1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * Copyright 2006-2007 Helge Deller (deller@gmx.de) 10 * 11 */ 12 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 20 #include <linux/initrd.h> 21 #include <linux/swap.h> 22 #include <linux/unistd.h> 23 #include <linux/nodemask.h> /* for node_online_map */ 24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 25 26 #include <asm/pgalloc.h> 27 #include <asm/pgtable.h> 28 #include <asm/tlb.h> 29 #include <asm/pdc_chassis.h> 30 #include <asm/mmzone.h> 31 #include <asm/sections.h> 32 33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 34 35 extern int data_start; 36 37 #ifdef CONFIG_DISCONTIGMEM 38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 39 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly; 40 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 41 #endif 42 43 static struct resource data_resource = { 44 .name = "Kernel data", 45 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 46 }; 47 48 static struct resource code_resource = { 49 .name = "Kernel code", 50 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 51 }; 52 53 static struct resource pdcdata_resource = { 54 .name = "PDC data (Page Zero)", 55 .start = 0, 56 .end = 0x9ff, 57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 58 }; 59 60 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 61 62 /* The following array is initialized from the firmware specific 63 * information retrieved in kernel/inventory.c. 64 */ 65 66 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 67 int npmem_ranges __read_mostly; 68 69 #ifdef CONFIG_64BIT 70 #define MAX_MEM (~0UL) 71 #else /* !CONFIG_64BIT */ 72 #define MAX_MEM (3584U*1024U*1024U) 73 #endif /* !CONFIG_64BIT */ 74 75 static unsigned long mem_limit __read_mostly = MAX_MEM; 76 77 static void __init mem_limit_func(void) 78 { 79 char *cp, *end; 80 unsigned long limit; 81 82 /* We need this before __setup() functions are called */ 83 84 limit = MAX_MEM; 85 for (cp = boot_command_line; *cp; ) { 86 if (memcmp(cp, "mem=", 4) == 0) { 87 cp += 4; 88 limit = memparse(cp, &end); 89 if (end != cp) 90 break; 91 cp = end; 92 } else { 93 while (*cp != ' ' && *cp) 94 ++cp; 95 while (*cp == ' ') 96 ++cp; 97 } 98 } 99 100 if (limit < mem_limit) 101 mem_limit = limit; 102 } 103 104 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 105 106 static void __init setup_bootmem(void) 107 { 108 unsigned long bootmap_size; 109 unsigned long mem_max; 110 unsigned long bootmap_pages; 111 unsigned long bootmap_start_pfn; 112 unsigned long bootmap_pfn; 113 #ifndef CONFIG_DISCONTIGMEM 114 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 115 int npmem_holes; 116 #endif 117 int i, sysram_resource_count; 118 119 disable_sr_hashing(); /* Turn off space register hashing */ 120 121 /* 122 * Sort the ranges. Since the number of ranges is typically 123 * small, and performance is not an issue here, just do 124 * a simple insertion sort. 125 */ 126 127 for (i = 1; i < npmem_ranges; i++) { 128 int j; 129 130 for (j = i; j > 0; j--) { 131 unsigned long tmp; 132 133 if (pmem_ranges[j-1].start_pfn < 134 pmem_ranges[j].start_pfn) { 135 136 break; 137 } 138 tmp = pmem_ranges[j-1].start_pfn; 139 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 140 pmem_ranges[j].start_pfn = tmp; 141 tmp = pmem_ranges[j-1].pages; 142 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 143 pmem_ranges[j].pages = tmp; 144 } 145 } 146 147 #ifndef CONFIG_DISCONTIGMEM 148 /* 149 * Throw out ranges that are too far apart (controlled by 150 * MAX_GAP). 