xref: /openbmc/linux/arch/mips/kernel/time.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/compiler.h>
29 #include <asm/cpu.h>
30 #include <asm/cpu-features.h>
31 #include <asm/div64.h>
32 #include <asm/sections.h>
33 #include <asm/time.h>
34 
35 /*
36  * The integer part of the number of usecs per jiffy is taken from tick,
37  * but the fractional part is not recorded, so we calculate it using the
38  * initial value of HZ.  This aids systems where tick isn't really an
39  * integer (e.g. for HZ = 128).
40  */
41 #define USECS_PER_JIFFY		TICK_SIZE
42 #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
43 
44 #define TICK_SIZE	(tick_nsec / 1000)
45 
46 u64 jiffies_64 = INITIAL_JIFFIES;
47 
48 EXPORT_SYMBOL(jiffies_64);
49 
50 /*
51  * forward reference
52  */
53 extern volatile unsigned long wall_jiffies;
54 
55 DEFINE_SPINLOCK(rtc_lock);
56 
57 /*
58  * By default we provide the null RTC ops
59  */
60 static unsigned long null_rtc_get_time(void)
61 {
62 	return mktime(2000, 1, 1, 0, 0, 0);
63 }
64 
65 static int null_rtc_set_time(unsigned long sec)
66 {
67 	return 0;
68 }
69 
70 unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
71 int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
72 int (*rtc_set_mmss)(unsigned long);
73 
74 
75 /* usecs per counter cycle, shifted to left by 32 bits */
76 static unsigned int sll32_usecs_per_cycle;
77 
78 /* how many counter cycles in a jiffy */
79 static unsigned long cycles_per_jiffy;
80 
81 /* Cycle counter value at the previous timer interrupt.. */
82 static unsigned int timerhi, timerlo;
83 
84 /* expirelo is the count value for next CPU timer interrupt */
85 static unsigned int expirelo;
86 
87 
88 /*
89  * Null timer ack for systems not needing one (e.g. i8254).
90  */
91 static void null_timer_ack(void) { /* nothing */ }
92 
93 /*
94  * Null high precision timer functions for systems lacking one.
95  */
96 static unsigned int null_hpt_read(void)
97 {
98 	return 0;
99 }
100 
101 static void null_hpt_init(unsigned int count) { /* nothing */ }
102 
103 
104 /*
105  * Timer ack for an R4k-compatible timer of a known frequency.
106  */
107 static void c0_timer_ack(void)
108 {
109 	unsigned int count;
110 
111 	/* Ack this timer interrupt and set the next one.  */
112 	expirelo += cycles_per_jiffy;
113 	write_c0_compare(expirelo);
114 
115 	/* Check to see if we have missed any timer interrupts.  */
116 	count = read_c0_count();
117 	if ((count - expirelo) < 0x7fffffff) {
118 		/* missed_timer_count++; */
119 		expirelo = count + cycles_per_jiffy;
120 		write_c0_compare(expirelo);
121 	}
122 }
123 
124 /*
125  * High precision timer functions for a R4k-compatible timer.
126  */
127 static unsigned int c0_hpt_read(void)
128 {
129 	return read_c0_count();
130 }
131 
132 /* For use solely as a high precision timer.  */
133 static void c0_hpt_init(unsigned int count)
134 {
135 	write_c0_count(read_c0_count() - count);
136 }
137 
138 /* For use both as a high precision timer and an interrupt source.  */
139 static void c0_hpt_timer_init(unsigned int count)
140 {
141 	count = read_c0_count() - count;
142 	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
143 	write_c0_count(expirelo - cycles_per_jiffy);
144 	write_c0_compare(expirelo);
145 	write_c0_count(count);
146 }
147 
148 int (*mips_timer_state)(void);
149 void (*mips_timer_ack)(void);
150 unsigned int (*mips_hpt_read)(void);
151 void (*mips_hpt_init)(unsigned int);
152 
153 
154 /*
155  * This version of gettimeofday has microsecond resolution and better than
156  * microsecond precision on fast machines with cycle counter.
