xref: /openbmc/linux/arch/parisc/kernel/time.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *  linux/arch/parisc/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7  *
8  * 1994-07-02  Alan Modra
9  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12  */
13 #include <linux/config.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/param.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/profile.h>
26 
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/irq.h>
30 #include <asm/param.h>
31 #include <asm/pdc.h>
32 #include <asm/led.h>
33 
34 #include <linux/timex.h>
35 
36 u64 jiffies_64 = INITIAL_JIFFIES;
37 
38 EXPORT_SYMBOL(jiffies_64);
39 
40 /* xtime and wall_jiffies keep wall-clock time */
41 extern unsigned long wall_jiffies;
42 
43 static long clocktick;	/* timer cycles per tick */
44 static long halftick;
45 
46 #ifdef CONFIG_SMP
47 extern void smp_do_timer(struct pt_regs *regs);
48 #endif
49 
50 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
51 {
52 	long now;
53 	long next_tick;
54 	int nticks;
55 	int cpu = smp_processor_id();
56 
57 	profile_tick(CPU_PROFILING, regs);
58 
59 	now = mfctl(16);
60 	/* initialize next_tick to time at last clocktick */
61 	next_tick = cpu_data[cpu].it_value;
62 
63 	/* since time passes between the interrupt and the mfctl()
64 	 * above, it is never true that last_tick + clocktick == now.  If we
65 	 * never miss a clocktick, we could set next_tick = last_tick + clocktick
66 	 * but maybe we'll miss ticks, hence the loop.
67 	 *
68 	 * Variables are *signed*.
69 	 */
70 
71 	nticks = 0;
72 	while((next_tick - now) < halftick) {
73 		next_tick += clocktick;
74 		nticks++;
75 	}
76 	mtctl(next_tick, 16);
77 	cpu_data[cpu].it_value = next_tick;
78 
79 	while (nticks--) {
80 #ifdef CONFIG_SMP
81 		smp_do_timer(regs);
82 #else
83 		update_process_times(user_mode(regs));
84 #endif
85 		if (cpu == 0) {
86 			write_seqlock(&xtime_lock);
87 			do_timer(regs);
88 			write_sequnlock(&xtime_lock);
89 		}
90 	}
91 
92 #ifdef CONFIG_CHASSIS_LCD_LED
93 	/* Only schedule the led tasklet on cpu 0, and only if it
94 	 * is enabled.
95 	 */
96 	if (cpu == 0 && !atomic_read(&led_tasklet.count))
97 		tasklet_schedule(&led_tasklet);
98 #endif
99 
100 	/* check soft power switch status */
101 	if (cpu == 0 && !atomic_read(&power_tasklet.count))
102 		tasklet_schedule(&power_tasklet);
103 
104 	return IRQ_HANDLED;
105 }
106 
107 /*** converted from ia64 ***/
108 /*
109  * Return the number of micro-seconds that elapsed since the last
110  * update to wall time (aka xtime aka wall_jiffies).  The xtime_lock
111  * must be at least read-locked when calling this routine.
112  */
113 static inline unsigned long
114 gettimeoffset (void)
115 {
116 #ifndef CONFIG_SMP
117 	/*
118 	 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
119 	 *    Once parisc-linux learns the cr16 difference between processors,
120 	 *    this could be made to work.
121 	 */
122 	long last_tick;
123 	long elapsed_cycles;
124 
125 	/* it_value is the intended time of the next tick */
126 	last_tick = cpu_data[smp_processor_id()].it_value;
127 
128 	/* Subtract one tick and account for possible difference between
129 	 * when we expected the tick and when it actually arrived.
130 	 * (aka wall vs real)
131 	 */
132 	last_tick -= clocktick * (jiffies - wall_jiffies + 1);
133 	elapsed_cycles = mfctl(16) - last_tick;
134 
135 	/* the precision of this math could be improved */
136 	return elapsed_cycles / (PAGE0->mem_10msec / 10000);
137 #else
138 	return 0;
139 #endif
140 }
141 
142 void
143 do_gettimeofday (struct timeval *tv)
144 {
145 	unsigned long flags, seq, usec, sec;
146 
147 	do {
148 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
149 		usec = gettimeoffset();
150 		sec = xtime.tv_sec;
151 		usec += (xtime.tv_nsec / 1000);
152 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
153 
154 	while (usec >= 1000000) {
155 		usec -= 1000000;
156 		++sec;
157 	}
158 
159 	tv->tv_sec = sec;
160 	tv->tv_usec = usec;
161 }
162 
163 EXPORT_SYMBOL(do_gettimeofday);
164 
165 int
166 do_settimeofday (struct timespec *tv)
167 {
168 	time_t wtm_sec, sec = tv->tv_sec;
169 	long wtm_nsec, nsec = tv->tv_nsec;
170 
171 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
172 		return -EINVAL;
173 
174 	write_seqlock_irq(&xtime_lock);
175 	{
176 		/*
177 		 * This is revolting. We need to set "xtime"
178 		 * correctly. However, the value in this location is
179 		 * the value at the most recent update of wall time.
180 		 * Discover what correction gettimeofday would have
181 		 * done, and then undo it!
182 		 */
183 		nsec -= gettimeoffset() * 1000;
184 
185 		wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
186 		wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
187 
188 		set_normalized_timespec(&xtime, sec, nsec);
189 		set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
190 
191 		time_adjust = 0;		/* stop active adjtime() */
192 		time_status |= STA_UNSYNC;
193 		time_maxerror = NTP_PHASE_LIMIT;
194 		time_esterror = NTP_PHASE_LIMIT;
195 	}
196 	write_sequnlock_irq(&xtime_lock);
197 	clock_was_set();
198 	return 0;
199 }
200 EXPORT_SYMBOL(do_settimeofday);
201 
202 /*
203  * XXX: We can do better than this.
204  * Returns nanoseconds
205  */
206 
207 unsigned long long sched_clock(void)
208 {
209 	return (unsigned long long)jiffies * (1000000000 / HZ);
210 }
211 
212 
213 void __init time_init(void)
214 {
215 	unsigned long next_tick;
216 	static struct pdc_tod tod_data;
217 
218 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
219 	halftick = clocktick / 2;
220 
221 	/* Setup clock interrupt timing */
222 
223 	next_tick = mfctl(16);
224 	next_tick += clocktick;
225 	cpu_data[smp_processor_id()].it_value = next_tick;
226 
227 	/* kick off Itimer (CR16) */
228 	mtctl(next_tick, 16);
229 
230 	if(pdc_tod_read(&tod_data) == 0) {
231 		write_seqlock_irq(&xtime_lock);
232 		xtime.tv_sec = tod_data.tod_sec;
233 		xtime.tv_nsec = tod_data.tod_usec * 1000;
234 		set_normalized_timespec(&wall_to_monotonic,
235 		                        -xtime.tv_sec, -xtime.tv_nsec);
236 		write_sequnlock_irq(&xtime_lock);
237 	} else {
238 		printk(KERN_ERR "Error reading tod clock\n");
239 	        xtime.tv_sec = 0;
240 		xtime.tv_nsec = 0;
241 	}
242 }
243 
244