xref: /openbmc/linux/arch/mips/mm/tlbex.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004,2005 by Thiemo Seufer
9  */
10 
11 #include <stdarg.h>
12 
13 #include <linux/config.h>
14 #include <linux/mm.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/string.h>
18 #include <linux/init.h>
19 
20 #include <asm/pgtable.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/inst.h>
24 #include <asm/elf.h>
25 #include <asm/smp.h>
26 #include <asm/war.h>
27 
28 /* #define DEBUG_TLB */
29 
30 static __init int __attribute__((unused)) r45k_bvahwbug(void)
31 {
32 	/* XXX: We should probe for the presence of this bug, but we don't. */
33 	return 0;
34 }
35 
36 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
37 {
38 	/* XXX: We should probe for the presence of this bug, but we don't. */
39 	return 0;
40 }
41 
42 static __init int __attribute__((unused)) bcm1250_m3_war(void)
43 {
44 	return BCM1250_M3_WAR;
45 }
46 
47 static __init int __attribute__((unused)) r10000_llsc_war(void)
48 {
49 	return R10000_LLSC_WAR;
50 }
51 
52 /*
53  * A little micro-assembler, intended for TLB refill handler
54  * synthesizing. It is intentionally kept simple, does only support
55  * a subset of instructions, and does not try to hide pipeline effects
56  * like branch delay slots.
57  */
58 
59 enum fields
60 {
61 	RS = 0x001,
62 	RT = 0x002,
63 	RD = 0x004,
64 	RE = 0x008,
65 	SIMM = 0x010,
66 	UIMM = 0x020,
67 	BIMM = 0x040,
68 	JIMM = 0x080,
69 	FUNC = 0x100,
70 };
71 
72 #define OP_MASK		0x2f
73 #define OP_SH		26
74 #define RS_MASK		0x1f
75 #define RS_SH		21
76 #define RT_MASK		0x1f
77 #define RT_SH		16
78 #define RD_MASK		0x1f
79 #define RD_SH		11
80 #define RE_MASK		0x1f
81 #define RE_SH		6
82 #define IMM_MASK	0xffff
83 #define IMM_SH		0
84 #define JIMM_MASK	0x3ffffff
85 #define JIMM_SH		0
86 #define FUNC_MASK	0x2f
87 #define FUNC_SH		0
88 
89 enum opcode {
90 	insn_invalid,
91 	insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
92 	insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
93 	insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
94 	insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32,
95 	insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
96 	insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
97 	insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
98 	insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
99 	insn_tlbwr, insn_xor, insn_xori
100 };
101 
102 struct insn {
103 	enum opcode opcode;
104 	u32 match;
105 	enum fields fields;
106 };
107 
108 /* This macro sets the non-variable bits of an instruction. */
109 #define M(a, b, c, d, e, f)					\
110 	((a) << OP_SH						\
111 	 | (b) << RS_SH						\
112 	 | (c) << RT_SH						\
113 	 | (d) << RD_SH						\
114 	 | (e) << RE_SH						\
115 	 | (f) << FUNC_SH)
116 
117 static __initdata struct insn insn_table[] = {
118 	{ insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
119 	{ insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
120 	{ insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
121 	{ insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
122 	{ insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
123 	{ insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
124 	{ insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
125 	{ insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
126 	{ insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
127 	{ insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
128 	{ insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
129 	{ insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
130 	{ insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
131 	{ insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD },
132 	{ insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD },
133 	{ insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
134 	{ insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
135 	{ insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
136 	{ insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
137 	{ insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE },
138 	{ insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
139 	{ insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
140 	{ insn_j, M(j_op,0,0,0,0,0), JIMM },
141 	{ insn_jal, M(jal_op,0,0,0,0,0), JIMM },
142 	{ insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
143 	{ insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
144 	{ insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
145 	{ insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
146 	{ insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
147 	{ insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
148 	{ insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD },
149 	{ insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD },
150 	{ insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
151 	{ insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
152 	{ insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
153 	{ insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
154 	{ insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
155 	{ insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
156 	{ insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
157 	{ insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
158 	{ insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
159 	{ insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
160 	{ insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
161 	{ insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
162 	{ insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
163 	{ insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
164 	{ insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
165 	{ insn_invalid, 0, 0 }
166 };
167 
168 #undef M
169 
170 static __init u32 build_rs(u32 arg)
171 {
172 	if (arg & ~RS_MASK)
173 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
174 
175 	return (arg & RS_MASK) << RS_SH;
176 }
177 
178 static __init u32 build_rt(u32 arg)
179 {
180 	if (arg & ~RT_MASK)
181 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
182 
183 	return (arg & RT_MASK) << RT_SH;
184 }
185 
186 static __init u32 build_rd(u32 arg)
187 {
188 	if (arg & ~RD_MASK)
189 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
190 
191 	return (arg & RD_MASK) << RD_SH;
192 }
193 
194 static __init u32 build_re(u32 arg)
195 {
196 	if (arg & ~RE_MASK)
197 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
198 
199 	return (arg & RE_MASK) << RE_SH;
200 }
201 
202 static __init u32 build_simm(s32 arg)
203 {
204 	if (arg > 0x7fff || arg < -0x8000)
205 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
206 
207 	return arg & 0xffff;
208 }
209 
210 static __init u32 build_uimm(u32 arg)
211 {
212 	if (arg & ~IMM_MASK)
213 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
214 
215 	return arg & IMM_MASK;
216 }
217 
218 static __init u32 build_bimm(s32 arg)
219 {
220 	if (arg > 0x1ffff || arg < -0x20000)
221 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
222 
223 	if (arg & 0x3)
224 		printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
225 
226 	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
227 }
228 
229 static __init u32 build_jimm(u32 arg)
230 {
231 	if (arg & ~((JIMM_MASK) << 2))
232 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
233 
234 	return (arg >> 2) & JIMM_MASK;
235 }
236 
237 static __init u32 build_func(u32 arg)
238 {
239 	if (arg & ~FUNC_MASK)
240 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
241 
242 	return arg & FUNC_MASK;
243 }
244 
245 /*
246  * The order of opcode arguments is implicitly left to right,
247  * starting with RS and ending with FUNC or IMM.
248  */
249 static void __init build_insn(u32 **buf, enum opcode opc, ...)