157  */
158 void do_gettimeofday(struct timeval *tv)
159 {
160 	unsigned long seq;
161 	unsigned long lost;
162 	unsigned long usec, sec;
163 	unsigned long max_ntp_tick = tick_usec - tickadj;
164 
165 	do {
166 		seq = read_seqbegin(&xtime_lock);
167 
168 		usec = do_gettimeoffset();
169 
170 		lost = jiffies - wall_jiffies;
171 
172 		/*
173 		 * If time_adjust is negative then NTP is slowing the clock
174 		 * so make sure not to go into next possible interval.
175 		 * Better to lose some accuracy than have time go backwards..
176 		 */
177 		if (unlikely(time_adjust < 0)) {
178 			usec = min(usec, max_ntp_tick);
179 
180 			if (lost)
181 				usec += lost * max_ntp_tick;
182 		} else if (unlikely(lost))
183 			usec += lost * tick_usec;
184 
185 		sec = xtime.tv_sec;
186 		usec += (xtime.tv_nsec / 1000);
187 
188 	} while (read_seqretry(&xtime_lock, seq));
189 
190 	while (usec >= 1000000) {
191 		usec -= 1000000;
192 		sec++;
193 	}
194 
195 	tv->tv_sec = sec;
196 	tv->tv_usec = usec;
197 }
198 
199 EXPORT_SYMBOL(do_gettimeofday);
200 
201 int do_settimeofday(struct timespec *tv)
202 {
203 	time_t wtm_sec, sec = tv->tv_sec;
204 	long wtm_nsec, nsec = tv->tv_nsec;
205 
206 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
207 		return -EINVAL;
208 
209 	write_seqlock_irq(&xtime_lock);
210 
211 	/*
212 	 * This is revolting.  We need to set "xtime" correctly.  However,
213 	 * the value in this location is the value at the most recent update
214 	 * of wall time.  Discover what correction gettimeofday() would have
215 	 * made, and then undo it!
216 	 */
217 	nsec -= do_gettimeoffset() * NSEC_PER_USEC;
218 	nsec -= (jiffies - wall_jiffies) * tick_nsec;
219 
220 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
221 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
222 
223 	set_normalized_timespec(&xtime, sec, nsec);
224 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
225 
226 	time_adjust = 0;			/* stop active adjtime() */
227 	time_status |= STA_UNSYNC;
228 	time_maxerror = NTP_PHASE_LIMIT;
229 	time_esterror = NTP_PHASE_LIMIT;
230 
231 	write_sequnlock_irq(&xtime_lock);
232 	clock_was_set();
233 	return 0;
234 }
235 
236 EXPORT_SYMBOL(do_settimeofday);
237 
238 /*
239  * Gettimeoffset routines.  These routines returns the time duration
240  * since last timer interrupt in usecs.
241  *
242  * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
243  * Otherwise use calibrate_gettimeoffset()
244  *
245  * If the CPU does not have the counter register, you can either supply
246  * your own gettimeoffset() routine, or use null_gettimeoffset(), which
247  * gives the same resolution as HZ.
248  */
249 
250 static unsigned long null_gettimeoffset(void)
251 {
252 	return 0;
253 }
254 
255 
256 /* The function pointer to one of the gettimeoffset funcs.  */
257 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
258 
259 
260 static unsigned long fixed_rate_gettimeoffset(void)
261 {
262 	u32 count;
263 	unsigned long res;
264 
265 	/* Get last timer tick in absolute kernel time */
266 	count = mips_hpt_read();
267 
268 	/* .. relative to previous jiffy (32 bits is enough) */
269 	count -= timerlo;
270 
271 	__asm__("multu	%1,%2"
272 		: "=h" (res)
273 		: "r" (count), "r" (sll32_usecs_per_cycle)
274 		: "lo", GCC_REG_ACCUM);
275 
276 	/*
277 	 * Due to possible jiffies inconsistencies, we need to check
278 	 * the result so that we'll get a timer that is monotonic.
279 	 */
280 	if (res >= USECS_PER_JIFFY)
281 		res = USECS_PER_JIFFY - 1;
282 
283 	return res;
284 }
285 
286 
287 /*
288  * Cached "1/(clocks per usec) * 2^32" value.
289  * It has to be recalculated once each jiffy.
