1 /* 2 * linux/arch/parisc/mm/init.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright 1999 SuSE GmbH 6 * changed by Philipp Rumpf 7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org) 8 * Copyright 2004 Randolph Chung (tausq@debian.org) 9 * 10 */ 11 12 #include <linux/config.h> 13 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/bootmem.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */ 20 #include <linux/initrd.h> 21 #include <linux/swap.h> 22 #include <linux/unistd.h> 23 #include <linux/nodemask.h> /* for node_online_map */ 24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */ 25 26 #include <asm/pgalloc.h> 27 #include <asm/tlb.h> 28 #include <asm/pdc_chassis.h> 29 #include <asm/mmzone.h> 30 31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); 32 33 extern char _text; /* start of kernel code, defined by linker */ 34 extern int data_start; 35 extern char _end; /* end of BSS, defined by linker */ 36 extern char __init_begin, __init_end; 37 38 #ifdef CONFIG_DISCONTIGMEM 39 struct node_map_data node_data[MAX_NUMNODES] __read_mostly; 40 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly; 41 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; 42 #endif 43 44 static struct resource data_resource = { 45 .name = "Kernel data", 46 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 47 }; 48 49 static struct resource code_resource = { 50 .name = "Kernel code", 51 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 52 }; 53 54 static struct resource pdcdata_resource = { 55 .name = "PDC data (Page Zero)", 56 .start = 0, 57 .end = 0x9ff, 58 .flags = IORESOURCE_BUSY | IORESOURCE_MEM, 59 }; 60 61 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; 62 63 /* The following array is initialized from the firmware specific 64 * information retrieved in kernel/inventory.c. 65 */ 66 67 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; 68 int npmem_ranges __read_mostly; 69 70 #ifdef __LP64__ 71 #define MAX_MEM (~0UL) 72 #else /* !__LP64__ */ 73 #define MAX_MEM (3584U*1024U*1024U) 74 #endif /* !__LP64__ */ 75 76 static unsigned long mem_limit __read_mostly = MAX_MEM; 77 78 static void __init mem_limit_func(void) 79 { 80 char *cp, *end; 81 unsigned long limit; 82 extern char saved_command_line[]; 83 84 /* We need this before __setup() functions are called */ 85 86 limit = MAX_MEM; 87 for (cp = saved_command_line; *cp; ) { 88 if (memcmp(cp, "mem=", 4) == 0) { 89 cp += 4; 90 limit = memparse(cp, &end); 91 if (end != cp) 92 break; 93 cp = end; 94 } else { 95 while (*cp != ' ' && *cp) 96 ++cp; 97 while (*cp == ' ') 98 ++cp; 99 } 100 } 101 102 if (limit < mem_limit) 103 mem_limit = limit; 104 } 105 106 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) 107 108 static void __init setup_bootmem(void) 109 { 110 unsigned long bootmap_size; 111 unsigned long mem_max; 112 unsigned long bootmap_pages; 113 unsigned long bootmap_start_pfn; 114 unsigned long bootmap_pfn; 115 #ifndef CONFIG_DISCONTIGMEM 116 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; 117 int npmem_holes; 118 #endif 119 int i, sysram_resource_count; 120 121 disable_sr_hashing(); /* Turn off space register hashing */ 122 123 /* 124 * Sort the ranges. Since the number of ranges is typically 125 * small, and performance is not an issue here, just do 126 * a simple insertion sort. 127 */ 128 129 for (i = 1; i < npmem_ranges; i++) { 130 int j; 131 132 for (j = i; j > 0; j--) { 133 unsigned long tmp; 134 135 if (pmem_ranges[j-1].start_pfn < 136 pmem_ranges[j].start_pfn) { 137 138 break; 139 } 140 tmp = pmem_ranges[j-1].start_pfn; 141 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; 142 pmem_ranges[j].start_pfn = tmp; 143 tmp = pmem_ranges[j-1].pages; 144 pmem_ranges[j-1].pages = pmem_ranges[j].pages; 145 pmem_ranges[j].pages = tmp; 146 } 147 } 148 149 #ifndef CONFIG_DISCONTIGMEM 150 /* 151 * Throw out ranges that are too far apart (controlled by 152 * MAX_GAP). 