250 {
251 	struct insn *ip = NULL;
252 	unsigned int i;
253 	va_list ap;
254 	u32 op;
255 
256 	for (i = 0; insn_table[i].opcode != insn_invalid; i++)
257 		if (insn_table[i].opcode == opc) {
258 			ip = &insn_table[i];
259 			break;
260 		}
261 
262 	if (!ip)
263 		panic("Unsupported TLB synthesizer instruction %d", opc);
264 
265 	op = ip->match;
266 	va_start(ap, opc);
267 	if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
268 	if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
269 	if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
270 	if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
271 	if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
272 	if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
273 	if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
274 	if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
275 	if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
276 	va_end(ap);
277 
278 	**buf = op;
279 	(*buf)++;
280 }
281 
282 #define I_u1u2u3(op)						\
283 	static inline void i##op(u32 **buf, unsigned int a,	\
284 	 	unsigned int b, unsigned int c)			\
285 	{							\
286 		build_insn(buf, insn##op, a, b, c);		\
287 	}
288 
289 #define I_u2u1u3(op)						\
290 	static inline void i##op(u32 **buf, unsigned int a,	\
291 	 	unsigned int b, unsigned int c)			\
292 	{							\
293 		build_insn(buf, insn##op, b, a, c);		\
294 	}
295 
296 #define I_u3u1u2(op)						\
297 	static inline void i##op(u32 **buf, unsigned int a,	\
298 	 	unsigned int b, unsigned int c)			\
299 	{							\
300 		build_insn(buf, insn##op, b, c, a);		\
301 	}
302 
303 #define I_u1u2s3(op)						\
304 	static inline void i##op(u32 **buf, unsigned int a,	\
305 	 	unsigned int b, signed int c)			\
306 	{							\
307 		build_insn(buf, insn##op, a, b, c);		\
308 	}
309 
310 #define I_u2s3u1(op)						\
311 	static inline void i##op(u32 **buf, unsigned int a,	\
312 	 	signed int b, unsigned int c)			\
313 	{							\
314 		build_insn(buf, insn##op, c, a, b);		\
315 	}
316 
317 #define I_u2u1s3(op)						\
318 	static inline void i##op(u32 **buf, unsigned int a,	\
319 	 	unsigned int b, signed int c)			\
320 	{							\
321 		build_insn(buf, insn##op, b, a, c);		\
322 	}
323 
324 #define I_u1u2(op)						\
325 	static inline void i##op(u32 **buf, unsigned int a,	\
326 	 	unsigned int b)					\
327 	{							\
328 		build_insn(buf, insn##op, a, b);		\
329 	}
330 
331 #define I_u1s2(op)						\
332 	static inline void i##op(u32 **buf, unsigned int a,	\
333 	 	signed int b)					\
334 	{							\
335 		build_insn(buf, insn##op, a, b);		\
336 	}
337 
338 #define I_u1(op)						\
339 	static inline void i##op(u32 **buf, unsigned int a)	\
340 	{							\
341 		build_insn(buf, insn##op, a);			\
342 	}
343 
344 #define I_0(op)							\
345 	static inline void i##op(u32 **buf)			\
346 	{							\
347 		build_insn(buf, insn##op);			\
348 	}
349 
350 I_u2u1s3(_addiu);
351 I_u3u1u2(_addu);
352 I_u2u1u3(_andi);
353 I_u3u1u2(_and);
354 I_u1u2s3(_beq);
355 I_u1u2s3(_beql);
356 I_u1s2(_bgez);
357 I_u1s2(_bgezl);
358 I_u1s2(_bltz);
359 I_u1s2(_bltzl);
360 I_u1u2s3(_bne);
361 I_u1u2(_dmfc0);
362 I_u1u2(_dmtc0);
363 I_u2u1s3(_daddiu);
364 I_u3u1u2(_daddu);
365 I_u2u1u3(_dsll);
366 I_u2u1u3(_dsll32);
367 I_u2u1u3(_dsra);
368 I_u2u1u3(_dsrl);
369 I_u2u1u3(_dsrl32);
370 I_u3u1u2(_dsubu);
371 I_0(_eret);
372 I_u1(_j);
373 I_u1(_jal);
374 I_u1(_jr);
375 I_u2s3u1(_ld);
376 I_u2s3u1(_ll);
377 I_u2s3u1(_lld);
378 I_u1s2(_lui);
379 I_u2s3u1(_lw);
380 I_u1u2(_mfc0);
381 I_u1u2(_mtc0);
382 I_u2u1u3(_ori);
383 I_0(_rfe);
384 I_u2s3u1(_sc);
385 I_u2s3u1(_scd);
386 I_u2s3u1(_sd);
387 I_u2u1u3(_sll);
388 I_u2u1u3(_sra);
389 I_u2u1u3(_srl);
390 I_u3u1u2(_subu);
391 I_u2s3u1(_sw);
392 I_0(_tlbp);
393 I_0(_tlbwi);
394 I_0(_tlbwr);
395 I_u3u1u2(_xor)
396 I_u2u1u3(_xori);
397 
398 /*
399  * handling labels
400  */
401 
402 enum label_id {
403 	label_invalid,
404 	label_second_part,
405 	label_leave,
406 	label_vmalloc,
407 	label_vmalloc_done,
408 	label_tlbw_hazard,
409 	label_split,
410 	label_nopage_tlbl,
411 	label_nopage_tlbs,
412 	label_nopage_tlbm,
413 	label_smp_pgtable_change,
414 	label_r3000_write_probe_fail,
415 	label_r3000_write_probe_ok
416 };
417 
418 struct label {
419 	u32 *addr;
420 	enum label_id lab;
421 };
422 
423 static __init void build_label(struct label **lab, u32 *addr,
424 			       enum label_id l)
425 {
426 	(*lab)->addr = addr;
427 	(*lab)->lab = l;
428 	(*lab)++;
429 }
430 
431 #define L_LA(lb)						\
432 	static inline void l##lb(struct label **lab, u32 *addr) \
433 	{							\
434 		build_label(lab, addr, label##lb);		\
435 	}
436 
437 L_LA(_second_part)
438 L_LA(_leave)
439 L_LA(_vmalloc)
440 L_LA(_vmalloc_done)
441 L_LA(_tlbw_hazard)
442 L_LA(_split)
443 L_LA(_nopage_tlbl)
444 L_LA(_nopage_tlbs)
445 L_LA(_nopage_tlbm)
446 L_LA(_smp_pgtable_change)
447 L_LA(_r3000_write_probe_fail)
448 L_LA(_r3000_write_probe_ok)
449 
450 /* convenience macros for instructions */
451 #ifdef CONFIG_MIPS64
452 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
453 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
454 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
455 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
456 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
457 # define i_MFC0(buf, rt, rd) i_dmfc0(buf, rt, rd)
458 # define i_MTC0(buf, rt, rd) i_dmtc0(buf, rt, rd)
459 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
460 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
461 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
462 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
463 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
464 #else
465 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
466 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
467 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
468 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
469 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
470 # define i_MFC0(buf, rt, rd) i_mfc0(buf, rt, rd)
471 # define i_MTC0(buf, rt, rd) i_mtc0(buf, rt, rd)
472 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
473 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
474 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
475 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
476 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
477 #endif
478 
479 #define i_b(buf, off) i_beq(buf, 0, 0, off)
480 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
481 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
482 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
483 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
484 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
485 #define i_nop(buf) i_sll(buf, 0, 0, 0)
486 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
487 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
488 
489 #ifdef CONFIG_MIPS64
490 static __init int __attribute__((unused)) in_compat_space_p(long addr)
491 {
492 	/* Is this address in 32bit compat space? */