151 */ 152 153 for (i = 1; i < npmem_ranges; i++) { 154 if (pmem_ranges[i].start_pfn - 155 (pmem_ranges[i-1].start_pfn + 156 pmem_ranges[i-1].pages) > MAX_GAP) { 157 npmem_ranges = i; 158 printk("Large gap in memory detected (%ld pages). " 159 "Consider turning on CONFIG_DISCONTIGMEM\n", 160 pmem_ranges[i].start_pfn - 161 (pmem_ranges[i-1].start_pfn + 162 pmem_ranges[i-1].pages)); 163 break; 164 } 165 } 166 #endif 167 168 if (npmem_ranges > 1) { 169 170 /* Print the memory ranges */ 171 172 printk(KERN_INFO "Memory Ranges:\n"); 173 174 for (i = 0; i < npmem_ranges; i++) { 175 unsigned long start; 176 unsigned long size; 177 178 size = (pmem_ranges[i].pages << PAGE_SHIFT); 179 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 180 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 181 i,start, start + (size - 1), size >> 20); 182 } 183 } 184 185 sysram_resource_count = npmem_ranges; 186 for (i = 0; i < sysram_resource_count; i++) { 187 struct resource *res = &sysram_resources[i]; 188 res->name = "System RAM"; 189 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 190 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 191 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 192 request_resource(&iomem_resource, res); 193 } 194 195 /* 196 * For 32 bit kernels we limit the amount of memory we can 197 * support, in order to preserve enough kernel address space 198 * for other purposes. For 64 bit kernels we don't normally 199 * limit the memory, but this mechanism can be used to 200 * artificially limit the amount of memory (and it is written 201 * to work with multiple memory ranges). 202 */ 203 204 mem_limit_func(); /* check for "mem=" argument */ 205 206 mem_max = 0; 207 num_physpages = 0; 208 for (i = 0; i < npmem_ranges; i++) { 209 unsigned long rsize; 210 211 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 212 if ((mem_max + rsize) > mem_limit) { 213 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 214 if (mem_max == mem_limit) 215 npmem_ranges = i; 216 else { 217 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 218 - (mem_max >> PAGE_SHIFT); 219 npmem_ranges = i + 1; 220 mem_max = mem_limit; 221 } 222 num_physpages += pmem_ranges[i].pages; 223 break; 224 } 225 num_physpages += pmem_ranges[i].pages; 226 mem_max += rsize; 227 } 228 229 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 230 231 #ifndef CONFIG_DISCONTIGMEM 232 /* Merge the ranges, keeping track of the holes */ 233 234 { 235 unsigned long end_pfn; 236 unsigned long hole_pages; 237 238 npmem_holes = 0; 239 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 240 for (i = 1; i < npmem_ranges; i++) { 241 242 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 243 if (hole_pages) { 244 pmem_holes[npmem_holes].start_pfn = end_pfn; 245 pmem_holes[npmem_holes++].pages = hole_pages; 246 end_pfn += hole_pages; 247 } 248 end_pfn += pmem_ranges[i].pages; 249 } 250 251 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 252 npmem_ranges = 1; 253 } 254 #endif 255 256 bootmap_pages = 0; 257 for (i = 0; i < npmem_ranges; i++) 258 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 259 260 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 261 262 #ifdef CONFIG_DISCONTIGMEM 263 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 264 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 265 NODE_DATA(i)->bdata = &bmem_data[i]; 266 } 267 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 268 269 for (i = 0; i < npmem_ranges; i++) 270 node_set_online(i); 271 #endif 272 273 /* 274 * Initialize and free the full range of memory in each range. 275 * Note that the only writing these routines do are to the bootmap, 276 * and we've made sure to locate the bootmap properly so that they 277 * won't be writing over anything important. 