1b2441318SGreg Kroah-Hartman // SPDX-License-Identifier: GPL-2.0
2c066a32aSThomas Bogendoerfer #include <linux/types.h>
3334955efSRalf Baechle #include <linux/i8253.h>
4c066a32aSThomas Bogendoerfer #include <linux/interrupt.h>
5ca4d3e67SDavid Howells #include <linux/irq.h>
6631330f5SRalf Baechle #include <linux/smp.h>
7c066a32aSThomas Bogendoerfer #include <linux/time.h>
8c9294022SThomas Bogendoerfer #include <linux/clockchips.h>
9c066a32aSThomas Bogendoerfer
10c066a32aSThomas Bogendoerfer #include <asm/sni.h>
11c066a32aSThomas Bogendoerfer #include <asm/time.h>
12c066a32aSThomas Bogendoerfer
13c066a32aSThomas Bogendoerfer #define SNI_CLOCK_TICK_RATE 3686400
14c066a32aSThomas Bogendoerfer #define SNI_COUNTER2_DIV 64
15c066a32aSThomas Bogendoerfer #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
16c066a32aSThomas Bogendoerfer
a20r_set_periodic(struct clock_event_device * evt)17397d08b0SViresh Kumar static int a20r_set_periodic(struct clock_event_device *evt)
18c066a32aSThomas Bogendoerfer {
1984953b39SRalf Baechle *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
2084953b39SRalf Baechle wmb();
21*c91cf42fSBart Van Assche *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff;
2284953b39SRalf Baechle wmb();
2384953b39SRalf Baechle *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
2484953b39SRalf Baechle wmb();
2584953b39SRalf Baechle
2684953b39SRalf Baechle *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
2784953b39SRalf Baechle wmb();
28*c91cf42fSBart Van Assche *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff;
2984953b39SRalf Baechle wmb();
3084953b39SRalf Baechle *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
3184953b39SRalf Baechle wmb();
32397d08b0SViresh Kumar return 0;
3384953b39SRalf Baechle }
3484953b39SRalf Baechle
3584953b39SRalf Baechle static struct clock_event_device a20r_clockevent_device = {
3684953b39SRalf Baechle .name = "a20r-timer",
3784953b39SRalf Baechle .features = CLOCK_EVT_FEAT_PERIODIC,
3884953b39SRalf Baechle
3984953b39SRalf Baechle /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
4084953b39SRalf Baechle
4184953b39SRalf Baechle .rating = 300,
4284953b39SRalf Baechle .irq = SNI_A20R_IRQ_TIMER,
43397d08b0SViresh Kumar .set_state_periodic = a20r_set_periodic,
4484953b39SRalf Baechle };
4584953b39SRalf Baechle
a20r_interrupt(int irq,void * dev_id)4684953b39SRalf Baechle static irqreturn_t a20r_interrupt(int irq, void *dev_id)
4784953b39SRalf Baechle {
4884953b39SRalf Baechle struct clock_event_device *cd = dev_id;
4984953b39SRalf Baechle
5084953b39SRalf Baechle *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
5184953b39SRalf Baechle wmb();
5284953b39SRalf Baechle
5384953b39SRalf Baechle cd->event_handler(cd);
5484953b39SRalf Baechle
5584953b39SRalf Baechle return IRQ_HANDLED;
5684953b39SRalf Baechle }
5784953b39SRalf Baechle
58c066a32aSThomas Bogendoerfer /*
59c066a32aSThomas Bogendoerfer * a20r platform uses 2 counters to divide the input frequency.
60c066a32aSThomas Bogendoerfer * Counter 2 output is connected to Counter 0 & 1 input.
61c066a32aSThomas Bogendoerfer */
sni_a20r_timer_setup(void)6284953b39SRalf Baechle static void __init sni_a20r_timer_setup(void)
63c066a32aSThomas Bogendoerfer {
6484953b39SRalf Baechle struct clock_event_device *cd = &a20r_clockevent_device;
6584953b39SRalf Baechle unsigned int cpu = smp_processor_id();
66c066a32aSThomas Bogendoerfer
67320ab2b0SRusty Russell cd->cpumask = cpumask_of(cpu);
68c9294022SThomas Bogendoerfer clockevents_register_device(cd);
69ac8fd122Safzal mohammed if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt,
70ac8fd122Safzal mohammed IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd))
71ac8fd122Safzal mohammed pr_err("Failed to register a20r-timer interrupt\n");
72c066a32aSThomas Bogendoerfer }
73c066a32aSThomas Bogendoerfer
74c066a32aSThomas Bogendoerfer #define SNI_8254_TICK_RATE 1193182UL
75c066a32aSThomas Bogendoerfer
76c066a32aSThomas Bogendoerfer #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
77c066a32aSThomas Bogendoerfer
dosample(void)78c066a32aSThomas Bogendoerfer static __init unsigned long dosample(void)
79c066a32aSThomas Bogendoerfer {
80c066a32aSThomas Bogendoerfer u32 ct0, ct1;
8111b9d0ecSRalf Baechle volatile u8 msb;
82c066a32aSThomas Bogendoerfer
83c066a32aSThomas Bogendoerfer /* Start the counter. */
84c066a32aSThomas Bogendoerfer outb_p(0x34, 0x43);
85c066a32aSThomas Bogendoerfer outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
86c066a32aSThomas Bogendoerfer outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
87c066a32aSThomas Bogendoerfer
88c066a32aSThomas Bogendoerfer /* Get initial counter invariant */
89c066a32aSThomas Bogendoerfer ct0 = read_c0_count();
90c066a32aSThomas Bogendoerfer
91c066a32aSThomas Bogendoerfer /* Latch and spin until top byte of counter0 is zero */
92c066a32aSThomas Bogendoerfer do {
93c066a32aSThomas Bogendoerfer outb(0x00, 0x43);
9411b9d0ecSRalf Baechle (void) inb(0x40);
95c066a32aSThomas Bogendoerfer msb = inb(0x40);
96c066a32aSThomas Bogendoerfer ct1 = read_c0_count();
97c066a32aSThomas Bogendoerfer } while (msb);
98c066a32aSThomas Bogendoerfer
99c066a32aSThomas Bogendoerfer /* Stop the counter. */
100c066a32aSThomas Bogendoerfer outb(0x38, 0x43);
101c066a32aSThomas Bogendoerfer /*
102c066a32aSThomas Bogendoerfer * Return the difference, this is how far the r4k counter increments
103c066a32aSThomas Bogendoerfer * for every 1/HZ seconds. We round off the nearest 1 MHz of master
104c066a32aSThomas Bogendoerfer * clock (= 1000000 / HZ / 2).