290  */
291 static unsigned long cached_quotient;
292 
293 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
294 static unsigned long last_jiffies;
295 
296 /*
297  * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
298  */
299 static unsigned long calibrate_div32_gettimeoffset(void)
300 {
301 	u32 count;
302 	unsigned long res, tmp;
303 	unsigned long quotient;
304 
305 	tmp = jiffies;
306 
307 	quotient = cached_quotient;
308 
309 	if (last_jiffies != tmp) {
310 		last_jiffies = tmp;
311 		if (last_jiffies != 0) {
312 			unsigned long r0;
313 			do_div64_32(r0, timerhi, timerlo, tmp);
314 			do_div64_32(quotient, USECS_PER_JIFFY,
315 				    USECS_PER_JIFFY_FRAC, r0);
316 			cached_quotient = quotient;
317 		}
318 	}
319 
320 	/* Get last timer tick in absolute kernel time */
321 	count = mips_hpt_read();
322 
323 	/* .. relative to previous jiffy (32 bits is enough) */
324 	count -= timerlo;
325 
326 	__asm__("multu  %1,%2"
327 		: "=h" (res)
328 		: "r" (count), "r" (quotient)
329 		: "lo", GCC_REG_ACCUM);
330 
331 	/*
332 	 * Due to possible jiffies inconsistencies, we need to check
333 	 * the result so that we'll get a timer that is monotonic.
334 	 */
335 	if (res >= USECS_PER_JIFFY)
336 		res = USECS_PER_JIFFY - 1;
337 
338 	return res;
339 }
340 
341 static unsigned long calibrate_div64_gettimeoffset(void)
342 {
343 	u32 count;
344 	unsigned long res, tmp;
345 	unsigned long quotient;
346 
347 	tmp = jiffies;
348 
349 	quotient = cached_quotient;
350 
351 	if (last_jiffies != tmp) {
352 		last_jiffies = tmp;
353 		if (last_jiffies) {
354 			unsigned long r0;
355 			__asm__(".set	push\n\t"
356 				".set	mips3\n\t"
357 				"lwu	%0,%3\n\t"
358 				"dsll32	%1,%2,0\n\t"
359 				"or	%1,%1,%0\n\t"
360 				"ddivu	$0,%1,%4\n\t"
361 				"mflo	%1\n\t"
362 				"dsll32	%0,%5,0\n\t"
363 				"or	%0,%0,%6\n\t"
364 				"ddivu	$0,%0,%1\n\t"
365 				"mflo	%0\n\t"
366 				".set	pop"
367 				: "=&r" (quotient), "=&r" (r0)
368 				: "r" (timerhi), "m" (timerlo),
369 				  "r" (tmp), "r" (USECS_PER_JIFFY),
370 				  "r" (USECS_PER_JIFFY_FRAC)
371 				: "hi", "lo", GCC_REG_ACCUM);
372 			cached_quotient = quotient;
373 		}
374 	}
375 
376 	/* Get last timer tick in absolute kernel time */
377 	count = mips_hpt_read();
378 
379 	/* .. relative to previous jiffy (32 bits is enough) */
380 	count -= timerlo;
381 
382 	__asm__("multu	%1,%2"
383 		: "=h" (res)
384 		: "r" (count), "r" (quotient)
385 		: "lo", GCC_REG_ACCUM);
386 
387 	/*
388 	 * Due to possible jiffies inconsistencies, we need to check
389 	 * the result so that we'll get a timer that is monotonic.
390 	 */
391 	if (res >= USECS_PER_JIFFY)
392 		res = USECS_PER_JIFFY - 1;
393 
394 	return res;
395 }
396 
397 
398 /* last time when xtime and rtc are sync'ed up */
399 static long last_rtc_update;
400 
401 /*
402  * local_timer_interrupt() does profiling and process accounting
403  * on a per-CPU basis.
404  *
405  * In UP mode, it is invoked from the (global) timer_interrupt.
406  *
407  * In SMP mode, it might invoked by per-CPU timer interrupt, or
408  * a broadcasted inter-processor interrupt which itself is triggered
409  * by the global timer interrupt.
410  */
411 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
412 {
413 	if (current->pid)
414 		profile_tick(CPU_PROFILING, regs);
415 	update_process_times(user_mode(regs));
416 }
417 
418 /*
419  * High-level timer interrupt service routines.  This function
420  * is set as irqaction->handler and is invoked through do_IRQ.