278 */ 279 280 bootmap_pfn = bootmap_start_pfn; 281 max_pfn = 0; 282 for (i = 0; i < npmem_ranges; i++) { 283 unsigned long start_pfn; 284 unsigned long npages; 285 286 start_pfn = pmem_ranges[i].start_pfn; 287 npages = pmem_ranges[i].pages; 288 289 bootmap_size = init_bootmem_node(NODE_DATA(i), 290 bootmap_pfn, 291 start_pfn, 292 (start_pfn + npages) ); 293 free_bootmem_node(NODE_DATA(i), 294 (start_pfn << PAGE_SHIFT), 295 (npages << PAGE_SHIFT) ); 296 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 297 if ((start_pfn + npages) > max_pfn) 298 max_pfn = start_pfn + npages; 299 } 300 301 /* IOMMU is always used to access "high mem" on those boxes 302 * that can support enough mem that a PCI device couldn't 303 * directly DMA to any physical addresses. 304 * ISA DMA support will need to revisit this. 305 */ 306 max_low_pfn = max_pfn; 307 308 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) { 309 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n"); 310 BUG(); 311 } 312 313 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 314 315 #define PDC_CONSOLE_IO_IODC_SIZE 32768 316 317 reserve_bootmem_node(NODE_DATA(0), 0UL, 318 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE)); 319 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text), 320 (unsigned long)(_end - _text)); 321 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 322 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT)); 323 324 #ifndef CONFIG_DISCONTIGMEM 325 326 /* reserve the holes */ 327 328 for (i = 0; i < npmem_holes; i++) { 329 reserve_bootmem_node(NODE_DATA(0), 330 (pmem_holes[i].start_pfn << PAGE_SHIFT), 331 (pmem_holes[i].pages << PAGE_SHIFT)); 332 } 333 #endif 334 335 #ifdef CONFIG_BLK_DEV_INITRD 336 if (initrd_start) { 337 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 338 if (__pa(initrd_start) < mem_max) { 339 unsigned long initrd_reserve; 340 341 if (__pa(initrd_end) > mem_max) { 342 initrd_reserve = mem_max - __pa(initrd_start); 343 } else { 344 initrd_reserve = initrd_end - initrd_start; 345 } 346 initrd_below_start_ok = 1; 347 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 348 349 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve); 350 } 351 } 352 #endif 353 354 data_resource.start = virt_to_phys(&data_start); 355 data_resource.end = virt_to_phys(_end) - 1; 356 code_resource.start = virt_to_phys(_text); 357 code_resource.end = virt_to_phys(&data_start)-1; 358 359 /* We don't know which region the kernel will be in, so try 360 * all of them. 361 */ 362 for (i = 0; i < sysram_resource_count; i++) { 363 struct resource *res = &sysram_resources[i]; 364 request_resource(res, &code_resource); 365 request_resource(res, &data_resource); 366 } 367 request_resource(&sysram_resources[0], &pdcdata_resource); 368 } 369 370 void free_initmem(void) 371 { 372 unsigned long addr, init_begin, init_end; 373 374 printk(KERN_INFO "Freeing unused kernel memory: "); 375 376 #ifdef CONFIG_DEBUG_KERNEL 377 /* Attempt to catch anyone trying to execute code here 378 * by filling the page with BRK insns. 379 * 380 * If we disable interrupts for all CPUs, then IPI stops working. 381 * Kinda breaks the global cache flushing. 