153 */ 154 155 for (i = 1; i < npmem_ranges; i++) { 156 if (pmem_ranges[i].start_pfn - 157 (pmem_ranges[i-1].start_pfn + 158 pmem_ranges[i-1].pages) > MAX_GAP) { 159 npmem_ranges = i; 160 printk("Large gap in memory detected (%ld pages). " 161 "Consider turning on CONFIG_DISCONTIGMEM\n", 162 pmem_ranges[i].start_pfn - 163 (pmem_ranges[i-1].start_pfn + 164 pmem_ranges[i-1].pages)); 165 break; 166 } 167 } 168 #endif 169 170 if (npmem_ranges > 1) { 171 172 /* Print the memory ranges */ 173 174 printk(KERN_INFO "Memory Ranges:\n"); 175 176 for (i = 0; i < npmem_ranges; i++) { 177 unsigned long start; 178 unsigned long size; 179 180 size = (pmem_ranges[i].pages << PAGE_SHIFT); 181 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); 182 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", 183 i,start, start + (size - 1), size >> 20); 184 } 185 } 186 187 sysram_resource_count = npmem_ranges; 188 for (i = 0; i < sysram_resource_count; i++) { 189 struct resource *res = &sysram_resources[i]; 190 res->name = "System RAM"; 191 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT; 192 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1; 193 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 194 request_resource(&iomem_resource, res); 195 } 196 197 /* 198 * For 32 bit kernels we limit the amount of memory we can 199 * support, in order to preserve enough kernel address space 200 * for other purposes. For 64 bit kernels we don't normally 201 * limit the memory, but this mechanism can be used to 202 * artificially limit the amount of memory (and it is written 203 * to work with multiple memory ranges). 204 */ 205 206 mem_limit_func(); /* check for "mem=" argument */ 207 208 mem_max = 0; 209 num_physpages = 0; 210 for (i = 0; i < npmem_ranges; i++) { 211 unsigned long rsize; 212 213 rsize = pmem_ranges[i].pages << PAGE_SHIFT; 214 if ((mem_max + rsize) > mem_limit) { 215 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); 216 if (mem_max == mem_limit) 217 npmem_ranges = i; 218 else { 219 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) 220 - (mem_max >> PAGE_SHIFT); 221 npmem_ranges = i + 1; 222 mem_max = mem_limit; 223 } 224 num_physpages += pmem_ranges[i].pages; 225 break; 226 } 227 num_physpages += pmem_ranges[i].pages; 228 mem_max += rsize; 229 } 230 231 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); 232 233 #ifndef CONFIG_DISCONTIGMEM 234 /* Merge the ranges, keeping track of the holes */ 235 236 { 237 unsigned long end_pfn; 238 unsigned long hole_pages; 239 240 npmem_holes = 0; 241 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; 242 for (i = 1; i < npmem_ranges; i++) { 243 244 hole_pages = pmem_ranges[i].start_pfn - end_pfn; 245 if (hole_pages) { 246 pmem_holes[npmem_holes].start_pfn = end_pfn; 247 pmem_holes[npmem_holes++].pages = hole_pages; 248 end_pfn += hole_pages; 249 } 250 end_pfn += pmem_ranges[i].pages; 251 } 252 253 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; 254 npmem_ranges = 1; 255 } 256 #endif 257 258 bootmap_pages = 0; 259 for (i = 0; i < npmem_ranges; i++) 260 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages); 261 262 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT; 263 264 #ifdef CONFIG_DISCONTIGMEM 265 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { 266 memset(NODE_DATA(i), 0, sizeof(pg_data_t)); 267 NODE_DATA(i)->bdata = &bmem_data[i]; 268 } 269 memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); 270 271 for (i = 0; i < npmem_ranges; i++) 272 node_set_online(i); 273 #endif 274 275 /* 276 * Initialize and free the full range of memory in each range. 277 * Note that the only writing these routines do are to the bootmap, 278 * and we've made sure to locate the bootmap properly so that they 279 * won't be writing over anything important. 