493 	return (((addr) & 0xffffffff00000000) == 0xffffffff00000000);
494 }
495 
496 static __init int __attribute__((unused)) rel_highest(long val)
497 {
498 	return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
499 }
500 
501 static __init int __attribute__((unused)) rel_higher(long val)
502 {
503 	return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
504 }
505 #endif
506 
507 static __init int rel_hi(long val)
508 {
509 	return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
510 }
511 
512 static __init int rel_lo(long val)
513 {
514 	return ((val & 0xffff) ^ 0x8000) - 0x8000;
515 }
516 
517 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
518 {
519 #if CONFIG_MIPS64
520 	if (!in_compat_space_p(addr)) {
521 		i_lui(buf, rs, rel_highest(addr));
522 		if (rel_higher(addr))
523 			i_daddiu(buf, rs, rs, rel_higher(addr));
524 		if (rel_hi(addr)) {
525 			i_dsll(buf, rs, rs, 16);
526 			i_daddiu(buf, rs, rs, rel_hi(addr));
527 			i_dsll(buf, rs, rs, 16);
528 		} else
529 			i_dsll32(buf, rs, rs, 0);
530 	} else
531 #endif
532 		i_lui(buf, rs, rel_hi(addr));
533 }
534 
535 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
536 						long addr)
537 {
538 	i_LA_mostly(buf, rs, addr);
539 	if (rel_lo(addr))
540 		i_ADDIU(buf, rs, rs, rel_lo(addr));
541 }
542 
543 /*
544  * handle relocations
545  */
546 
547 struct reloc {
548 	u32 *addr;
549 	unsigned int type;
550 	enum label_id lab;
551 };
552 
553 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
554 			       enum label_id l)
555 {
556 	(*rel)->addr = addr;
557 	(*rel)->type = R_MIPS_PC16;
558 	(*rel)->lab = l;
559 	(*rel)++;
560 }
561 
562 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
563 {
564 	long laddr = (long)lab->addr;
565 	long raddr = (long)rel->addr;
566 
567 	switch (rel->type) {
568 	case R_MIPS_PC16:
569 		*rel->addr |= build_bimm(laddr - (raddr + 4));
570 		break;
571 
572 	default:
573 		panic("Unsupported TLB synthesizer relocation %d",
574 		      rel->type);
575 	}
576 }
577 
578 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
579 {
580 	struct label *l;
581 
582 	for (; rel->lab != label_invalid; rel++)
583 		for (l = lab; l->lab != label_invalid; l++)
584 			if (rel->lab == l->lab)
585 				__resolve_relocs(rel, l);
586 }
587 
588 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
589 			       long off)
590 {
591 	for (; rel->lab != label_invalid; rel++)
592 		if (rel->addr >= first && rel->addr < end)
593 			rel->addr += off;
594 }
595 
596 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
597 			       long off)
598 {
599 	for (; lab->lab != label_invalid; lab++)
600 		if (lab->addr >= first && lab->addr < end)
601 			lab->addr += off;
602 }
603 
604 static __init void copy_handler(struct reloc *rel, struct label *lab,
605 				u32 *first, u32 *end, u32 *target)
606 {
607 	long off = (long)(target - first);
608 
609 	memcpy(target, first, (end - first) * sizeof(u32));
610 
611 	move_relocs(rel, first, end, off);
612 	move_labels(lab, first, end, off);
613 }
614 
615 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
616 							  u32 *addr)
617 {
618 	for (; rel->lab != label_invalid; rel++) {
619 		if (rel->addr == addr
620 		    && (rel->type == R_MIPS_PC16
621 			|| rel->type == R_MIPS_26))
622 			return 1;
623 	}
624 
625 	return 0;
626 }
627 
628 /* convenience functions for labeled branches */
629 static void __attribute__((unused)) il_bltz(u32 **p, struct reloc **r,
630 					    unsigned int reg, enum label_id l)
631 {
632 	r_mips_pc16(r, *p, l);
633 	i_bltz(p, reg, 0);
634 }
635 
636 static void __attribute__((unused)) il_b(u32 **p, struct reloc **r,
637 					 enum label_id l)
638 {
639 	r_mips_pc16(r, *p, l);
640 	i_b(p, 0);
641 }
642 
643 static void il_beqz(u32 **p, struct reloc **r, unsigned int reg,
644 		    enum label_id l)
645 {
646 	r_mips_pc16(r, *p, l);
647 	i_beqz(p, reg, 0);
648 }
649 
650 static void __attribute__((unused))
651 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
652 {
653 	r_mips_pc16(r, *p, l);
654 	i_beqzl(p, reg, 0);
655 }
656 
657 static void il_bnez(u32 **p, struct reloc **r, unsigned int reg,
658 		    enum label_id l)
659 {
660 	r_mips_pc16(r, *p, l);
661 	i_bnez(p, reg, 0);
662 }
663 
664 static void il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
665 		     enum label_id l)
666 {
667 	r_mips_pc16(r, *p, l);
668 	i_bgezl(p, reg, 0);
669 }
670 
671 /* The only general purpose registers allowed in TLB handlers. */
672 #define K0		26
673 #define K1		27
674 
675 /* Some CP0 registers */
676 #define C0_INDEX	0
677 #define C0_ENTRYLO0	2
678 #define C0_ENTRYLO1	3
679 #define C0_CONTEXT	4
680 #define C0_BADVADDR	8
681 #define C0_ENTRYHI	10
682 #define C0_EPC		14
683 #define C0_XCONTEXT	20
684 
685 #ifdef CONFIG_MIPS64
686 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
687 #else
688 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
689 #endif
690 
691 /* The worst case length of the handler is around 18 instructions for
692  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
693  * Maximum space available is 32 instructions for R3000 and 64
694  * instructions for R4000.
695  *
696  * We deliberately chose a buffer size of 128, so we won't scribble
697  * over anything important on overflow before we panic.
698  */
699 static __initdata u32 tlb_handler[128];
700 
701 /* simply assume worst case size for labels and relocs */
702 static __initdata struct label labels[128];
703 static __initdata struct reloc relocs[128];
704 
705 /*
706  * The R3000 TLB handler is simple.
707  */
708 static void __init build_r3000_tlb_refill_handler(void)
709 {
710 	long pgdc = (long)pgd_current;
711 	u32 *p;
712 
713 	memset(tlb_handler, 0, sizeof(tlb_handler));
714 	p = tlb_handler;
715 
716 	i_mfc0(&p, K0, C0_BADVADDR);
717 	i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
718 	i_lw(&p, K1, rel_lo(pgdc), K1);
719 	i_srl(&p, K0, K0, 22); /* load delay */
720 	i_sll(&p, K0, K0, 2);
721 	i_addu(&p, K1, K1, K0);
722 	i_mfc0(&p, K0, C0_CONTEXT);
723 	i_lw(&p, K1, 0, K1); /* cp0 delay */
724 	i_andi(&p, K0, K0, 0xffc); /* load delay */
725 	i_addu(&p, K1, K1, K0);
726 	i_lw(&p, K0, 0, K1);
727 	i_nop(&p); /* load delay */
728 	i_mtc0(&p, K0, C0_ENTRYLO0);
729 	i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
730 	i_tlbwr(&p); /* cp0 delay */
731 	i_jr(&p, K1);
732 	i_rfe(&p); /* branch delay */
733 
734 	if (p > tlb_handler + 32)
735 		panic("TLB refill handler space exceeded");
736 
737 	printk("Synthesized TLB handler (%u instructions).\n",
738 	       (unsigned int)(p - tlb_handler));
739 #ifdef DEBUG_TLB
740 	{
741 		int i;
742 
743 		for (i = 0; i < (p - tlb_handler); i++)
744 			printk("%08x\n", tlb_handler[i]);
745 	}
746 #endif
747 
748 	memcpy((void *)CAC_BASE, tlb_handler, 0x80);
749 	flush_icache_range(CAC_BASE, CAC_BASE + 0x80);
750 }
751 
752 /*
753  * The R4000 TLB handler is much more complicated. We have two
754  * consecutive handler areas with 32 instructions space each.