382 */ 383 local_irq_disable(); 384 385 memset(__init_begin, 0x00, 386 (unsigned long)__init_end - (unsigned long)__init_begin); 387 388 flush_data_cache(); 389 asm volatile("sync" : : ); 390 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end); 391 asm volatile("sync" : : ); 392 393 local_irq_enable(); 394 #endif 395 396 /* align __init_begin and __init_end to page size, 397 ignoring linker script where we might have tried to save RAM */ 398 init_begin = PAGE_ALIGN((unsigned long)(__init_begin)); 399 init_end = PAGE_ALIGN((unsigned long)(__init_end)); 400 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) { 401 ClearPageReserved(virt_to_page(addr)); 402 init_page_count(virt_to_page(addr)); 403 free_page(addr); 404 num_physpages++; 405 totalram_pages++; 406 } 407 408 /* set up a new led state on systems shipped LED State panel */ 409 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 410 411 printk("%luk freed\n", (init_end - init_begin) >> 10); 412 } 413 414 415 #ifdef CONFIG_DEBUG_RODATA 416 void mark_rodata_ro(void) 417 { 418 /* rodata memory was already mapped with KERNEL_RO access rights by 419 pagetable_init() and map_pages(). No need to do additional stuff here */ 420 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 421 (unsigned long)(__end_rodata - __start_rodata) >> 10); 422 } 423 #endif 424 425 426 /* 427 * Just an arbitrary offset to serve as a "hole" between mapping areas 428 * (between top of physical memory and a potential pcxl dma mapping 429 * area, and below the vmalloc mapping area). 430 * 431 * The current 32K value just means that there will be a 32K "hole" 432 * between mapping areas. That means that any out-of-bounds memory 433 * accesses will hopefully be caught. The vmalloc() routines leaves 434 * a hole of 4kB between each vmalloced area for the same reason. 435 */ 436 437 /* Leave room for gateway page expansion */ 438 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 439 #error KERNEL_MAP_START is in gateway reserved region 440 #endif 441 #define MAP_START (KERNEL_MAP_START) 442 443 #define VM_MAP_OFFSET (32*1024) 444 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 445 & ~(VM_MAP_OFFSET-1))) 446 447 void *vmalloc_start __read_mostly; 448 EXPORT_SYMBOL(vmalloc_start); 449 450 #ifdef CONFIG_PA11 451 unsigned long pcxl_dma_start __read_mostly; 452 #endif 453 454 void __init mem_init(void) 455 { 456 int codesize, reservedpages, datasize, initsize; 457 458 high_memory = __va((max_pfn << PAGE_SHIFT)); 459 460 #ifndef CONFIG_DISCONTIGMEM 461 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 462 totalram_pages += free_all_bootmem(); 463 #else 464 { 465 int i; 466 467 for (i = 0; i < npmem_ranges; i++) 468 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 469 } 470 #endif 471 472 codesize = (unsigned long)_etext - (unsigned long)_text; 473 datasize = (unsigned long)_edata - (unsigned long)_etext; 474 initsize = (unsigned long)__init_end - (unsigned long)__init_begin; 475 476 reservedpages = 0; 477 { 478 unsigned long pfn; 479 #ifdef CONFIG_DISCONTIGMEM 480 int i; 481 482 for (i = 0; i < npmem_ranges; i++) { 483 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) { 484 if (PageReserved(pfn_to_page(pfn))) 485 reservedpages++; 486 } 487 } 488 #else /* !CONFIG_DISCONTIGMEM */ 489 for (pfn = 0; pfn < max_pfn; pfn++) { 490 /* 491 * Only count reserved RAM pages 492 */ 493 if (PageReserved(pfn_to_page(pfn))) 494 reservedpages++; 495 } 496 #endif 497 } 498 499 #ifdef CONFIG_PA11 500 if (hppa_dma_ops == &pcxl_dma_ops) { 501 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 502 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE); 503 } else { 504 pcxl_dma_start = 0; 505 vmalloc_start = SET_MAP_OFFSET(MAP_START); 506 } 507 #else 508 vmalloc_start = SET_MAP_OFFSET(MAP_START); 509 #endif 510 511 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n", 512 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), 513 num_physpages << (PAGE_SHIFT-10), 514 codesize >> 10, 