xref: /openbmc/linux/arch/mips/pci/msi-octeon.c (revision bf3608f338e928e5d26b620feb7d8afcdfff50e3)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009, 2010 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
13 
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-sli-defs.h>
19 #include <asm/octeon/cvmx-pexp-defs.h>
20 #include <asm/octeon/pci-octeon.h>
21 
22 /*
23  * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
24  * in use.
25  */
26 static u64 msi_free_irq_bitmask[4];
27 
28 /*
29  * Each bit in msi_multiple_irq_bitmask tells that the device using
30  * this bit in msi_free_irq_bitmask is also using the next bit. This
31  * is used so we can disable all of the MSI interrupts when a device
32  * uses multiple.
33  */
34 static u64 msi_multiple_irq_bitmask[4];
35 
36 /*
37  * This lock controls updates to msi_free_irq_bitmask and
38  * msi_multiple_irq_bitmask.
39  */
40 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
41 
42 /*
43  * Number of MSI IRQs used. This variable is set up in
44  * the module init time.
45  */
46 static int msi_irq_size;
47 
48 /**
49  * Called when a driver request MSI interrupts instead of the
50  * legacy INT A-D. This routine will allocate multiple interrupts
51  * for MSI devices that support them. A device can override this by
52  * programming the MSI control bits [6:4] before calling
53  * pci_enable_msi().
54  *
55  * @dev:    Device requesting MSI interrupts
56  * @desc:   MSI descriptor
57  *
58  * Returns 0 on success.
59  */
60 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
61 {
62 	struct msi_msg msg;
63 	u16 control;
64 	int configured_private_bits;
65 	int request_private_bits;
66 	int irq = 0;
67 	int irq_step;
68 	u64 search_mask;
69 	int index;
70 
71 	if (desc->pci.msi_attrib.is_msix)
72 		return -EINVAL;
73 
74 	/*
75 	 * Read the MSI config to figure out how many IRQs this device
76 	 * wants.  Most devices only want 1, which will give
77 	 * configured_private_bits and request_private_bits equal 0.
78 	 */
79 	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
80 
81 	/*
82 	 * If the number of private bits has been configured then use
83 	 * that value instead of the requested number. This gives the
84 	 * driver the chance to override the number of interrupts
85 	 * before calling pci_enable_msi().
86 	 */
87 	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
88 	if (configured_private_bits == 0) {
89 		/* Nothing is configured, so use the hardware requested size */
90 		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
91 	} else {
92 		/*
93 		 * Use the number of configured bits, assuming the
94 		 * driver wanted to override the hardware request
95 		 * value.
96 		 */
97 		request_private_bits = configured_private_bits;
98 	}
99 
100 	/*
101 	 * The PCI 2.3 spec mandates that there are at most 32
102 	 * interrupts. If this device asks for more, only give it one.
103 	 */
104 	if (request_private_bits > 5)
105 		request_private_bits = 0;
106 
107 try_only_one:
108 	/*
109 	 * The IRQs have to be aligned on a power of two based on the
110 	 * number being requested.
111 	 */
112 	irq_step = 1 << request_private_bits;
113 
114 	/* Mask with one bit for each IRQ */
115 	search_mask = (1 << irq_step) - 1;
116 
117 	/*
118 	 * We're going to search msi_free_irq_bitmask_lock for zero
119 	 * bits. This represents an MSI interrupt number that isn't in
120 	 * use.