755  * Since they aren't used at the same time, we can overflow in the
756  * other one.To keep things simple, we first assume linear space,
757  * then we relocate it to the final handler layout as needed.
758  */
759 static __initdata u32 final_handler[64];
760 
761 /*
762  * Hazards
763  *
764  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
765  * 2. A timing hazard exists for the TLBP instruction.
766  *
767  *      stalling_instruction
768  *      TLBP
769  *
770  * The JTLB is being read for the TLBP throughout the stall generated by the
771  * previous instruction. This is not really correct as the stalling instruction
772  * can modify the address used to access the JTLB.  The failure symptom is that
773  * the TLBP instruction will use an address created for the stalling instruction
774  * and not the address held in C0_ENHI and thus report the wrong results.
775  *
776  * The software work-around is to not allow the instruction preceding the TLBP
777  * to stall - make it an NOP or some other instruction guaranteed not to stall.
778  *
779  * Errata 2 will not be fixed.  This errata is also on the R5000.
780  *
781  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
782  */
783 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
784 {
785 	switch (current_cpu_data.cputype) {
786 	case CPU_R5000:
787 	case CPU_R5000A:
788 	case CPU_NEVADA:
789 		i_nop(p);
790 		i_tlbp(p);
791 		break;
792 
793 	default:
794 		i_tlbp(p);
795 		break;
796 	}
797 }
798 
799 /*
800  * Write random or indexed TLB entry, and care about the hazards from
801  * the preceeding mtc0 and for the following eret.
802  */
803 enum tlb_write_entry { tlb_random, tlb_indexed };
804 
805 static __init void build_tlb_write_entry(u32 **p, struct label **l,
806 					 struct reloc **r,
807 					 enum tlb_write_entry wmode)
808 {
809 	void(*tlbw)(u32 **) = NULL;
810 
811 	switch (wmode) {
812 	case tlb_random: tlbw = i_tlbwr; break;
813 	case tlb_indexed: tlbw = i_tlbwi; break;
814 	}
815 
816 	switch (current_cpu_data.cputype) {
817 	case CPU_R4000PC:
818 	case CPU_R4000SC:
819 	case CPU_R4000MC:
820 	case CPU_R4400PC:
821 	case CPU_R4400SC:
822 	case CPU_R4400MC:
823 		/*
824 		 * This branch uses up a mtc0 hazard nop slot and saves
825 		 * two nops after the tlbw instruction.
826 		 */
827 		il_bgezl(p, r, 0, label_tlbw_hazard);
828 		tlbw(p);
829 		l_tlbw_hazard(l, *p);
830 		i_nop(p);
831 		break;
832 
833 	case CPU_R4600:
834 	case CPU_R4700:
835 	case CPU_R5000:
836 	case CPU_R5000A:
837 	case CPU_5KC:
838 	case CPU_TX49XX:
839 	case CPU_AU1000:
840 	case CPU_AU1100:
841 	case CPU_AU1500:
842 	case CPU_AU1550:
843 		i_nop(p);
844 		tlbw(p);
845 		break;
846 
847 	case CPU_R10000:
848 	case CPU_R12000:
849 	case CPU_4KC:
850 	case CPU_SB1:
851 	case CPU_4KSC:
852 	case CPU_20KC:
853 	case CPU_25KF:
854 		tlbw(p);
855 		break;
856 
857 	case CPU_NEVADA:
858 		i_nop(p); /* QED specifies 2 nops hazard */
859 		/*
860 		 * This branch uses up a mtc0 hazard nop slot and saves
861 		 * a nop after the tlbw instruction.
862 		 */
863 		il_bgezl(p, r, 0, label_tlbw_hazard);
864 		tlbw(p);
865 		l_tlbw_hazard(l, *p);
866 		break;
867 
868 	case CPU_RM7000:
869 		i_nop(p);
870 		i_nop(p);
871 		i_nop(p);
872 		i_nop(p);
873 		tlbw(p);
874 		break;
875 
876 	case CPU_4KEC:
877 	case CPU_24K:
878 		i_ehb(p);
879 		tlbw(p);
880 		break;
881 
882 	case CPU_RM9000:
883 		/*
884 		 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
885 		 * use of the JTLB for instructions should not occur for 4
886 		 * cpu cycles and use for data translations should not occur
887 		 * for 3 cpu cycles.
888 		 */
889 		i_ssnop(p);
890 		i_ssnop(p);
891 		i_ssnop(p);
892 		i_ssnop(p);
893 		tlbw(p);
894 		i_ssnop(p);
895 		i_ssnop(p);
896 		i_ssnop(p);
897 		i_ssnop(p);
898 		break;
899 
900 	case CPU_VR4111:
901 	case CPU_VR4121:
902 	case CPU_VR4122:
903 	case CPU_VR4181:
904 	case CPU_VR4181A:
905 		i_nop(p);
906 		i_nop(p);
907 		tlbw(p);
908 		i_nop(p);
909 		i_nop(p);
910 		break;
911 
912 	case CPU_VR4131:
913 	case CPU_VR4133:
914 		i_nop(p);
915 		i_nop(p);
916 		tlbw(p);
917 		break;
918 
919 	default:
920 		panic("No TLB refill handler yet (CPU type: %d)",
921 		      current_cpu_data.cputype);
922 		break;
923 	}
924 }
925 
926 #ifdef CONFIG_MIPS64
927 /*
928  * TMP and PTR are scratch.
929  * TMP will be clobbered, PTR will hold the pmd entry.
930  */
931 static __init void
932 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
933 		 unsigned int tmp, unsigned int ptr)
934 {
935 	long pgdc = (long)pgd_current;
936 
937 	/*
938 	 * The vmalloc handling is not in the hotpath.
939 	 */
940 	i_dmfc0(p, tmp, C0_BADVADDR);
941 	il_bltz(p, r, tmp, label_vmalloc);
942 	/* No i_nop needed here, since the next insn doesn't touch TMP. */
943 
944 #ifdef CONFIG_SMP
945 	/*
946 	 * 64 bit SMP has the lower part of &pgd_current[smp_processor_id()]
947 	 * stored in CONTEXT.
948 	 */
949 	if (in_compat_space_p(pgdc)) {
950 		i_dmfc0(p, ptr, C0_CONTEXT);
951 		i_dsra(p, ptr, ptr, 23);
952 		i_ld(p, ptr, 0, ptr);
953 	} else {
954 #ifdef CONFIG_BUILD_ELF64
955 		i_dmfc0(p, ptr, C0_CONTEXT);
956 		i_dsrl(p, ptr, ptr, 23);
957 		i_dsll(p, ptr, ptr, 3);
958 		i_LA_mostly(p, tmp, pgdc);
959 		i_daddu(p, ptr, ptr, tmp);
960 		i_dmfc0(p, tmp, C0_BADVADDR);
961 		i_ld(p, ptr, rel_lo(pgdc), ptr);
962 #else
963 		i_dmfc0(p, ptr, C0_CONTEXT);
964 		i_lui(p, tmp, rel_highest(pgdc));
965 		i_dsll(p, ptr, ptr, 9);
966 		i_daddiu(p, tmp, tmp, rel_higher(pgdc));
967 		i_dsrl32(p, ptr, ptr, 0);
968 		i_and(p, ptr, ptr, tmp);
969 		i_dmfc0(p, tmp, C0_BADVADDR);
970 		i_ld(p, ptr, 0, ptr);
971 #endif
972 	}
973 #else
974 	i_LA_mostly(p, ptr, pgdc);
975 	i_ld(p, ptr, rel_lo(pgdc), ptr);
976 #endif
977 
978 	l_vmalloc_done(l, *p);
979 	i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
980 	i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
981 	i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
982 	i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
983 	i_ld(p, ptr, 0, ptr); /* get pmd pointer */
984 	i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
985 	i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
986 	i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
987 }
988 
989 /*
990  * BVADDR is the faulting address, PTR is scratch.