515 reservedpages << (PAGE_SHIFT-10), 516 datasize >> 10, 517 initsize >> 10 518 ); 519 520 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ 521 printk("virtual kernel memory layout:\n" 522 " vmalloc : 0x%p - 0x%p (%4ld MB)\n" 523 " memory : 0x%p - 0x%p (%4ld MB)\n" 524 " .init : 0x%p - 0x%p (%4ld kB)\n" 525 " .data : 0x%p - 0x%p (%4ld kB)\n" 526 " .text : 0x%p - 0x%p (%4ld kB)\n", 527 528 (void*)VMALLOC_START, (void*)VMALLOC_END, 529 (VMALLOC_END - VMALLOC_START) >> 20, 530 531 __va(0), high_memory, 532 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, 533 534 __init_begin, __init_end, 535 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, 536 537 _etext, _edata, 538 ((unsigned long)_edata - (unsigned long)_etext) >> 10, 539 540 _text, _etext, 541 ((unsigned long)_etext - (unsigned long)_text) >> 10); 542 #endif 543 } 544 545 unsigned long *empty_zero_page __read_mostly; 546 547 void show_mem(void) 548 { 549 int i,free = 0,total = 0,reserved = 0; 550 int shared = 0, cached = 0; 551 552 printk(KERN_INFO "Mem-info:\n"); 553 show_free_areas(); 554 printk(KERN_INFO "Free swap: %6ldkB\n", 555 nr_swap_pages<<(PAGE_SHIFT-10)); 556 #ifndef CONFIG_DISCONTIGMEM 557 i = max_mapnr; 558 while (i-- > 0) { 559 total++; 560 if (PageReserved(mem_map+i)) 561 reserved++; 562 else if (PageSwapCache(mem_map+i)) 563 cached++; 564 else if (!page_count(&mem_map[i])) 565 free++; 566 else 567 shared += page_count(&mem_map[i]) - 1; 568 } 569 #else 570 for (i = 0; i < npmem_ranges; i++) { 571 int j; 572 573 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 574 struct page *p; 575 unsigned long flags; 576 577 pgdat_resize_lock(NODE_DATA(i), &flags); 578 p = nid_page_nr(i, j) - node_start_pfn(i); 579 580 total++; 581 if (PageReserved(p)) 582 reserved++; 583 else if (PageSwapCache(p)) 584 cached++; 585 else if (!page_count(p)) 586 free++; 587 else 588 shared += page_count(p) - 1; 589 pgdat_resize_unlock(NODE_DATA(i), &flags); 590 } 591 } 592 #endif 593 printk(KERN_INFO "%d pages of RAM\n", total); 594 printk(KERN_INFO "%d reserved pages\n", reserved); 595 printk(KERN_INFO "%d pages shared\n", shared); 596 printk(KERN_INFO "%d pages swap cached\n", cached); 597 598 599 #ifdef CONFIG_DISCONTIGMEM 600 { 601 struct zonelist *zl; 602 int i, j, k; 603 604 for (i = 0; i < npmem_ranges; i++) { 605 for (j = 0; j < MAX_NR_ZONES; j++) { 606 zl = NODE_DATA(i)->node_zonelists + j; 607 608 printk("Zone list for zone %d on node %d: ", j, i); 609 for (k = 0; zl->zones[k] != NULL; k++) 610 printk("[%ld/%s] ", zone_to_nid(zl->zones[k]), zl->zones[k]->name); 611 printk("\n"); 612 } 613 } 614 } 615 #endif 616 } 617 618 619 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) 620 { 621 pgd_t *pg_dir; 622 pmd_t *pmd; 623 pte_t *pg_table; 624 unsigned long end_paddr; 625 unsigned long start_pmd; 626 unsigned long start_pte; 627 unsigned long tmp1; 628 unsigned long tmp2; 629 unsigned long address; 630 unsigned long ro_start; 631 unsigned long ro_end; 632 unsigned long fv_addr; 633 unsigned long gw_addr; 634 extern const unsigned long fault_vector_20; 635 extern void * const linux_gateway_page; 636 637 ro_start = __pa((unsigned long)_text); 638 ro_end = __pa((unsigned long)&data_start); 639 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 640 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 641 642 end_paddr = start_paddr + size; 643 644 pg_dir = pgd_offset_k(start_vaddr); 645 646 #if PTRS_PER_PMD == 1 647 start_pmd = 0; 648 #else 649 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 650 #endif 651 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 652 653 address = start_paddr; 