121 	 */
122 	spin_lock(&msi_free_irq_bitmask_lock);
123 	for (index = 0; index < msi_irq_size/64; index++) {
124 		for (irq = 0; irq < 64; irq += irq_step) {
125 			if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
126 				msi_free_irq_bitmask[index] |= search_mask << irq;
127 				msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
128 				goto msi_irq_allocated;
129 			}
130 		}
131 	}
132 msi_irq_allocated:
133 	spin_unlock(&msi_free_irq_bitmask_lock);
134 
135 	/* Make sure the search for available interrupts didn't fail */
136 	if (irq >= 64) {
137 		if (request_private_bits) {
138 			pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
139 			       1 << request_private_bits);
140 			request_private_bits = 0;
141 			goto try_only_one;
142 		} else
143 			panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
144 	}
145 
146 	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
147 	irq += index*64;
148 	irq += OCTEON_IRQ_MSI_BIT0;
149 
150 	switch (octeon_dma_bar_type) {
151 	case OCTEON_DMA_BAR_TYPE_SMALL:
152 		/* When not using big bar, Bar 0 is based at 128MB */
153 		msg.address_lo =
154 			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
155 		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
156 		break;
157 	case OCTEON_DMA_BAR_TYPE_BIG:
158 		/* When using big bar, Bar 0 is based at 0 */
159 		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
160 		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
161 		break;
162 	case OCTEON_DMA_BAR_TYPE_PCIE:
163 		/* When using PCIe, Bar 0 is based at 0 */
164 		/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
165 		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
166 		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
167 		break;
168 	case OCTEON_DMA_BAR_TYPE_PCIE2:
169 		/* When using PCIe2, Bar 0 is based at 0 */
170 		msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
171 		msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
172 		break;
173 	default:
174 		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
175 	}
176 	msg.data = irq - OCTEON_IRQ_MSI_BIT0;
177 
178 	/* Update the number of IRQs the device has available to it */
179 	control &= ~PCI_MSI_FLAGS_QSIZE;
180 	control |= request_private_bits << 4;
181 	pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
182 
183 	irq_set_msi_desc(irq, desc);
184 	pci_write_msi_msg(irq, &msg);
185 	return 0;
186 }
187 
188 /**
189  * Called when a device no longer needs its MSI interrupts. All
190  * MSI interrupts for the device are freed.
191  *
192  * @irq:    The devices first irq number. There may be multple in sequence.
193  */
194 void arch_teardown_msi_irq(unsigned int irq)
195 {
196 	int number_irqs;
197 	u64 bitmask;
198 	int index = 0;
199 	int irq0;
200 
201 	if ((irq < OCTEON_IRQ_MSI_BIT0)
202 		|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
203 		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
204 		      "MSI interrupt (%d)", irq);
205 
206 	irq -= OCTEON_IRQ_MSI_BIT0;
207 	index = irq / 64;
208 	irq0 = irq % 64;
209 
210 	/*
211 	 * Count the number of IRQs we need to free by looking at the
212 	 * msi_multiple_irq_bitmask. Each bit set means that the next
213 	 * IRQ is also owned by this device.
214 	 */
215 	number_irqs = 0;
216 	while ((irq0 + number_irqs < 64) &&
217 	       (msi_multiple_irq_bitmask[index]
218 		& (1ull << (irq0 + number_irqs))))
219 		number_irqs++;
220 	number_irqs++;
221 	/* Mask with one bit for each IRQ */
222 	bitmask = (1 << number_irqs) - 1;
223 	/* Shift the mask to the correct bit location */
224 	bitmask <<= irq0;
225 	if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
226 		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
227 		      "interrupt (%d) not in use", irq);
228 
229 	/* Checks are done, update the in use bitmask */
230 	spin_lock(&msi_free_irq_bitmask_lock);
231 	msi_free_irq_bitmask[index] &= ~bitmask;
232 	msi_multiple_irq_bitmask[index] &= ~bitmask;
233 	spin_unlock(&msi_free_irq_bitmask_lock);
234 }
235 
236 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
237 
238 static u64 msi_rcv_reg[4];
239 static u64 mis_ena_reg[4];
240 
241 static void octeon_irq_msi_enable_pcie(struct irq_data *data)
242 {
243 	u64 en;
244 	unsigned long flags;
245 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
246 	int irq_index = msi_number >> 6;
247 	int irq_bit = msi_number & 0x3f;
248 
249 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
250 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
251 	en |= 1ull << irq_bit;
252 	cvmx_write_csr(mis_ena_reg[irq_index], en);
253 	cvmx_read_csr(mis_ena_reg[irq_index]);
254 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
255 }
256 
257 static void octeon_irq_msi_disable_pcie(struct irq_data *data)
258 {
259 	u64 en;
260 	unsigned long flags;
261 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
262 	int irq_index = msi_number >> 6;
263 	int irq_bit = msi_number & 0x3f;
264 
265 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
266 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
267 	en &= ~(1ull << irq_bit);
268 	cvmx_write_csr(mis_ena_reg[irq_index], en);
269 	cvmx_read_csr(mis_ena_reg[irq_index]);
270 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
271 }
272 
273 static struct irq_chip octeon_irq_chip_msi_pcie = {
274 	.name = "MSI",
275 	.irq_enable = octeon_irq_msi_enable_pcie,
276 	.irq_disable = octeon_irq_msi_disable_pcie,
277 };
278 
279 static void octeon_irq_msi_enable_pci(struct irq_data *data)
280 {
281 	/*
282 	 * Octeon PCI doesn't have the ability to mask/unmask MSI
283 	 * interrupts individually. Instead of masking/unmasking them
284 	 * in groups of 16, we simple assume MSI devices are well
285 	 * behaved. MSI interrupts are always enable and the ACK is
286 	 * assumed to be enough
287 	 */
288 }
289 
290 static void octeon_irq_msi_disable_pci(struct irq_data *data)
291 {
292 	/* See comment in enable */
293 }
294 
295 static struct irq_chip octeon_irq_chip_msi_pci = {
296 	.name = "MSI",
297 	.irq_enable = octeon_irq_msi_enable_pci,
298 	.irq_disable = octeon_irq_msi_disable_pci,
299 };
300 
301 /*
302  * Called by the interrupt handling code when an MSI interrupt
303  * occurs.