280 */ 281 282 bootmap_pfn = bootmap_start_pfn; 283 max_pfn = 0; 284 for (i = 0; i < npmem_ranges; i++) { 285 unsigned long start_pfn; 286 unsigned long npages; 287 288 start_pfn = pmem_ranges[i].start_pfn; 289 npages = pmem_ranges[i].pages; 290 291 bootmap_size = init_bootmem_node(NODE_DATA(i), 292 bootmap_pfn, 293 start_pfn, 294 (start_pfn + npages) ); 295 free_bootmem_node(NODE_DATA(i), 296 (start_pfn << PAGE_SHIFT), 297 (npages << PAGE_SHIFT) ); 298 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 299 if ((start_pfn + npages) > max_pfn) 300 max_pfn = start_pfn + npages; 301 } 302 303 /* IOMMU is always used to access "high mem" on those boxes 304 * that can support enough mem that a PCI device couldn't 305 * directly DMA to any physical addresses. 306 * ISA DMA support will need to revisit this. 307 */ 308 max_low_pfn = max_pfn; 309 310 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) { 311 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n"); 312 BUG(); 313 } 314 315 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ 316 317 #define PDC_CONSOLE_IO_IODC_SIZE 32768 318 319 reserve_bootmem_node(NODE_DATA(0), 0UL, 320 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE)); 321 reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text), 322 (unsigned long)(&_end - &_text)); 323 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT), 324 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT)); 325 326 #ifndef CONFIG_DISCONTIGMEM 327 328 /* reserve the holes */ 329 330 for (i = 0; i < npmem_holes; i++) { 331 reserve_bootmem_node(NODE_DATA(0), 332 (pmem_holes[i].start_pfn << PAGE_SHIFT), 333 (pmem_holes[i].pages << PAGE_SHIFT)); 334 } 335 #endif 336 337 #ifdef CONFIG_BLK_DEV_INITRD 338 if (initrd_start) { 339 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); 340 if (__pa(initrd_start) < mem_max) { 341 unsigned long initrd_reserve; 342 343 if (__pa(initrd_end) > mem_max) { 344 initrd_reserve = mem_max - __pa(initrd_start); 345 } else { 346 initrd_reserve = initrd_end - initrd_start; 347 } 348 initrd_below_start_ok = 1; 349 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); 350 351 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve); 352 } 353 } 354 #endif 355 356 data_resource.start = virt_to_phys(&data_start); 357 data_resource.end = virt_to_phys(&_end)-1; 358 code_resource.start = virt_to_phys(&_text); 359 code_resource.end = virt_to_phys(&data_start)-1; 360 361 /* We don't know which region the kernel will be in, so try 362 * all of them. 363 */ 364 for (i = 0; i < sysram_resource_count; i++) { 365 struct resource *res = &sysram_resources[i]; 366 request_resource(res, &code_resource); 367 request_resource(res, &data_resource); 368 } 369 request_resource(&sysram_resources[0], &pdcdata_resource); 370 } 371 372 void free_initmem(void) 373 { 374 unsigned long addr; 375 376 printk(KERN_INFO "Freeing unused kernel memory: "); 377 378 #ifdef CONFIG_DEBUG_KERNEL 379 /* Attempt to catch anyone trying to execute code here 380 * by filling the page with BRK insns. 381 * 382 * If we disable interrupts for all CPUs, then IPI stops working. 383 * Kinda breaks the global cache flushing. 384 */ 385 local_irq_disable(); 386 387 memset(&__init_begin, 0x00, 388 (unsigned long)&__init_end - (unsigned long)&__init_begin); 389 390 flush_data_cache(); 391 asm volatile("sync" : : ); 392 flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end); 393 asm volatile("sync" : : ); 394 395 local_irq_enable(); 396 #endif 397 398 addr = (unsigned long)(&__init_begin); 399 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { 400 ClearPageReserved(virt_to_page(addr)); 401 set_page_count(virt_to_page(addr), 1); 402 free_page(addr); 403 num_physpages++; 404 totalram_pages++; 405 } 406 407 /* set up a new led state on systems shipped LED State panel */ 408 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); 409 410 printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10); 411 } 412 413 414 #ifdef CONFIG_DEBUG_RODATA 415 void mark_rodata_ro(void) 416 { 417 extern char __start_rodata, __end_rodata; 418 /* rodata memory was already mapped with KERNEL_RO access rights by 419 pagetable_init() and map_pages(). No need to do additional stuff here */ 420 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", 421 (unsigned long)(&__end_rodata - &__start_rodata) >> 10); 422 } 423 #endif 424 425 426 /* 427 * Just an arbitrary offset to serve as a "hole" between mapping areas 428 * (between top of physical memory and a potential pcxl dma mapping 429 * area, and below the vmalloc mapping area). 