654 while (address < end_paddr) { 655 #if PTRS_PER_PMD == 1 656 pmd = (pmd_t *)__pa(pg_dir); 657 #else 658 pmd = (pmd_t *)pgd_address(*pg_dir); 659 660 /* 661 * pmd is physical at this point 662 */ 663 664 if (!pmd) { 665 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER); 666 pmd = (pmd_t *) __pa(pmd); 667 } 668 669 pgd_populate(NULL, pg_dir, __va(pmd)); 670 #endif 671 pg_dir++; 672 673 /* now change pmd to kernel virtual addresses */ 674 675 pmd = (pmd_t *)__va(pmd) + start_pmd; 676 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { 677 678 /* 679 * pg_table is physical at this point 680 */ 681 682 pg_table = (pte_t *)pmd_address(*pmd); 683 if (!pg_table) { 684 pg_table = (pte_t *) 685 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); 686 pg_table = (pte_t *) __pa(pg_table); 687 } 688 689 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 690 691 /* now change pg_table to kernel virtual addresses */ 692 693 pg_table = (pte_t *) __va(pg_table) + start_pte; 694 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { 695 pte_t pte; 696 697 /* 698 * Map the fault vector writable so we can 699 * write the HPMC checksum. 700 */ 701 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 702 if (address >= ro_start && address < ro_end 703 && address != fv_addr 704 && address != gw_addr) 705 pte = __mk_pte(address, PAGE_KERNEL_RO); 706 else 707 #endif 708 pte = __mk_pte(address, pgprot); 709 710 if (address >= end_paddr) 711 pte_val(pte) = 0; 712 713 set_pte(pg_table, pte); 714 715 address += PAGE_SIZE; 716 } 717 start_pte = 0; 718 719 if (address >= end_paddr) 720 break; 721 } 722 start_pmd = 0; 723 } 724 } 725 726 /* 727 * pagetable_init() sets up the page tables 728 * 729 * Note that gateway_init() places the Linux gateway page at page 0. 730 * Since gateway pages cannot be dereferenced this has the desirable 731 * side effect of trapping those pesky NULL-reference errors in the 732 * kernel. 733 */ 734 static void __init pagetable_init(void) 735 { 736 int range; 737 738 /* Map each physical memory range to its kernel vaddr */ 739 740 for (range = 0; range < npmem_ranges; range++) { 741 unsigned long start_paddr; 742 unsigned long end_paddr; 743 unsigned long size; 744 745 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 746 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 747 size = pmem_ranges[range].pages << PAGE_SHIFT; 748 749 map_pages((unsigned long)__va(start_paddr), start_paddr, 750 size, PAGE_KERNEL); 751 } 752 753 #ifdef CONFIG_BLK_DEV_INITRD 754 if (initrd_end && initrd_end > mem_limit) { 755 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 756 map_pages(initrd_start, __pa(initrd_start), 757 initrd_end - initrd_start, PAGE_KERNEL); 758 } 759 #endif 760 761 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 762 memset(empty_zero_page, 0, PAGE_SIZE); 763 } 764 765 static void __init gateway_init(void) 766 { 767 unsigned long linux_gateway_page_addr; 768 /* FIXME: This is 'const' in order to trick the compiler 769 into not treating it as DP-relative data. */ 770 extern void * const linux_gateway_page; 771 772 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 773 774 /* 775 * Setup Linux Gateway page. 776 * 777 * The Linux gateway page will reside in kernel space (on virtual 778 * page 0), so it doesn't need to be aliased into user space. 