xref: /openbmc/linux/arch/parisc/kernel/irq.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Code to handle x86 style IRQs plus some generic interrupt stuff.
3  *
4  * Copyright (C) 1992 Linus Torvalds
5  * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
6  * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
7  * Copyright (C) 1999-2000 Grant Grundler
8  * Copyright (c) 2005 Matthew Wilcox
9  *
10  *    This program is free software; you can redistribute it and/or modify
11  *    it under the terms of the GNU General Public License as published by
12  *    the Free Software Foundation; either version 2, or (at your option)
13  *    any later version.
14  *
15  *    This program is distributed in the hope that it will be useful,
16  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *    GNU General Public License for more details.
19  *
20  *    You should have received a copy of the GNU General Public License
21  *    along with this program; if not, write to the Free Software
22  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 #include <linux/bitops.h>
25 #include <linux/config.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/seq_file.h>
31 #include <linux/spinlock.h>
32 #include <linux/types.h>
33 
34 #undef PARISC_IRQ_CR16_COUNTS
35 
36 extern irqreturn_t timer_interrupt(int, void *, struct pt_regs *);
37 extern irqreturn_t ipi_interrupt(int, void *, struct pt_regs *);
38 
39 #define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
40 
41 /* Bits in EIEM correlate with cpu_irq_action[].
42 ** Numbered *Big Endian*! (ie bit 0 is MSB)
43 */
44 static volatile unsigned long cpu_eiem = 0;
45 
46 static void cpu_set_eiem(void *info)
47 {
48 	set_eiem((unsigned long) info);
49 }
50 
51 static inline void cpu_disable_irq(unsigned int irq)
52 {
53 	unsigned long eirr_bit = EIEM_MASK(irq);
54 
55 	cpu_eiem &= ~eirr_bit;
56         on_each_cpu(cpu_set_eiem, (void *) cpu_eiem, 1, 1);
57 }
58 
59 static void cpu_enable_irq(unsigned int irq)
60 {
61 	unsigned long eirr_bit = EIEM_MASK(irq);
62 
63 	mtctl(eirr_bit, 23);	/* clear EIRR bit before unmasking */
64 	cpu_eiem |= eirr_bit;
65         on_each_cpu(cpu_set_eiem, (void *) cpu_eiem, 1, 1);
66 }
67 
68 static unsigned int cpu_startup_irq(unsigned int irq)
69 {
70 	cpu_enable_irq(irq);
71 	return 0;
72 }
73 
74 void no_ack_irq(unsigned int irq) { }
75 void no_end_irq(unsigned int irq) { }
76 
77 static struct hw_interrupt_type cpu_interrupt_type = {
78 	.typename	= "CPU",
79 	.startup	= cpu_startup_irq,
80 	.shutdown	= cpu_disable_irq,
81 	.enable		= cpu_enable_irq,
82 	.disable	= cpu_disable_irq,
83 	.ack		= no_ack_irq,
84 	.end		= no_end_irq,
85 //	.set_affinity	= cpu_set_affinity_irq,
86 };
87 
88 int show_interrupts(struct seq_file *p, void *v)
89 {
90 	int i = *(loff_t *) v, j;
91 	unsigned long flags;
92 
93 	if (i == 0) {
94 		seq_puts(p, "    ");
95 		for_each_online_cpu(j)
96 			seq_printf(p, "       CPU%d", j);
97 
98 #ifdef PARISC_IRQ_CR16_COUNTS
99 		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
100 #endif
101 		seq_putc(p, '\n');
102 	}
103 
104 	if (i < NR_IRQS) {
105 		struct irqaction *action;
106 
107 		spin_lock_irqsave(&irq_desc[i].lock, flags);
108 		action = irq_desc[i].action;
109 		if (!action)
110 			goto skip;
111 		seq_printf(p, "%3d: ", i);
112 #ifdef CONFIG_SMP
113 		for_each_online_cpu(j)
114 			seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
115 #else
116 		seq_printf(p, "%10u ", kstat_irqs(i));
117 #endif
118 
119 		seq_printf(p, " %14s", irq_desc[i].handler->typename);
120 #ifndef PARISC_IRQ_CR16_COUNTS
121 		seq_printf(p, "  %s", action->name);
122 
123 		while ((action = action->next))
124 			seq_printf(p, ", %s", action->name);
125 #else
126 		for ( ;action; action = action->next) {
127 			unsigned int k, avg, min, max;
128 
129 			min = max = action->cr16_hist[0];
130 
131 			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
132 				int hist = action->cr16_hist[k];
133 
134 				if (hist) {
135 					avg += hist;
136 				} else
137 					break;
138 
139 				if (hist > max) max = hist;
140 				if (hist < min) min = hist;
141 			}
142 
143 			avg /= k;
144 			seq_printf(p, " %s[%d/%d/%d]", action->name,
145 					min,avg,max);
146 		}
147 #endif
148 
149 		seq_putc(p, '\n');
150  skip:
151 		spin_unlock_irqrestore(&irq_desc[i].lock, flags);
152 	}
153 
154 	return 0;
155 }
156 
157 
158 
159 /*
160 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
161 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
162 **
163 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
164 ** Then use that to get the Transaction address and data.