304  */
305 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
306 {
307 	int irq;
308 	int bit;
309 
310 	bit = fls64(msi_bits);
311 	if (bit) {
312 		bit--;
313 		/* Acknowledge it first. */
314 		cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
315 
316 		irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
317 		do_IRQ(irq);
318 		return IRQ_HANDLED;
319 	}
320 	return IRQ_NONE;
321 }
322 
323 #define OCTEON_MSI_INT_HANDLER_X(x)					\
324 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)	\
325 {									\
326 	u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);			\
327 	return __octeon_msi_do_interrupt((x), msi_bits);		\
328 }
329 
330 /*
331  * Create octeon_msi_interrupt{0-3} function body
332  */
333 OCTEON_MSI_INT_HANDLER_X(0);
334 OCTEON_MSI_INT_HANDLER_X(1);
335 OCTEON_MSI_INT_HANDLER_X(2);
336 OCTEON_MSI_INT_HANDLER_X(3);
337 
338 /*
339  * Initializes the MSI interrupt handling code
340  */
341 int __init octeon_msi_initialize(void)
342 {
343 	int irq;
344 	struct irq_chip *msi;
345 
346 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) {
347 		return 0;
348 	} else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
349 		msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
350 		msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
351 		msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
352 		msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
353 		mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
354 		mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
355 		mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
356 		mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
357 		msi = &octeon_irq_chip_msi_pcie;
358 	} else {
359 		msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
360 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
361 		msi_rcv_reg[1] = INVALID_GENERATE_ADE;
362 		msi_rcv_reg[2] = INVALID_GENERATE_ADE;
363 		msi_rcv_reg[3] = INVALID_GENERATE_ADE;
364 		mis_ena_reg[0] = INVALID_GENERATE_ADE;
365 		mis_ena_reg[1] = INVALID_GENERATE_ADE;
366 		mis_ena_reg[2] = INVALID_GENERATE_ADE;
367 		mis_ena_reg[3] = INVALID_GENERATE_ADE;
368 		msi = &octeon_irq_chip_msi_pci;
369 	}
370 
371 	for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
372 		irq_set_chip_and_handler(irq, msi, handle_simple_irq);
373 
374 	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
375 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
376 				0, "MSI[0:63]", octeon_msi_interrupt0))
377 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
378 
379 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
380 				0, "MSI[64:127]", octeon_msi_interrupt1))
381 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
382 
383 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
384 				0, "MSI[127:191]", octeon_msi_interrupt2))
385 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
386 
387 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
388 				0, "MSI[192:255]", octeon_msi_interrupt3))
389 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
390 
391 		msi_irq_size = 256;
392 	} else if (octeon_is_pci_host()) {
393 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
394 				0, "MSI[0:15]", octeon_msi_interrupt0))
395 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
396 
397 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
398 				0, "MSI[16:31]", octeon_msi_interrupt0))
399 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
400 
401 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
402 				0, "MSI[32:47]", octeon_msi_interrupt0))
403 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
404 
405 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
406 				0, "MSI[48:63]", octeon_msi_interrupt0))
407 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
408 		msi_irq_size = 64;
409 	}
410 	return 0;
411 }
412 subsys_initcall(octeon_msi_initialize);
413