Routines for doing kexec-based kdump.
3  *
4  * Copyright (C) 2005, IBM Corp.
5  *
6  * Created by: Michael Ellerman
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/crash_dump.h>
15 #include <linux/bootmem.h>
16 #include <asm/kdump.h>
17 #include <asm/lmb.h>
18 #include <asm/firmware.h>
19 #include <asm/uaccess.h>
20 
21 #ifdef DEBUG
22 #include <asm/udbg.h>
23 #define DBG(fmt...) udbg_printf(fmt)
24 #else
25 #define DBG(fmt...)
26 #endif
27 
28 void __init reserve_kdump_trampoline(void)
29 {
30 	lmb_reserve(0, KDUMP_RESERVE_LIMIT);
31 }
32 
33 static void __init create_trampoline(unsigned long addr)
34 {
35 	/* The maximum range of a single instruction branch, is the current
36 	 * instruction's address + (32 MB - 4) bytes. For the trampoline we
37 	 * need to branch to current address + 32 MB. So we insert a nop at
38 	 * the trampoline address, then the next instruction (+ 4 bytes)
39 	 * does a branch to (32 MB - 4). The net effect is that when we
40 	 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
41 	 * two instructions it doesn't require any registers.
42 	 */
43 	create_instruction(addr, 0x60000000); /* nop */
44 	create_branch(addr + 4, addr + PHYSICAL_START, 0);
45 }
46 
47 void __init setup_kdump_trampoline(void)
48 {
49 	unsigned long i;
50 
51 	DBG(" -> setup_kdump_trampoline()\n");
52 
53 	for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
54 		create_trampoline(i);
55 	}
56 
57 #ifdef CONFIG_PPC_PSERIES
58 	create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
59 	create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
60 #endif /* CONFIG_PPC_PSERIES */
61 
62 	DBG(" <- setup_kdump_trampoline()\n");
63 }
64 
65 #ifdef CONFIG_PROC_VMCORE
66 static int __init parse_elfcorehdr(char *p)
67 {
68 	if (p)
69 		elfcorehdr_addr = memparse(p, &p);
70 
71 	return 1;
72 }
73 __setup("elfcorehdr=", parse_elfcorehdr);
74 #endif
75 
76 static int __init parse_savemaxmem(char *p)
77 {
78 	if (p)
79 		saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1;
80 
81 	return 1;
82 }
83 __setup("savemaxmem=", parse_savemaxmem);
84 
85 /**
86  * copy_oldmem_page - copy one page from "oldmem"
87  * @pfn: page frame number to be copied
88  * @buf: target memory address for the copy; this can be in kernel address
89  *      space or user address space (see @userbuf)
90  * @csize: number of bytes to copy
91  * @offset: offset in bytes into the page (based on pfn) to begin the copy
92  * @userbuf: if set, @buf is in user address space, use copy_to_user(),
93  *      otherwise @buf is in kernel address space, use memcpy().
94  *
95  * Copy a page from "oldmem". For this page, there is no pte mapped
96  * in the current kernel. We stitch up a pte, similar to kmap_atomic.
97  */
98 ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
99 			size_t csize, unsigned long offset, int userbuf)
100 {
101 	void  *vaddr;
102 
103 	if (!csize)
104 		return 0;
105 
106 	vaddr = __ioremap(pfn << PAGE_SHIFT, PAGE_SIZE, 0);
107 
108 	if (userbuf) {
109 		if (copy_to_user((char __user *)buf, (vaddr + offset), csize)) {
110 			iounmap(vaddr);
111 			return -EFAULT;
112 		}
113 	} else
114 		memcpy(buf, (vaddr + offset), csize);
115 
116 	iounmap(vaddr);
117 	return csize;
118 }
119