991  * PTR will hold the pgd for vmalloc.
992  */
993 static __init void
994 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
995 			unsigned int bvaddr, unsigned int ptr)
996 {
997 	long swpd = (long)swapper_pg_dir;
998 
999 	l_vmalloc(l, *p);
1000 	i_LA(p, ptr, VMALLOC_START);
1001 	i_dsubu(p, bvaddr, bvaddr, ptr);
1002 
1003 	if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1004 		il_b(p, r, label_vmalloc_done);
1005 		i_lui(p, ptr, rel_hi(swpd));
1006 	} else {
1007 		i_LA_mostly(p, ptr, swpd);
1008 		il_b(p, r, label_vmalloc_done);
1009 		i_daddiu(p, ptr, ptr, rel_lo(swpd));
1010 	}
1011 }
1012 
1013 #else /* !CONFIG_MIPS64 */
1014 
1015 /*
1016  * TMP and PTR are scratch.
1017  * TMP will be clobbered, PTR will hold the pgd entry.
1018  */
1019 static __init void __attribute__((unused))
1020 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1021 {
1022 	long pgdc = (long)pgd_current;
1023 
1024 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1025 #ifdef CONFIG_SMP
1026 	i_mfc0(p, ptr, C0_CONTEXT);
1027 	i_LA_mostly(p, tmp, pgdc);
1028 	i_srl(p, ptr, ptr, 23);
1029 	i_sll(p, ptr, ptr, 2);
1030 	i_addu(p, ptr, tmp, ptr);
1031 #else
1032 	i_LA_mostly(p, ptr, pgdc);
1033 #endif
1034 	i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1035 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1036 	i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1037 	i_sll(p, tmp, tmp, PGD_T_LOG2);
1038 	i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1039 }
1040 
1041 #endif /* !CONFIG_MIPS64 */
1042 
1043 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1044 {
1045 	unsigned int shift = 4 - (PTE_T_LOG2 + 1);
1046 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1047 
1048 	switch (current_cpu_data.cputype) {
1049 	case CPU_VR41XX:
1050 	case CPU_VR4111:
1051 	case CPU_VR4121:
1052 	case CPU_VR4122:
1053 	case CPU_VR4131:
1054 	case CPU_VR4181:
1055 	case CPU_VR4181A:
1056 	case CPU_VR4133:
1057 		shift += 2;
1058 		break;
1059 
1060 	default:
1061 		break;
1062 	}
1063 
1064 	if (shift)
1065 		i_SRL(p, ctx, ctx, shift);
1066 	i_andi(p, ctx, ctx, mask);
1067 }
1068 
1069 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1070 {
1071 	/*
1072 	 * Bug workaround for the Nevada. It seems as if under certain
1073 	 * circumstances the move from cp0_context might produce a
1074 	 * bogus result when the mfc0 instruction and its consumer are
1075 	 * in a different cacheline or a load instruction, probably any
1076 	 * memory reference, is between them.
1077 	 */
1078 	switch (current_cpu_data.cputype) {
1079 	case CPU_NEVADA:
1080 		i_LW(p, ptr, 0, ptr);
1081 		GET_CONTEXT(p, tmp); /* get context reg */
1082 		break;
1083 
1084 	default:
1085 		GET_CONTEXT(p, tmp); /* get context reg */
1086 		i_LW(p, ptr, 0, ptr);
1087 		break;
1088 	}
1089 
1090 	build_adjust_context(p, tmp);
1091 	i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1092 }
1093 
1094 static __init void build_update_entries(u32 **p, unsigned int tmp,
1095 					unsigned int ptep)
1096 {
1097 	/*
1098 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1099 	 * Kernel is a special case. Only a few CPUs use it.
1100 	 */
1101 #ifdef CONFIG_64BIT_PHYS_ADDR
1102 	if (cpu_has_64bits) {
1103 		i_ld(p, tmp, 0, ptep); /* get even pte */
1104 		i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1105 		i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1106 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1107 		i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1108 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1109 	} else {
1110 		int pte_off_even = sizeof(pte_t) / 2;
1111 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1112 
1113 		/* The pte entries are pre-shifted */
1114 		i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1115 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1116 		i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1117 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1118 	}
1119 #else
1120 	i_LW(p, tmp, 0, ptep); /* get even pte */
1121 	i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1122 	if (r45k_bvahwbug())
1123 		build_tlb_probe_entry(p);
1124 	i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1125 	if (r4k_250MHZhwbug())
1126 		i_mtc0(p, 0, C0_ENTRYLO0);
1127 	i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1128 	i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1129 	if (r45k_bvahwbug())
1130 		i_mfc0(p, tmp, C0_INDEX);
1131 	if (r4k_250MHZhwbug())
1132 		i_mtc0(p, 0, C0_ENTRYLO1);
1133 	i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1134 #endif
1135 }
1136 
1137 static void __init build_r4000_tlb_refill_handler(void)
1138 {
1139 	u32 *p = tlb_handler;
1140 	struct label *l = labels;
1141 	struct reloc *r = relocs;
1142 	u32 *f;
1143 	unsigned int final_len;
1144 
1145 	memset(tlb_handler, 0, sizeof(tlb_handler));
1146 	memset(labels, 0, sizeof(labels));
1147 	memset(relocs, 0, sizeof(relocs));
1148 	memset(final_handler, 0, sizeof(final_handler));
1149 
1150 	/*
1151 	 * create the plain linear handler
1152 	 */
1153 	if (bcm1250_m3_war()) {
1154 		i_MFC0(&p, K0, C0_BADVADDR);
1155 		i_MFC0(&p, K1, C0_ENTRYHI);
1156 		i_xor(&p, K0, K0, K1);
1157 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1158 		il_bnez(&p, &r, K0, label_leave);
1159 		/* No need for i_nop */
1160 	}
1161 
1162 #ifdef CONFIG_MIPS64
1163 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1164 #else
1165 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1166 #endif
1167 
1168 	build_get_ptep(&p, K0, K1);
1169 	build_update_entries(&p, K0, K1);
1170 	build_tlb_write_entry(&p, &l, &r, tlb_random);
1171 	l_leave(&l, p);
1172 	i_eret(&p); /* return from trap */
1173 
1174 #ifdef CONFIG_MIPS64
1175 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1176 #endif
1177 
1178 	/*
1179 	 * Overflow check: For the 64bit handler, we need at least one
1180 	 * free instruction slot for the wrap-around branch. In worst
1181 	 * case, if the intended insertion point is a delay slot, we
1182 	 * need three, with the the second nop'ed and the third being
1183 	 * unused.