165 */
166 
167 int cpu_claim_irq(unsigned int irq, struct hw_interrupt_type *type, void *data)
168 {
169 	if (irq_desc[irq].action)
170 		return -EBUSY;
171 	if (irq_desc[irq].handler != &cpu_interrupt_type)
172 		return -EBUSY;
173 
174 	if (type) {
175 		irq_desc[irq].handler = type;
176 		irq_desc[irq].handler_data = data;
177 		cpu_interrupt_type.enable(irq);
178 	}
179 	return 0;
180 }
181 
182 int txn_claim_irq(int irq)
183 {
184 	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
185 }
186 
187 /*
188  * The bits_wide parameter accommodates the limitations of the HW/SW which
189  * use these bits:
190  * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
191  * V-class (EPIC):          6 bits
192  * N/L/A-class (iosapic):   8 bits
193  * PCI 2.2 MSI:            16 bits
194  * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
195  *
196  * On the service provider side:
197  * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
198  * o PA 2.0 wide mode                   6-bits (per processor)
199  * o IA64                               8-bits (0-256 total)
200  *
201  * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
202  * by the processor...and the N/L-class I/O subsystem supports more bits than
203  * PA2.0 has. The first case is the problem.
204  */
205 int txn_alloc_irq(unsigned int bits_wide)
206 {
207 	int irq;
208 
209 	/* never return irq 0 cause that's the interval timer */
210 	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
211 		if (cpu_claim_irq(irq, NULL, NULL) < 0)
212 			continue;
213 		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
214 			continue;
215 		return irq;
216 	}
217 
218 	/* unlikely, but be prepared */
219 	return -1;
220 }
221 
222 unsigned long txn_alloc_addr(unsigned int virt_irq)
223 {
224 	static int next_cpu = -1;
225 
226 	next_cpu++; /* assign to "next" CPU we want this bugger on */
227 
228 	/* validate entry */
229 	while ((next_cpu < NR_CPUS) && (!cpu_data[next_cpu].txn_addr ||
230 		!cpu_online(next_cpu)))
231 		next_cpu++;
232 
233 	if (next_cpu >= NR_CPUS)
234 		next_cpu = 0;	/* nothing else, assign monarch */
235 
236 	return cpu_data[next_cpu].txn_addr;
237 }
238 
239 
240 unsigned int txn_alloc_data(unsigned int virt_irq)
241 {
242 	return virt_irq - CPU_IRQ_BASE;
243 }
244 
245 /* ONLY called from entry.S:intr_extint() */
246 void do_cpu_irq_mask(struct pt_regs *regs)
247 {
248 	unsigned long eirr_val;
249 
250 	irq_enter();
251 
252 	/*
253 	 * Only allow interrupt processing to be interrupted by the
254 	 * timer tick
255 	 */
256 	set_eiem(EIEM_MASK(TIMER_IRQ));
257 
258 	/* 1) only process IRQs that are enabled/unmasked (cpu_eiem)
259 	 * 2) We loop here on EIRR contents in order to avoid
260 	 *    nested interrupts or having to take another interrupt
261 	 *    when we could have just handled it right away.
262 	 */
263 	for (;;) {
264 		unsigned long bit = (1UL << (BITS_PER_LONG - 1));
265 		unsigned int irq;
266 		eirr_val = mfctl(23) & cpu_eiem;
267 		if (!eirr_val)
268 			break;
269 
270 		if (eirr_val & EIEM_MASK(TIMER_IRQ))
271 			set_eiem(0);
272 
273 		mtctl(eirr_val, 23); /* reset bits we are going to process */
274 
275 		/* Work our way from MSb to LSb...same order we alloc EIRs */
276 		for (irq = TIMER_IRQ; eirr_val && bit; bit>>=1, irq++) {
277 			if (!(bit & eirr_val))
278 				continue;
279 
280 			/* clear bit in mask - can exit loop sooner */
281 			eirr_val &= ~bit;
282 
283 			__do_IRQ(irq, regs);
284 		}
285 	}
286 	set_eiem(cpu_eiem);
287 	irq_exit();
288 }
289 
290 
291 static struct irqaction timer_action = {
292 	.handler = timer_interrupt,
293 	.name = "timer",
294 };
295 
296 #ifdef CONFIG_SMP
297 static struct irqaction ipi_action = {
298 	.handler = ipi_interrupt,
299 	.name = "IPI",
300 };
301 #endif
302 
303 static void claim_cpu_irqs(void)
304 {
305 	int i;
306 	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
307 		irq_desc[i].handler = &cpu_interrupt_type;
308 	}
309 
310 	irq_desc[TIMER_IRQ].action = &timer_action;
311 	irq_desc[TIMER_IRQ].status |= IRQ_PER_CPU;
312 #ifdef CONFIG_SMP
313 	irq_desc[IPI_IRQ].action = &ipi_action;
314 	irq_desc[IPI_IRQ].status = IRQ_PER_CPU;
315 #endif
316 }
317 
318 void __init init_IRQ(void)
319 {
320 	local_irq_disable();	/* PARANOID - should already be disabled */
321 	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
322 	claim_cpu_irqs();
323 #ifdef CONFIG_SMP
324 	if (!cpu_eiem)
325 		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
326 #else
327 	cpu_eiem = EIEM_MASK(TIMER_IRQ);
328 #endif
329         set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
330 
331 }
332 
333 void hw_resend_irq(struct hw_interrupt_type *type, unsigned int irq)
334 {
335 	/* XXX: Needs to be written.  We managed without it so far, but
336 	 * we really ought to write it.
337 	 */
338 }
339 
340 void ack_bad_irq(unsigned int irq)
341 {
342 	printk("unexpected IRQ %d\n", irq);
343 }
344