xref: /openbmc/linux/arch/parisc/kernel/time.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/irq.h>
30 #include <asm/param.h>
31 #include <asm/pdc.h>
32 #include <asm/led.h>
33 
34 #include <linux/timex.h>
35 
36 static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
37 
38 /*
39  * We keep time on PA-RISC Linux by using the Interval Timer which is
40  * a pair of registers; one is read-only and one is write-only; both
41  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
42  * and increments by 1 every CPU clock tick.  The architecture only
43  * guarantees us a rate between 0.5 and 2, but all implementations use a
44  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
45  * 32 bits of the read-only register compare equal to the write-only
46  * register, it raises a maskable external interrupt.  Each processor has
47  * an Interval Timer of its own and they are not synchronised.
48  *
49  * We want to generate an interrupt every 1/HZ seconds.  So we program
50  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
51  * is programmed with the intended time of the next tick.  We can be
52  * held off for an arbitrarily long period of time by interrupts being
53  * disabled, so we may miss one or more ticks.
54  */
55 irqreturn_t timer_interrupt(int irq, void *dev_id)
56 {
57 	unsigned long now;
58 	unsigned long next_tick;
59 	unsigned long cycles_elapsed, ticks_elapsed;
60 	unsigned long cycles_remainder;
61 	unsigned int cpu = smp_processor_id();
62 	struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
63 
64 	/* gcc can optimize for "read-only" case with a local clocktick */
65 	unsigned long cpt = clocktick;
66 
67 	profile_tick(CPU_PROFILING);
68 
69 	/* Initialize next_tick to the expected tick time. */
70 	next_tick = cpuinfo->it_value;
71 
72 	/* Get current interval timer.
73 	 * CR16 reads as 64 bits in CPU wide mode.
74 	 * CR16 reads as 32 bits in CPU narrow mode.
75 	 */
76 	now = mfctl(16);
77 
78 	cycles_elapsed = now - next_tick;
79 
80 	if ((cycles_elapsed >> 5) < cpt) {
81 		/* use "cheap" math (add/subtract) instead
82 		 * of the more expensive div/mul method
83 		 */
84 		cycles_remainder = cycles_elapsed;
85 		ticks_elapsed = 1;
86 		while (cycles_remainder > cpt) {
87 			cycles_remainder -= cpt;
88 			ticks_elapsed++;
89 		}
90 	} else {
91 		cycles_remainder = cycles_elapsed % cpt;
92 		ticks_elapsed = 1 + cycles_elapsed / cpt;
93 	}
94 
95 	/* Can we differentiate between "early CR16" (aka Scenario 1) and
96 	 * "long delay" (aka Scenario 3)? I don't think so.
97 	 *
98 	 * We expected timer_interrupt to be delivered at least a few hundred
99 	 * cycles after the IT fires. But it's arbitrary how much time passes
100 	 * before we call it "late". I've picked one second.
101 	 */
102 	if (unlikely(ticks_elapsed > HZ)) {
103 		/* Scenario 3: very long delay?  bad in any case */
104 		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
105 			" cycles %lX rem %lX "
106 			" next/now %lX/%lX\n",
107 			cpu,
108 			cycles_elapsed, cycles_remainder,
109 			next_tick, now );
110 	}
111 
112 	/* convert from "division remainder" to "remainder of clock tick" */
113 	cycles_remainder = cpt - cycles_remainder;
114 
115 	/* Determine when (in CR16 cycles) next IT interrupt will fire.
116 	 * We want IT to fire modulo clocktick even if we miss/skip some.
117 	 * But those interrupts don't in fact get delivered that regularly.
118 	 */
119 	next_tick = now + cycles_remainder;
120 
121 	cpuinfo->it_value = next_tick;
122 
123 	/* Skip one clocktick on purpose if we are likely to miss next_tick.
124 	 * We want to avoid the new next_tick being less than CR16.
125 	 * If that happened, itimer wouldn't fire until CR16 wrapped.
126 	 * We'll catch the tick we missed on the tick after that.
127 	 */
128 	if (!(cycles_remainder >> 13))
129 		next_tick += cpt;
130 
131 	/* Program the IT when to deliver the next interrupt. */
132 	/* Only bottom 32-bits of next_tick are written to cr16.  */
133 	mtctl(next_tick, 16);
134 
135 
136 	/* Done mucking with unreliable delivery of interrupts.
137 	 * Go do system house keeping.
138 	 */
139 
140 	if (!--cpuinfo->prof_counter) {
141 		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
142 		update_process_times(user_mode(get_irq_regs()));
143 	}
144 
145 	if (cpu == 0) {
146 		write_seqlock(&xtime_lock);
147 		do_timer(ticks_elapsed);
148 		write_sequnlock(&xtime_lock);
149 	}
150 
151 	return IRQ_HANDLED;
152 }
153 
154 
155 unsigned long profile_pc(struct pt_regs *regs)
156 {
157 	unsigned long pc = instruction_pointer(regs);
158 
159 	if (regs->gr[0] & PSW_N)
160 		pc -= 4;
161 
162 #ifdef CONFIG_SMP
163 	if (in_lock_functions(pc))
164 		pc = regs->gr[2];
165 #endif
166 
167 	return pc;
168 }
169 EXPORT_SYMBOL(profile_pc);
170 
171 
172 /* clock source code */
173 
174 static cycle_t read_cr16(void)
175 {
176 	return get_cycles();
177 }
178 
179 static struct clocksource clocksource_cr16 = {
180 	.name			= "cr16",
181 	.rating			= 300,
182 	.read			= read_cr16,
183 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
184 	.mult			= 0, /* to be set */
185 	.shift			= 22,
186 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
187 };
188 
189 #ifdef CONFIG_SMP
190 int update_cr16_clocksource(void)
191 {
192 	int change = 0;
193 
194 	/* since the cr16 cycle counters are not synchronized across CPUs,
195 	   we'll check if we should switch to a safe clocksource: */
196 	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
197 		clocksource_change_rating(&clocksource_cr16, 0);
198 		change = 1;
199 	}
200 
201 	return change;
202 }
203 #else
204 int update_cr16_clocksource(void)
205 {
206 	return 0; /* no change */
207 }
208 #endif /*CONFIG_SMP*/
209 
210 void __init start_cpu_itimer(void)
211 {
212 	unsigned int cpu = smp_processor_id();
213 	unsigned long next_tick = mfctl(16) + clocktick;
214 
215 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
216 
217 	cpu_data[cpu].it_value = next_tick;
218 }
219 
220 void __init time_init(void)
221 {
222 	static struct pdc_tod tod_data;
223 	unsigned long current_cr16_khz;
224 
225 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
226 
227 	start_cpu_itimer();	/* get CPU 0 started */
228 
229 	/* register at clocksource framework */
230 	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
231 	clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
232 						clocksource_cr16.shift);
233 	clocksource_register(&clocksource_cr16);
234 
235 	if (pdc_tod_read(&tod_data) == 0) {
236 		unsigned long flags;
237 
238 		write_seqlock_irqsave(&xtime_lock, flags);
239 		xtime.tv_sec = tod_data.tod_sec;
240 		xtime.tv_nsec = tod_data.tod_usec * 1000;
241 		set_normalized_timespec(&wall_to_monotonic,
242 		                        -xtime.tv_sec, -xtime.tv_nsec);
243 		write_sequnlock_irqrestore(&xtime_lock, flags);
244 	} else {
245 		printk(KERN_ERR "Error reading tod clock\n");
246 	        xtime.tv_sec = 0;
247 		xtime.tv_nsec = 0;
248 	}
249 }
250 
251