1184 	 */
1185 #ifdef CONFIG_MIPS32
1186 	if ((p - tlb_handler) > 64)
1187 		panic("TLB refill handler space exceeded");
1188 #else
1189 	if (((p - tlb_handler) > 63)
1190 	    || (((p - tlb_handler) > 61)
1191 		&& insn_has_bdelay(relocs, tlb_handler + 29)))
1192 		panic("TLB refill handler space exceeded");
1193 #endif
1194 
1195 	/*
1196 	 * Now fold the handler in the TLB refill handler space.
1197 	 */
1198 #ifdef CONFIG_MIPS32
1199 	f = final_handler;
1200 	/* Simplest case, just copy the handler. */
1201 	copy_handler(relocs, labels, tlb_handler, p, f);
1202 	final_len = p - tlb_handler;
1203 #else /* CONFIG_MIPS64 */
1204 	f = final_handler + 32;
1205 	if ((p - tlb_handler) <= 32) {
1206 		/* Just copy the handler. */
1207 		copy_handler(relocs, labels, tlb_handler, p, f);
1208 		final_len = p - tlb_handler;
1209 	} else {
1210 		u32 *split = tlb_handler + 30;
1211 
1212 		/*
1213 		 * Find the split point.
1214 		 */
1215 		if (insn_has_bdelay(relocs, split - 1))
1216 			split--;
1217 
1218 		/* Copy first part of the handler. */
1219 		copy_handler(relocs, labels, tlb_handler, split, f);
1220 		f += split - tlb_handler;
1221 
1222 		/* Insert branch. */
1223 		l_split(&l, final_handler);
1224 		il_b(&f, &r, label_split);
1225 		if (insn_has_bdelay(relocs, split))
1226 			i_nop(&f);
1227 		else {
1228 			copy_handler(relocs, labels, split, split + 1, f);
1229 			move_labels(labels, f, f + 1, -1);
1230 			f++;
1231 			split++;
1232 		}
1233 
1234 		/* Copy the rest of the handler. */
1235 		copy_handler(relocs, labels, split, p, final_handler);
1236 		final_len = (f - (final_handler + 32)) + (p - split);
1237 	}
1238 #endif /* CONFIG_MIPS64 */
1239 
1240 	resolve_relocs(relocs, labels);
1241 	printk("Synthesized TLB refill handler (%u instructions).\n",
1242 	       final_len);
1243 
1244 #ifdef DEBUG_TLB
1245 	{
1246 		int i;
1247 
1248 		for (i = 0; i < 64; i++)
1249 			printk("%08x\n", final_handler[i]);
1250 	}
1251 #endif
1252 
1253 	memcpy((void *)CAC_BASE, final_handler, 0x100);
1254 	flush_icache_range(CAC_BASE, CAC_BASE + 0x100);
1255 }
1256 
1257 /*
1258  * TLB load/store/modify handlers.
1259  *
1260  * Only the fastpath gets synthesized at runtime, the slowpath for
1261  * do_page_fault remains normal asm.
1262  */
1263 extern void tlb_do_page_fault_0(void);
1264 extern void tlb_do_page_fault_1(void);
1265 
1266 #define __tlb_handler_align \
1267 	__attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1268 
1269 /*
1270  * 128 instructions for the fastpath handler is generous and should
1271  * never be exceeded.
1272  */
1273 #define FASTPATH_SIZE 128
1274 
1275 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1276 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1277 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1278 
1279 static void __init
1280 iPTE_LW(u32 **p, struct label **l, unsigned int pte, int offset,
1281 	unsigned int ptr)
1282 {
1283 #ifdef CONFIG_SMP
1284 # ifdef CONFIG_64BIT_PHYS_ADDR
1285 	if (cpu_has_64bits)
1286 		i_lld(p, pte, offset, ptr);
1287 	else
1288 # endif
1289 		i_LL(p, pte, offset, ptr);
1290 #else
1291 # ifdef CONFIG_64BIT_PHYS_ADDR
1292 	if (cpu_has_64bits)
1293 		i_ld(p, pte, offset, ptr);
1294 	else
1295 # endif
1296 		i_LW(p, pte, offset, ptr);
1297 #endif
1298 }
1299 
1300 static void __init
1301 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, int offset,
1302 	unsigned int ptr)
1303 {
1304 #ifdef CONFIG_SMP
1305 # ifdef CONFIG_64BIT_PHYS_ADDR
1306 	if (cpu_has_64bits)
1307 		i_scd(p, pte, offset, ptr);
1308 	else
1309 # endif
1310 		i_SC(p, pte, offset, ptr);
1311 
1312 	if (r10000_llsc_war())
1313 		il_beqzl(p, r, pte, label_smp_pgtable_change);
1314 	else
1315 		il_beqz(p, r, pte, label_smp_pgtable_change);
1316 
1317 # ifdef CONFIG_64BIT_PHYS_ADDR
1318 	if (!cpu_has_64bits) {
1319 		/* no i_nop needed */
1320 		i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1321 		i_ori(p, pte, pte, _PAGE_VALID);
1322 		i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1323 		il_beqz(p, r, pte, label_smp_pgtable_change);
1324 		/* no i_nop needed */
1325 		i_lw(p, pte, 0, ptr);
1326 	} else
1327 		i_nop(p);
1328 # else
1329 	i_nop(p);
1330 # endif
1331 #else
1332 # ifdef CONFIG_64BIT_PHYS_ADDR
1333 	if (cpu_has_64bits)
1334 		i_sd(p, pte, offset, ptr);
1335 	else
1336 # endif
1337 		i_SW(p, pte, offset, ptr);
1338 
1339 # ifdef CONFIG_64BIT_PHYS_ADDR
1340 	if (!cpu_has_64bits) {
1341 		i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1342 		i_ori(p, pte, pte, _PAGE_VALID);
1343 		i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1344 		i_lw(p, pte, 0, ptr);
1345 	}
1346 # endif
1347 #endif
1348 }
1349 
1350 /*
1351  * Check if PTE is present, if not then jump to LABEL. PTR points to
1352  * the page table where this PTE is located, PTE will be re-loaded
1353  * with it's original value.
1354  */
1355 static void __init
1356 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1357 		  unsigned int pte, unsigned int ptr, enum label_id lid)
1358 {
1359 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1360 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1361 	il_bnez(p, r, pte, lid);
1362 	iPTE_LW(p, l, pte, 0, ptr);
1363 }
1364 
1365 /* Make PTE valid, store result in PTR. */
1366 static void __init
1367 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1368 		 unsigned int ptr)
1369 {
1370 	i_ori(p, pte, pte, _PAGE_VALID | _PAGE_ACCESSED);
1371 	iPTE_SW(p, r, pte, 0, ptr);
1372 }
1373 
1374 /*
1375  * Check if PTE can be written to, if not branch to LABEL. Regardless
1376  * restore PTE with value from PTR when done.
1377  */
1378 static void __init
1379 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1380 		   unsigned int pte, unsigned int ptr, enum label_id lid)
1381 {
1382 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1383 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1384 	il_bnez(p, r, pte, lid);
1385 	iPTE_LW(p, l, pte, 0, ptr);
1386 }
1387 
1388 /* Make PTE writable, update software status bits as well, then store
1389  * at PTR.