430 * 431 * The current 32K value just means that there will be a 32K "hole" 432 * between mapping areas. That means that any out-of-bounds memory 433 * accesses will hopefully be caught. The vmalloc() routines leaves 434 * a hole of 4kB between each vmalloced area for the same reason. 435 */ 436 437 /* Leave room for gateway page expansion */ 438 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE 439 #error KERNEL_MAP_START is in gateway reserved region 440 #endif 441 #define MAP_START (KERNEL_MAP_START) 442 443 #define VM_MAP_OFFSET (32*1024) 444 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ 445 & ~(VM_MAP_OFFSET-1))) 446 447 void *vmalloc_start __read_mostly; 448 EXPORT_SYMBOL(vmalloc_start); 449 450 #ifdef CONFIG_PA11 451 unsigned long pcxl_dma_start __read_mostly; 452 #endif 453 454 void __init mem_init(void) 455 { 456 high_memory = __va((max_pfn << PAGE_SHIFT)); 457 458 #ifndef CONFIG_DISCONTIGMEM 459 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1; 460 totalram_pages += free_all_bootmem(); 461 #else 462 { 463 int i; 464 465 for (i = 0; i < npmem_ranges; i++) 466 totalram_pages += free_all_bootmem_node(NODE_DATA(i)); 467 } 468 #endif 469 470 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10)); 471 472 #ifdef CONFIG_PA11 473 if (hppa_dma_ops == &pcxl_dma_ops) { 474 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); 475 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE); 476 } else { 477 pcxl_dma_start = 0; 478 vmalloc_start = SET_MAP_OFFSET(MAP_START); 479 } 480 #else 481 vmalloc_start = SET_MAP_OFFSET(MAP_START); 482 #endif 483 484 } 485 486 unsigned long *empty_zero_page __read_mostly; 487 488 void show_mem(void) 489 { 490 int i,free = 0,total = 0,reserved = 0; 491 int shared = 0, cached = 0; 492 493 printk(KERN_INFO "Mem-info:\n"); 494 show_free_areas(); 495 printk(KERN_INFO "Free swap: %6ldkB\n", 496 nr_swap_pages<<(PAGE_SHIFT-10)); 497 #ifndef CONFIG_DISCONTIGMEM 498 i = max_mapnr; 499 while (i-- > 0) { 500 total++; 501 if (PageReserved(mem_map+i)) 502 reserved++; 503 else if (PageSwapCache(mem_map+i)) 504 cached++; 505 else if (!page_count(&mem_map[i])) 506 free++; 507 else 508 shared += page_count(&mem_map[i]) - 1; 509 } 510 #else 511 for (i = 0; i < npmem_ranges; i++) { 512 int j; 513 514 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) { 515 struct page *p; 516 unsigned long flags; 517 518 pgdat_resize_lock(NODE_DATA(i), &flags); 519 p = nid_page_nr(i, j) - node_start_pfn(i); 520 521 total++; 522 if (PageReserved(p)) 523 reserved++; 524 else if (PageSwapCache(p)) 525 cached++; 526 else if (!page_count(p)) 527 free++; 528 else 529 shared += page_count(p) - 1; 530 pgdat_resize_unlock(NODE_DATA(i), &flags); 531 } 532 } 533 #endif 534 printk(KERN_INFO "%d pages of RAM\n", total); 535 printk(KERN_INFO "%d reserved pages\n", reserved); 536 printk(KERN_INFO "%d pages shared\n", shared); 537 printk(KERN_INFO "%d pages swap cached\n", cached); 538 539 540 #ifdef CONFIG_DISCONTIGMEM 541 { 542 struct zonelist *zl; 543 int i, j, k; 544 545 for (i = 0; i < npmem_ranges; i++) { 546 for (j = 0; j < MAX_NR_ZONES; j++) { 547 zl = NODE_DATA(i)->node_zonelists + j; 548 549 printk("Zone list for zone %d on node %d: ", j, i); 550 for (k = 0; zl->zones[k] != NULL; k++) 551 printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name); 552 printk("\n"); 553 } 554 } 555 } 556 #endif 557 } 558 559 560 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot) 561 { 562 pgd_t *pg_dir; 563 pmd_t *pmd; 564 pte_t *pg_table; 