421  */
422 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
423 {
424 	unsigned long j;
425 	unsigned int count;
426 
427 	count = mips_hpt_read();
428 	mips_timer_ack();
429 
430 	/* Update timerhi/timerlo for intra-jiffy calibration. */
431 	timerhi += count < timerlo;			/* Wrap around */
432 	timerlo = count;
433 
434 	/*
435 	 * call the generic timer interrupt handling
436 	 */
437 	do_timer(regs);
438 
439 	/*
440 	 * If we have an externally synchronized Linux clock, then update
441 	 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
442 	 * called as close as possible to 500 ms before the new second starts.
443 	 */
444 	write_seqlock(&xtime_lock);
445 	if ((time_status & STA_UNSYNC) == 0 &&
446 	    xtime.tv_sec > last_rtc_update + 660 &&
447 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
448 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
449 		if (rtc_set_mmss(xtime.tv_sec) == 0) {
450 			last_rtc_update = xtime.tv_sec;
451 		} else {
452 			/* do it again in 60 s */
453 			last_rtc_update = xtime.tv_sec - 600;
454 		}
455 	}
456 	write_sequnlock(&xtime_lock);
457 
458 	/*
459 	 * If jiffies has overflown in this timer_interrupt, we must
460 	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
461 	 * quotient calc still valid. -arca
462 	 *
463 	 * The first timer interrupt comes late as interrupts are
464 	 * enabled long after timers are initialized.  Therefore the
465 	 * high precision timer is fast, leading to wrong gettimeoffset()
466 	 * calculations.  We deal with it by setting it based on the
467 	 * number of its ticks between the second and the third interrupt.
468 	 * That is still somewhat imprecise, but it's a good estimate.
469 	 * --macro
470 	 */
471 	j = jiffies;
472 	if (j < 4) {
473 		static unsigned int prev_count;
474 		static int hpt_initialized;
475 
476 		switch (j) {
477 		case 0:
478 			timerhi = timerlo = 0;
479 			mips_hpt_init(count);
480 			break;
481 		case 2:
482 			prev_count = count;
483 			break;
484 		case 3:
485 			if (!hpt_initialized) {
486 				unsigned int c3 = 3 * (count - prev_count);
487 
488 				timerhi = 0;
489 				timerlo = c3;
490 				mips_hpt_init(count - c3);
491 				hpt_initialized = 1;
492 			}
493 			break;
494 		default:
495 			break;
496 		}
497 	}
498 
499 	/*
500 	 * In UP mode, we call local_timer_interrupt() to do profiling
501 	 * and process accouting.
502 	 *
503 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
504 	 * low-level local timer interrupt handler.
505 	 */
506 	local_timer_interrupt(irq, dev_id, regs);
507 
508 	return IRQ_HANDLED;
509 }
510 
511 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
512 {
513 	irq_enter();
514 	kstat_this_cpu.irqs[irq]++;
515 
516 	/* we keep interrupt disabled all the time */
517 	timer_interrupt(irq, NULL, regs);
518 
519 	irq_exit();
520 }
521 
522 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
523 {
524 	irq_enter();
525 	if (smp_processor_id() != 0)
526 		kstat_this_cpu.irqs[irq]++;
527 
528 	/* we keep interrupt disabled all the time */
529 	local_timer_interrupt(irq, NULL, regs);
530 
531 	irq_exit();
532 }
533 
534 /*
535  * time_init() - it does the following things.
536  *
537  * 1) board_time_init() -
538  * 	a) (optional) set up RTC routines,
539  *      b) (optional) calibrate and set the mips_hpt_frequency
540  *	    (only needed if you intended to use fixed_rate_gettimeoffset
541  *	     or use cpu counter as timer interrupt source)
542  * 2) setup xtime based on rtc_get_time().
543  * 3) choose a appropriate gettimeoffset routine.
544  * 4) calculate a couple of cached variables for later usage
545  * 5) board_timer_setup() -
546  *	a) (optional) over-write any choices made above by time_init().
547  *	b) machine specific code should setup the timer irqaction.