1390  */
1391 static void __init
1392 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1393 		 unsigned int ptr)
1394 {
1395 	i_ori(p, pte, pte,
1396 	      _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1397 	iPTE_SW(p, r, pte, 0, ptr);
1398 }
1399 
1400 /*
1401  * Check if PTE can be modified, if not branch to LABEL. Regardless
1402  * restore PTE with value from PTR when done.
1403  */
1404 static void __init
1405 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1406 		     unsigned int pte, unsigned int ptr, enum label_id lid)
1407 {
1408 	i_andi(p, pte, pte, _PAGE_WRITE);
1409 	il_beqz(p, r, pte, lid);
1410 	iPTE_LW(p, l, pte, 0, ptr);
1411 }
1412 
1413 /*
1414  * R3000 style TLB load/store/modify handlers.
1415  */
1416 
1417 /* This places the pte in the page table at PTR into ENTRYLO0. */
1418 static void __init
1419 build_r3000_pte_reload(u32 **p, unsigned int ptr)
1420 {
1421 	i_lw(p, ptr, 0, ptr);
1422 	i_nop(p); /* load delay */
1423 	i_mtc0(p, ptr, C0_ENTRYLO0);
1424 	i_nop(p); /* cp0 delay */
1425 }
1426 
1427 /*
1428  * The index register may have the probe fail bit set,
1429  * because we would trap on access kseg2, i.e. without refill.
1430  */
1431 static void __init
1432 build_r3000_tlb_write(u32 **p, struct label **l, struct reloc **r,
1433 		      unsigned int tmp)
1434 {
1435 	i_mfc0(p, tmp, C0_INDEX);
1436 	i_nop(p); /* cp0 delay */
1437 	il_bltz(p, r, tmp, label_r3000_write_probe_fail);
1438 	i_nop(p); /* branch delay */
1439 	i_tlbwi(p);
1440 	il_b(p, r, label_r3000_write_probe_ok);
1441 	i_nop(p); /* branch delay */
1442 	l_r3000_write_probe_fail(l, *p);
1443 	i_tlbwr(p);
1444 	l_r3000_write_probe_ok(l, *p);
1445 }
1446 
1447 static void __init
1448 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1449 				   unsigned int ptr)
1450 {
1451 	long pgdc = (long)pgd_current;
1452 
1453 	i_mfc0(p, pte, C0_BADVADDR);
1454 	i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1455 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1456 	i_srl(p, pte, pte, 22); /* load delay */
1457 	i_sll(p, pte, pte, 2);
1458 	i_addu(p, ptr, ptr, pte);
1459 	i_mfc0(p, pte, C0_CONTEXT);
1460 	i_lw(p, ptr, 0, ptr); /* cp0 delay */
1461 	i_andi(p, pte, pte, 0xffc); /* load delay */
1462 	i_addu(p, ptr, ptr, pte);
1463 	i_lw(p, pte, 0, ptr);
1464 	i_nop(p); /* load delay */
1465 	i_tlbp(p);
1466 }
1467 
1468 static void __init
1469 build_r3000_tlbchange_handler_tail(u32 **p, unsigned int tmp)
1470 {
1471 	i_mfc0(p, tmp, C0_EPC);
1472 	i_nop(p); /* cp0 delay */
1473 	i_jr(p, tmp);
1474 	i_rfe(p); /* branch delay */
1475 }
1476 
1477 static void __init build_r3000_tlb_load_handler(void)
1478 {
1479 	u32 *p = handle_tlbl;
1480 	struct label *l = labels;
1481 	struct reloc *r = relocs;
1482 
1483 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1484 	memset(labels, 0, sizeof(labels));
1485 	memset(relocs, 0, sizeof(relocs));
1486 
1487 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1488 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1489 	build_make_valid(&p, &r, K0, K1);
1490 	build_r3000_pte_reload(&p, K1);
1491 	build_r3000_tlb_write(&p, &l, &r, K0);
1492 	build_r3000_tlbchange_handler_tail(&p, K0);
1493 
1494 	l_nopage_tlbl(&l, p);
1495 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1496 	i_nop(&p);
1497 
1498 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1499 		panic("TLB load handler fastpath space exceeded");
1500 
1501 	resolve_relocs(relocs, labels);
1502 	printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1503 	       (unsigned int)(p - handle_tlbl));
1504 
1505 #ifdef DEBUG_TLB
1506 	{
1507 		int i;
1508 
1509 		for (i = 0; i < FASTPATH_SIZE; i++)
1510 			printk("%08x\n", handle_tlbl[i]);
1511 	}
1512 #endif
1513 
1514 	flush_icache_range((unsigned long)handle_tlbl,
1515 			   (unsigned long)handle_tlbl + FASTPATH_SIZE * sizeof(u32));
1516 }
1517 
1518 static void __init build_r3000_tlb_store_handler(void)
1519 {
1520 	u32 *p = handle_tlbs;
1521 	struct label *l = labels;
1522 	struct reloc *r = relocs;
1523 
1524 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1525 	memset(labels, 0, sizeof(labels));
1526 	memset(relocs, 0, sizeof(relocs));
1527 
1528 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1529 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1530 	build_make_write(&p, &r, K0, K1);
1531 	build_r3000_pte_reload(&p, K1);
1532 	build_r3000_tlb_write(&p, &l, &r, K0);
1533 	build_r3000_tlbchange_handler_tail(&p, K0);
1534 
1535 	l_nopage_tlbs(&l, p);
1536 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1537 	i_nop(&p);
1538 
1539 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1540 		panic("TLB store handler fastpath space exceeded");
1541 
1542 	resolve_relocs(relocs, labels);
1543 	printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1544 	       (unsigned int)(p - handle_tlbs));
1545 
1546 #ifdef DEBUG_TLB
1547 	{
1548 		int i;
1549 
1550 		for (i = 0; i < FASTPATH_SIZE; i++)
1551 			printk("%08x\n", handle_tlbs[i]);
1552 	}
1553 #endif
1554 
1555 	flush_icache_range((unsigned long)handle_tlbs,
1556 			   (unsigned long)handle_tlbs + FASTPATH_SIZE * sizeof(u32));
1557 }
1558 
1559 static void __init build_r3000_tlb_modify_handler(void)
1560 {
1561 	u32 *p = handle_tlbm;
1562 	struct label *l = labels;
1563 	struct reloc *r = relocs;
1564 
1565 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1566 	memset(labels, 0, sizeof(labels));
1567 	memset(relocs, 0, sizeof(relocs));
1568 
1569 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1570 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1571 	build_make_write(&p, &r, K0, K1);
1572 	build_r3000_pte_reload(&p, K1);
1573 	i_tlbwi(&p);
1574 	build_r3000_tlbchange_handler_tail(&p, K0);
1575 
1576 	l_nopage_tlbm(&l, p);
1577 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1578 	i_nop(&p);
1579 
1580 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1581 		panic("TLB modify handler fastpath space exceeded");
1582 
1583 	resolve_relocs(relocs, labels);
1584 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1585 	       (unsigned int)(p - handle_tlbm));
1586 
1587 #ifdef DEBUG_TLB
1588 	{
1589 		int i;
1590 
1591 		for (i = 0; i < FASTPATH_SIZE; i++)
1592 			printk("%08x\n", handle_tlbm[i]);
1593 	}
1594 #endif
1595 
1596 	flush_icache_range((unsigned long)handle_tlbm,
1597 			   (unsigned long)handle_tlbm + FASTPATH_SIZE * sizeof(u32));
1598 }
1599 
1600 /*
1601  * R4000 style TLB load/store/modify handlers.