565 unsigned long end_paddr; 566 unsigned long start_pmd; 567 unsigned long start_pte; 568 unsigned long tmp1; 569 unsigned long tmp2; 570 unsigned long address; 571 unsigned long ro_start; 572 unsigned long ro_end; 573 unsigned long fv_addr; 574 unsigned long gw_addr; 575 extern const unsigned long fault_vector_20; 576 extern void * const linux_gateway_page; 577 578 ro_start = __pa((unsigned long)&_text); 579 ro_end = __pa((unsigned long)&data_start); 580 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK; 581 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK; 582 583 end_paddr = start_paddr + size; 584 585 pg_dir = pgd_offset_k(start_vaddr); 586 587 #if PTRS_PER_PMD == 1 588 start_pmd = 0; 589 #else 590 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 591 #endif 592 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 593 594 address = start_paddr; 595 while (address < end_paddr) { 596 #if PTRS_PER_PMD == 1 597 pmd = (pmd_t *)__pa(pg_dir); 598 #else 599 pmd = (pmd_t *)pgd_address(*pg_dir); 600 601 /* 602 * pmd is physical at this point 603 */ 604 605 if (!pmd) { 606 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER); 607 pmd = (pmd_t *) __pa(pmd); 608 } 609 610 pgd_populate(NULL, pg_dir, __va(pmd)); 611 #endif 612 pg_dir++; 613 614 /* now change pmd to kernel virtual addresses */ 615 616 pmd = (pmd_t *)__va(pmd) + start_pmd; 617 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) { 618 619 /* 620 * pg_table is physical at this point 621 */ 622 623 pg_table = (pte_t *)pmd_address(*pmd); 624 if (!pg_table) { 625 pg_table = (pte_t *) 626 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE); 627 pg_table = (pte_t *) __pa(pg_table); 628 } 629 630 pmd_populate_kernel(NULL, pmd, __va(pg_table)); 631 632 /* now change pg_table to kernel virtual addresses */ 633 634 pg_table = (pte_t *) __va(pg_table) + start_pte; 635 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) { 636 pte_t pte; 637 638 /* 639 * Map the fault vector writable so we can 640 * write the HPMC checksum. 641 */ 642 if (address >= ro_start && address < ro_end 643 && address != fv_addr 644 && address != gw_addr) 645 pte = __mk_pte(address, PAGE_KERNEL_RO); 646 else 647 pte = __mk_pte(address, pgprot); 648 649 if (address >= end_paddr) 650 pte_val(pte) = 0; 651 652 set_pte(pg_table, pte); 653 654 address += PAGE_SIZE; 655 } 656 start_pte = 0; 657 658 if (address >= end_paddr) 659 break; 660 } 661 start_pmd = 0; 662 } 663 } 664 665 /* 666 * pagetable_init() sets up the page tables 667 * 668 * Note that gateway_init() places the Linux gateway page at page 0. 669 * Since gateway pages cannot be dereferenced this has the desirable 670 * side effect of trapping those pesky NULL-reference errors in the 671 * kernel. 672 */ 673 static void __init pagetable_init(void) 674 { 675 int range; 676 677 /* Map each physical memory range to its kernel vaddr */ 678 679 for (range = 0; range < npmem_ranges; range++) { 680 unsigned long start_paddr; 681 unsigned long end_paddr; 682 unsigned long size; 683 684 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; 685 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT); 686 size = pmem_ranges[range].pages << PAGE_SHIFT; 687 688 map_pages((unsigned long)__va(start_paddr), start_paddr, 689 size, PAGE_KERNEL); 690 } 691 692 #ifdef CONFIG_BLK_DEV_INITRD 693 if (initrd_end && initrd_end > mem_limit) { 694 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); 695 map_pages(initrd_start, __pa(initrd_start), 696 initrd_end - initrd_start, PAGE_KERNEL); 697 } 698 #endif 699 700 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE); 701 memset(empty_zero_page, 0, PAGE_SIZE); 702 } 703 704 static void __init gateway_init(void) 705 { 706 unsigned long linux_gateway_page_addr; 707 /* FIXME: This is 'const' in order to trick the compiler 708 into not treating it as DP-relative data. */ 709 extern void * const linux_gateway_page; 710 711 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; 712 713 /* 714 * Setup Linux Gateway page. 715 * 716 * The Linux gateway page will reside in kernel space (on virtual 717 * page 0), so it doesn't need to be aliased into user space. 