105c066a32aSThomas Bogendoerfer */
106c066a32aSThomas Bogendoerfer /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
107c066a32aSThomas Bogendoerfer return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
108c066a32aSThomas Bogendoerfer }
109c066a32aSThomas Bogendoerfer
110c066a32aSThomas Bogendoerfer /*
111c066a32aSThomas Bogendoerfer * Here we need to calibrate the cycle counter to at least be close.
112c066a32aSThomas Bogendoerfer */
plat_time_init(void)1134b550488SRalf Baechle void __init plat_time_init(void)
114c066a32aSThomas Bogendoerfer {
115c066a32aSThomas Bogendoerfer unsigned long r4k_ticks[3];
116c066a32aSThomas Bogendoerfer unsigned long r4k_tick;
117c066a32aSThomas Bogendoerfer
118c066a32aSThomas Bogendoerfer /*
119c066a32aSThomas Bogendoerfer * Figure out the r4k offset, the algorithm is very simple and works in
120c066a32aSThomas Bogendoerfer * _all_ cases as long as the 8254 counter register itself works ok (as
121c066a32aSThomas Bogendoerfer * an interrupt driving timer it does not because of bug, this is why
122c066a32aSThomas Bogendoerfer * we are using the onchip r4k counter/compare register to serve this
123c066a32aSThomas Bogendoerfer * purpose, but for r4k_offset calculation it will work ok for us).
124c066a32aSThomas Bogendoerfer * There are other very complicated ways of performing this calculation
125c066a32aSThomas Bogendoerfer * but this one works just fine so I am not going to futz around. ;-)
126c066a32aSThomas Bogendoerfer */
127c066a32aSThomas Bogendoerfer printk(KERN_INFO "Calibrating system timer... ");
128c066a32aSThomas Bogendoerfer dosample(); /* Prime cache. */
129c066a32aSThomas Bogendoerfer dosample(); /* Prime cache. */
130c066a32aSThomas Bogendoerfer /* Zero is NOT an option. */
131c066a32aSThomas Bogendoerfer do {
132c066a32aSThomas Bogendoerfer r4k_ticks[0] = dosample();
133c066a32aSThomas Bogendoerfer } while (!r4k_ticks[0]);
134c066a32aSThomas Bogendoerfer do {
135c066a32aSThomas Bogendoerfer r4k_ticks[1] = dosample();
136c066a32aSThomas Bogendoerfer } while (!r4k_ticks[1]);
137c066a32aSThomas Bogendoerfer
138c066a32aSThomas Bogendoerfer if (r4k_ticks[0] != r4k_ticks[1]) {
139c066a32aSThomas Bogendoerfer printk("warning: timer counts differ, retrying... ");
140c066a32aSThomas Bogendoerfer r4k_ticks[2] = dosample();
141c066a32aSThomas Bogendoerfer if (r4k_ticks[2] == r4k_ticks[0]
142c066a32aSThomas Bogendoerfer || r4k_ticks[2] == r4k_ticks[1])
143c066a32aSThomas Bogendoerfer r4k_tick = r4k_ticks[2];
144c066a32aSThomas Bogendoerfer else {
145c066a32aSThomas Bogendoerfer printk("disagreement, using average... ");
146c066a32aSThomas Bogendoerfer r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
147c066a32aSThomas Bogendoerfer + r4k_ticks[2]) / 3;
148c066a32aSThomas Bogendoerfer }
149c066a32aSThomas Bogendoerfer } else
150c066a32aSThomas Bogendoerfer r4k_tick = r4k_ticks[0];
151c066a32aSThomas Bogendoerfer
152c066a32aSThomas Bogendoerfer printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
153c066a32aSThomas Bogendoerfer (int) (r4k_tick / (500000 / HZ)),
154c066a32aSThomas Bogendoerfer (int) (r4k_tick % (500000 / HZ)));
155c066a32aSThomas Bogendoerfer
156c066a32aSThomas Bogendoerfer mips_hpt_frequency = r4k_tick * HZ;
157d865bea4SRalf Baechle
158c066a32aSThomas Bogendoerfer switch (sni_brd_type) {
159c066a32aSThomas Bogendoerfer case SNI_BRD_10:
160c066a32aSThomas Bogendoerfer case SNI_BRD_10NEW:
161c066a32aSThomas Bogendoerfer case SNI_BRD_TOWER_OASIC:
162c066a32aSThomas Bogendoerfer case SNI_BRD_MINITOWER:
16384953b39SRalf Baechle sni_a20r_timer_setup();
164c066a32aSThomas Bogendoerfer break;
165c066a32aSThomas Bogendoerfer }
166231a35d3SThomas Bogendoerfer setup_pit_timer();
167c066a32aSThomas Bogendoerfer }
168