1602  */
1603 static void __init
1604 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1605 				   struct reloc **r, unsigned int pte,
1606 				   unsigned int ptr)
1607 {
1608 #ifdef CONFIG_MIPS64
1609 	build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1610 #else
1611 	build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1612 #endif
1613 
1614 	i_MFC0(p, pte, C0_BADVADDR);
1615 	i_LW(p, ptr, 0, ptr);
1616 	i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1617 	i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1618 	i_ADDU(p, ptr, ptr, pte);
1619 
1620 #ifdef CONFIG_SMP
1621 	l_smp_pgtable_change(l, *p);
1622 # endif
1623 	iPTE_LW(p, l, pte, 0, ptr); /* get even pte */
1624 	build_tlb_probe_entry(p);
1625 }
1626 
1627 static void __init
1628 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1629 				   struct reloc **r, unsigned int tmp,
1630 				   unsigned int ptr)
1631 {
1632 	i_ori(p, ptr, ptr, sizeof(pte_t));
1633 	i_xori(p, ptr, ptr, sizeof(pte_t));
1634 	build_update_entries(p, tmp, ptr);
1635 	build_tlb_write_entry(p, l, r, tlb_indexed);
1636 	l_leave(l, *p);
1637 	i_eret(p); /* return from trap */
1638 
1639 #ifdef CONFIG_MIPS64
1640 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1641 #endif
1642 }
1643 
1644 static void __init build_r4000_tlb_load_handler(void)
1645 {
1646 	u32 *p = handle_tlbl;
1647 	struct label *l = labels;
1648 	struct reloc *r = relocs;
1649 
1650 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1651 	memset(labels, 0, sizeof(labels));
1652 	memset(relocs, 0, sizeof(relocs));
1653 
1654 	if (bcm1250_m3_war()) {
1655 		i_MFC0(&p, K0, C0_BADVADDR);
1656 		i_MFC0(&p, K1, C0_ENTRYHI);
1657 		i_xor(&p, K0, K0, K1);
1658 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1659 		il_bnez(&p, &r, K0, label_leave);
1660 		/* No need for i_nop */
1661 	}
1662 
1663 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1664 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1665 	build_make_valid(&p, &r, K0, K1);
1666 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1667 
1668 	l_nopage_tlbl(&l, p);
1669 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1670 	i_nop(&p);
1671 
1672 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1673 		panic("TLB load handler fastpath space exceeded");
1674 
1675 	resolve_relocs(relocs, labels);
1676 	printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1677 	       (unsigned int)(p - handle_tlbl));
1678 
1679 #ifdef DEBUG_TLB
1680 	{
1681 		int i;
1682 
1683 		for (i = 0; i < FASTPATH_SIZE; i++)
1684 			printk("%08x\n", handle_tlbl[i]);
1685 	}
1686 #endif
1687 
1688 	flush_icache_range((unsigned long)handle_tlbl,
1689 			   (unsigned long)handle_tlbl + FASTPATH_SIZE * sizeof(u32));
1690 }
1691 
1692 static void __init build_r4000_tlb_store_handler(void)
1693 {
1694 	u32 *p = handle_tlbs;
1695 	struct label *l = labels;
1696 	struct reloc *r = relocs;
1697 
1698 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1699 	memset(labels, 0, sizeof(labels));
1700 	memset(relocs, 0, sizeof(relocs));
1701 
1702 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1703 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1704 	build_make_write(&p, &r, K0, K1);
1705 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1706 
1707 	l_nopage_tlbs(&l, p);
1708 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1709 	i_nop(&p);
1710 
1711 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1712 		panic("TLB store handler fastpath space exceeded");
1713 
1714 	resolve_relocs(relocs, labels);
1715 	printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1716 	       (unsigned int)(p - handle_tlbs));
1717 
1718 #ifdef DEBUG_TLB
1719 	{
1720 		int i;
1721 
1722 		for (i = 0; i < FASTPATH_SIZE; i++)
1723 			printk("%08x\n", handle_tlbs[i]);
1724 	}
1725 #endif
1726 
1727 	flush_icache_range((unsigned long)handle_tlbs,
1728 			   (unsigned long)handle_tlbs + FASTPATH_SIZE * sizeof(u32));
1729 }
1730 
1731 static void __init build_r4000_tlb_modify_handler(void)
1732 {
1733 	u32 *p = handle_tlbm;
1734 	struct label *l = labels;
1735 	struct reloc *r = relocs;
1736 
1737 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1738 	memset(labels, 0, sizeof(labels));
1739 	memset(relocs, 0, sizeof(relocs));
1740 
1741 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1742 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1743 	/* Present and writable bits set, set accessed and dirty bits. */
1744 	build_make_write(&p, &r, K0, K1);
1745 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1746 
1747 	l_nopage_tlbm(&l, p);
1748 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1749 	i_nop(&p);
1750 
1751 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1752 		panic("TLB modify handler fastpath space exceeded");
1753 
1754 	resolve_relocs(relocs, labels);
1755 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1756 	       (unsigned int)(p - handle_tlbm));
1757 
1758 #ifdef DEBUG_TLB
1759 	{
1760 		int i;
1761 
1762 		for (i = 0; i < FASTPATH_SIZE; i++)
1763 			printk("%08x\n", handle_tlbm[i]);
1764 	}
1765 #endif
1766 
1767 	flush_icache_range((unsigned long)handle_tlbm,
1768 			   (unsigned long)handle_tlbm + FASTPATH_SIZE * sizeof(u32));
1769 }
1770 
1771 void __init build_tlb_refill_handler(void)
1772 {
1773 	/*
1774 	 * The refill handler is generated per-CPU, multi-node systems
1775 	 * may have local storage for it. The other handlers are only
1776 	 * needed once.
1777 	 */
1778 	static int run_once = 0;
1779 
1780 	switch (current_cpu_data.cputype) {
1781 	case CPU_R2000:
1782 	case CPU_R3000:
1783 	case CPU_R3000A:
1784 	case CPU_R3081E:
1785 	case CPU_TX3912:
1786 	case CPU_TX3922:
1787 	case CPU_TX3927:
1788 		build_r3000_tlb_refill_handler();
1789 		if (!run_once) {
1790 			build_r3000_tlb_load_handler();
1791 			build_r3000_tlb_store_handler();
1792 			build_r3000_tlb_modify_handler();
1793 			run_once++;
1794 		}
1795 		break;
1796 
1797 	case CPU_R6000:
1798 	case CPU_R6000A:
1799 		panic("No R6000 TLB refill handler yet");
1800 		break;
1801 
1802 	case CPU_R8000:
1803 		panic("No R8000 TLB refill handler yet");
1804 		break;
1805 
1806 	default:
1807 		build_r4000_tlb_refill_handler();
1808 		if (!run_once) {
1809 			build_r4000_tlb_load_handler();
1810 			build_r4000_tlb_store_handler();
1811 			build_r4000_tlb_modify_handler();
1812 			run_once++;
1813 		}
1814 	}
1815 }
1816