718 */ 719 720 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), 721 PAGE_SIZE, PAGE_GATEWAY); 722 } 723 724 #ifdef CONFIG_HPUX 725 void 726 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm) 727 { 728 pgd_t *pg_dir; 729 pmd_t *pmd; 730 pte_t *pg_table; 731 unsigned long start_pmd; 732 unsigned long start_pte; 733 unsigned long address; 734 unsigned long hpux_gw_page_addr; 735 /* FIXME: This is 'const' in order to trick the compiler 736 into not treating it as DP-relative data. */ 737 extern void * const hpux_gateway_page; 738 739 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK; 740 741 /* 742 * Setup HP-UX Gateway page. 743 * 744 * The HP-UX gateway page resides in the user address space, 745 * so it needs to be aliased into each process. 746 */ 747 748 pg_dir = pgd_offset(mm,hpux_gw_page_addr); 749 750 #if PTRS_PER_PMD == 1 751 start_pmd = 0; 752 #else 753 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); 754 #endif 755 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); 756 757 address = __pa(&hpux_gateway_page); 758 #if PTRS_PER_PMD == 1 759 pmd = (pmd_t *)__pa(pg_dir); 760 #else 761 pmd = (pmd_t *) pgd_address(*pg_dir); 762 763 /* 764 * pmd is physical at this point 765 */ 766 767 if (!pmd) { 768 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL); 769 pmd = (pmd_t *) __pa(pmd); 770 } 771 772 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd); 773 #endif 774 /* now change pmd to kernel virtual addresses */ 775 776 pmd = (pmd_t *)__va(pmd) + start_pmd; 777 778 /* 779 * pg_table is physical at this point 780 */ 781 782 pg_table = (pte_t *) pmd_address(*pmd); 783 if (!pg_table) 784 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL)); 785 786 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table); 787 788 /* now change pg_table to kernel virtual addresses */ 789 790 pg_table = (pte_t *) __va(pg_table) + start_pte; 791 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY)); 792 } 793 EXPORT_SYMBOL(map_hpux_gateway_page); 794 #endif 795 796 void __init paging_init(void) 797 { 798 int i; 799 800 setup_bootmem(); 801 pagetable_init(); 802 gateway_init(); 803 flush_cache_all_local(); /* start with known state */ 804 flush_tlb_all_local(NULL); 805 806 for (i = 0; i < npmem_ranges; i++) { 807 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 }; 808 809 /* We have an IOMMU, so all memory can go into a single 810 ZONE_DMA zone. */ 811 zones_size[ZONE_DMA] = pmem_ranges[i].pages; 812 813 #ifdef CONFIG_DISCONTIGMEM 814 /* Need to initialize the pfnnid_map before we can initialize 815 the zone */ 816 { 817 int j; 818 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); 819 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); 820 j++) { 821 pfnnid_map[j] = i; 822 } 823 } 824 #endif 825 826 free_area_init_node(i, NODE_DATA(i), zones_size, 827 pmem_ranges[i].start_pfn, NULL); 828 } 829 } 830 831 #ifdef CONFIG_PA20 832 833 /* 834 * Currently, all PA20 chips have 18 bit protection id's, which is the 835 * limiting factor (space ids are 32 bits). 836 */ 837 838 #define NR_SPACE_IDS 262144 839 840 #else 841 842 /* 843 * Currently we have a one-to-one relationship between space id's and 844 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only 845 * support 15 bit protection id's, so that is the limiting factor. 