779 */ 780 781 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 782 PAGE_SIZE, PAGE_GATEWAY); 783 } 784 785 #ifdef CONFIG_HPUX 786 void 787 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 788 { 789 pgd_t *pg_dir; 790 pmd_t *pmd; 791 pte_t *pg_table; 792 unsigned long start_pmd; 793 unsigned long start_pte; 794 unsigned long address; 795 unsigned long hpux_gw_page_addr; 796 /* FIXME: This is 'const' in order to trick the compiler 797 into not treating it as DP-relative data. */ 798 extern void * const hpux_gateway_page; 799 800 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 801 802 /* 803 * Setup HP-UX Gateway page. 804 * 805 * The HP-UX gateway page resides in the user address space, 806 * so it needs to be aliased into each process. 807 */ 808 809 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 810 811 #if PTRS_PER_PMD == 1 812 start_pmd = 0; 813 #else 814 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 815 #endif 816 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 817 818 address = __pa(&hpux_gateway_page); 819 #if PTRS_PER_PMD == 1 820 pmd = (pmd_t *)__pa(pg_dir); 821 #else 822 pmd = (pmd_t *) pgd_address(*pg_dir); 823 824 /* 825 * pmd is physical at this point 826 */ 827 828 if (!pmd) { 829 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 830 pmd = (pmd_t *) __pa(pmd); 831 } 832 833 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 834 #endif 835 /* now change pmd to kernel virtual addresses */ 836 837 pmd = (pmd_t *)__va(pmd) + start_pmd; 838 839 /* 840 * pg_table is physical at this point 841 */ 842 843 pg_table = (pte_t *) pmd_address(*pmd); 844 if (!pg_table) 845 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 846 847 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 848 849 /* now change pg_table to kernel virtual addresses */ 850 851 pg_table = (pte_t *) __va(pg_table) + start_pte; 852 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 853 } 854 EXPORT_SYMBOL(map_hpux_gateway_page); 855 #endif 856 857 void __init paging_init(void) 858 { 859 int i; 860 861 setup_bootmem(); 862 pagetable_init(); 863 gateway_init(); 864 flush_cache_all_local(); /* start with known state */ 865 flush_tlb_all_local(NULL); 866 867 for (i = 0; i < npmem_ranges; i++) { 868 unsigned long zones_size[MAX_NR_ZONES] = { 0, }; 869 870 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; 871 872 #ifdef CONFIG_DISCONTIGMEM 873 /* Need to initialize the pfnnid_map before we can initialize 874 the zone */ 875 { 876 int j; 877 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 878 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 879 j++) { 880 pfnnid_map[j] = i; 881 } 882 } 883 #endif 884 885 free_area_init_node(i, NODE_DATA(i), zones_size, 886 pmem_ranges[i].start_pfn, NULL); 887 } 888 } 889 890 #ifdef CONFIG_PA20 891 892 /* 893 * Currently, all PA20 chips have 18 bit protection id's, which is the 894 * limiting factor (space ids are 32 bits). 895 */ 896 897 #define NR_SPACE_IDS 262144 898 899 #else 900 901 /* 902 * Currently we have a one-to-one relationship between space id's and 903 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 904 * support 15 bit protection id's, so that is the limiting factor. 905 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's 906 * probably not worth the effort for a special case here. 907 */ 908 909 #define NR_SPACE_IDS 32768 910 911 #endif /* !CONFIG_PA20 */ 912 913 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 914 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 915 916 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 917 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 918 static unsigned long space_id_index; 919 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 920 static unsigned long dirty_space_ids = 0; 921 922 static DEFINE_SPINLOCK(sid_lock); 923 924 unsigned long alloc_sid(void) 925 { 926 unsigned long index; 927 928 