846 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's 847 * probably not worth the effort for a special case here. 848 */ 849 850 #define NR_SPACE_IDS 32768 851 852 #endif /* !CONFIG_PA20 */ 853 854 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) 855 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) 856 857 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ 858 static unsigned long dirty_space_id[SID_ARRAY_SIZE]; 859 static unsigned long space_id_index; 860 static unsigned long free_space_ids = NR_SPACE_IDS - 1; 861 static unsigned long dirty_space_ids = 0; 862 863 static DEFINE_SPINLOCK(sid_lock); 864 865 unsigned long alloc_sid(void) 866 { 867 unsigned long index; 868 869 spin_lock(&sid_lock); 870 871 if (free_space_ids == 0) { 872 if (dirty_space_ids != 0) { 873 spin_unlock(&sid_lock); 874 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ 875 spin_lock(&sid_lock); 876 } 877 if (free_space_ids == 0) 878 BUG(); 879 } 880 881 free_space_ids--; 882 883 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); 884 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); 885 space_id_index = index; 886 887 spin_unlock(&sid_lock); 888 889 return index << SPACEID_SHIFT; 890 } 891 892 void free_sid(unsigned long spaceid) 893 { 894 unsigned long index = spaceid >> SPACEID_SHIFT; 895 unsigned long *dirty_space_offset; 896 897 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); 898 index &= (BITS_PER_LONG - 1); 899 900 spin_lock(&sid_lock); 901 902 if (*dirty_space_offset & (1L << index)) 903 BUG(); /* attempt to free space id twice */ 904 905 *dirty_space_offset |= (1L << index); 906 dirty_space_ids++; 907 908 spin_unlock(&sid_lock); 909 } 910 911 912 #ifdef CONFIG_SMP 913 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) 914 { 915 int i; 916 917 /* NOTE: sid_lock must be held upon entry */ 918 919 *ndirtyptr = dirty_space_ids; 920 if (dirty_space_ids != 0) { 921 for (i = 0; i < SID_ARRAY_SIZE; i++) { 922 dirty_array[i] = dirty_space_id[i]; 923 dirty_space_id[i] = 0; 924 } 925 dirty_space_ids = 0; 926 } 927 928 return; 929 } 930 931 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) 932 { 933 int i; 934 935 /* NOTE: sid_lock must be held upon entry */ 936 937 if (ndirty != 0) { 938 for (i = 0; i < SID_ARRAY_SIZE; i++) { 939 space_id[i] ^= dirty_array[i]; 940 } 941 942 free_space_ids += ndirty; 943 space_id_index = 0; 944 } 945 } 946 947 #else /* CONFIG_SMP */ 948 949 static void recycle_sids(void) 950 { 951 int i; 952 953 /* NOTE: sid_lock must be held upon entry */ 954 955 if (dirty_space_ids != 0) { 956 for (i = 0; i < SID_ARRAY_SIZE; i++) { 957 space_id[i] ^= dirty_space_id[i]; 958 dirty_space_id[i] = 0; 959 } 960 961 free_space_ids += dirty_space_ids; 962 dirty_space_ids = 0; 963 space_id_index = 0; 964 } 965 } 966 #endif 967 968 /* 969 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is 970 * purged, we can safely reuse the space ids that were released but 971 * not flushed from the tlb. 972 */ 973 974 #ifdef CONFIG_SMP 975 976 static unsigned long recycle_ndirty; 977 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; 978 static unsigned int recycle_inuse = 0; 979 980 void flush_tlb_all(void) 981 { 982 int do_recycle; 983 984 do_recycle = 0; 985 spin_lock(&sid_lock); 986 if (dirty_space_ids > RECYCLE_THRESHOLD) { 987 if (recycle_inuse) { 988 BUG(); /* FIXME: Use a semaphore/wait queue here */ 989 } 990 get_dirty_sids(&recycle_ndirty,recycle_dirty_array); 991 recycle_inuse++; 992 do_recycle++; 993 } 994 spin_unlock(&sid_lock); 995 on_each_cpu(flush_tlb_all_local, NULL, 1, 1); 996 if (do_recycle) { 997 spin_lock(&sid_lock); 998 recycle_sids(recycle_ndirty,recycle_dirty_array); 999 recycle_inuse = 0; 1000 spin_unlock(&sid_lock); 1001 } 1002 } 1003 #else 1004 void flush_tlb_all(void) 1005 { 1006 spin_lock(&sid_lock); 1007 flush_tlb_all_local(NULL); 1008 recycle_sids(); 1009 spin_unlock(&sid_lock); 1010 } 1011 #endif 1012 1013 #ifdef CONFIG_BLK_DEV_INITRD 1014 void free_initrd_mem(unsigned long start, unsigned long end) 1015 { 1016 #if 0 1017 if (start < end) 1018 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); 1019 for (; start < end; start += PAGE_SIZE) { 1020 ClearPageReserved(virt_to_page(start)); 1021 set_page_count(virt_to_page(start), 1); 1022 free_page(start); 1023 num_physpages++; 1024 totalram_pages++; 1025 } 1026 #endif 1027 } 1028 #endif 1029