spin_lock(&sid_lock); 929 930 if (free_space_ids == 0) { 931 if (dirty_space_ids != 0) { 932 spin_unlock(&sid_lock); 933 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 934 spin_lock(&sid_lock); 935 } 936 BUG_ON(free_space_ids == 0); 937 } 938 939 free_space_ids--; 940 941 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 942 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 943 space_id_index = index; 944 945 spin_unlock(&sid_lock); 946 947 return index << SPACEID_SHIFT; 948 } 949 950 void free_sid(unsigned long spaceid) 951 { 952 unsigned long index = spaceid >> SPACEID_SHIFT; 953 unsigned long *dirty_space_offset; 954 955 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 956 index &= (BITS_PER_LONG - 1); 957 958 spin_lock(&sid_lock); 959 960 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ 961 962 *dirty_space_offset |= (1L << index); 963 dirty_space_ids++; 964 965 spin_unlock(&sid_lock); 966 } 967 968 969 #ifdef CONFIG_SMP 970 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 971 { 972 int i; 973 974 /* NOTE: sid_lock must be held upon entry */ 975 976 *ndirtyptr = dirty_space_ids; 977 if (dirty_space_ids != 0) { 978 for (i = 0; i < SID_ARRAY_SIZE; i++) { 979 dirty_array[i] = dirty_space_id[i]; 980 dirty_space_id[i] = 0; 981 } 982 dirty_space_ids = 0; 983 } 984 985 return; 986 } 987 988 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 989 { 990 int i; 991 992 /* NOTE: sid_lock must be held upon entry */ 993 994 if (ndirty != 0) { 995 for (i = 0; i < SID_ARRAY_SIZE; i++) { 996 space_id[i] ^= dirty_array[i]; 997 } 998 999 free_space_ids += ndirty; 1000 space_id_index = 0; 1001 } 1002 } 1003 1004 #else /* CONFIG_SMP */ 1005 1006 static void recycle_sids(void) 1007 { 1008 int i; 1009 1010 /* NOTE: sid_lock must be held upon entry */ 1011 1012 if (dirty_space_ids != 0) { 1013 for (i = 0; i < SID_ARRAY_SIZE; i++) { 1014 space_id[i] ^= dirty_space_id[i]; 1015 dirty_space_id[i] = 0; 1016 } 1017 1018 free_space_ids += dirty_space_ids; 1019 dirty_space_ids = 0; 1020 space_id_index = 0; 1021 } 1022 } 1023 #endif 1024 1025 /* 1026 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 1027 * purged, we can safely reuse the space ids that were released but 1028 * not flushed from the tlb. 1029 */ 1030 1031 #ifdef CONFIG_SMP 1032 1033 static unsigned long recycle_ndirty; 1034 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 1035 static unsigned int recycle_inuse; 1036 1037 void flush_tlb_all(void) 1038 { 1039 int do_recycle; 1040 1041 do_recycle = 0; 1042 spin_lock(&sid_lock); 1043 if (dirty_space_ids > RECYCLE_THRESHOLD) { 1044 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ 1045 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 1046 recycle_inuse++; 1047 do_recycle++; 1048 } 1049 spin_unlock(&sid_lock); 1050 on_each_cpu(flush_tlb_all_local, NULL, 1, 1); 1051 if (do_recycle) { 1052 spin_lock(&sid_lock); 1053 recycle_sids(recycle_ndirty,recycle_dirty_array); 1054 recycle_inuse = 0; 1055 spin_unlock(&sid_lock); 1056 } 1057 } 1058 #else 1059 void flush_tlb_all(void) 1060 { 1061 spin_lock(&sid_lock); 1062 flush_tlb_all_local(NULL); 1063 recycle_sids(); 1064 spin_unlock(&sid_lock); 1065 } 1066 #endif 1067 1068 #ifdef CONFIG_BLK_DEV_INITRD 1069 void free_initrd_mem(unsigned long start, unsigned long end) 1070 { 1071 if (start >= end) 1072 return; 1073 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1074 for (; start < end; start += PAGE_SIZE) { 1075 ClearPageReserved(virt_to_page(start)); 1076 init_page_count(virt_to_page(start)); 1077 free_page(start); 1078 num_physpages++; 1079 totalram_pages++; 1080 } 1081 } 1082 #endif 1083