548  *	c) enable the timer interrupt
549  */
550 
551 void (*board_time_init)(void);
552 void (*board_timer_setup)(struct irqaction *irq);
553 
554 unsigned int mips_hpt_frequency;
555 
556 static struct irqaction timer_irqaction = {
557 	.handler = timer_interrupt,
558 	.flags = SA_INTERRUPT,
559 	.name = "timer",
560 };
561 
562 static unsigned int __init calibrate_hpt(void)
563 {
564 	u64 frequency;
565 	u32 hpt_start, hpt_end, hpt_count, hz;
566 
567 	const int loops = HZ / 10;
568 	int log_2_loops = 0;
569 	int i;
570 
571 	/*
572 	 * We want to calibrate for 0.1s, but to avoid a 64-bit
573 	 * division we round the number of loops up to the nearest
574 	 * power of 2.
575 	 */
576 	while (loops > 1 << log_2_loops)
577 		log_2_loops++;
578 	i = 1 << log_2_loops;
579 
580 	/*
581 	 * Wait for a rising edge of the timer interrupt.
582 	 */
583 	while (mips_timer_state());
584 	while (!mips_timer_state());
585 
586 	/*
587 	 * Now see how many high precision timer ticks happen
588 	 * during the calculated number of periods between timer
589 	 * interrupts.
590 	 */
591 	hpt_start = mips_hpt_read();
592 	do {
593 		while (mips_timer_state());
594 		while (!mips_timer_state());
595 	} while (--i);
596 	hpt_end = mips_hpt_read();
597 
598 	hpt_count = hpt_end - hpt_start;
599 	hz = HZ;
600 	frequency = (u64)hpt_count * (u64)hz;
601 
602 	return frequency >> log_2_loops;
603 }
604 
605 void __init time_init(void)
606 {
607 	if (board_time_init)
608 		board_time_init();
609 
610 	if (!rtc_set_mmss)
611 		rtc_set_mmss = rtc_set_time;
612 
613 	xtime.tv_sec = rtc_get_time();
614 	xtime.tv_nsec = 0;
615 
616 	set_normalized_timespec(&wall_to_monotonic,
617 	                        -xtime.tv_sec, -xtime.tv_nsec);
618 
619 	/* Choose appropriate high precision timer routines.  */
620 	if (!cpu_has_counter && !mips_hpt_read) {
621 		/* No high precision timer -- sorry.  */
622 		mips_hpt_read = null_hpt_read;
623 		mips_hpt_init = null_hpt_init;
624 	} else if (!mips_hpt_frequency && !mips_timer_state) {
625 		/* A high precision timer of unknown frequency.  */
626 		if (!mips_hpt_read) {
627 			/* No external high precision timer -- use R4k.  */
628 			mips_hpt_read = c0_hpt_read;
629 			mips_hpt_init = c0_hpt_init;
630 		}
631 
632 		if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
633 			 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
634 			 (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
635 			/*
636 			 * We need to calibrate the counter but we don't have
637 			 * 64-bit division.
638 			 */
639 			do_gettimeoffset = calibrate_div32_gettimeoffset;
640 		else
641 			/*
642 			 * We need to calibrate the counter but we *do* have
643 			 * 64-bit division.
644 			 */
645 			do_gettimeoffset = calibrate_div64_gettimeoffset;
646 	} else {
647 		/* We know counter frequency.  Or we can get it.  */
648 		if (!mips_hpt_read) {
649 			/* No external high precision timer -- use R4k.  */
650 			mips_hpt_read = c0_hpt_read;
651 
652 			if (mips_timer_state)
653 				mips_hpt_init = c0_hpt_init;
654 			else {
655 				/* No external timer interrupt -- use R4k.  */
656 				mips_hpt_init = c0_hpt_timer_init;
657 				mips_timer_ack = c0_timer_ack;
658 			}
659 		}
660 		if (!mips_hpt_frequency)
661 			mips_hpt_frequency = calibrate_hpt();
662 
663 		do_gettimeoffset = fixed_rate_gettimeoffset;
664 
665 		/* Calculate cache parameters.  */
666 		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
667 
668 		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */
669 		do_div64_32(sll32_usecs_per_cycle,
670 			    1000000, mips_hpt_frequency / 2,
671 			    mips_hpt_frequency);
672 
673 		/* Report the high precision timer rate for a reference.  */
674 		printk("Using %u.%03u MHz high precision timer.\n",
675 		       ((mips_hpt_frequency + 500) / 1000) / 1000,
676 		       ((mips_hpt_frequency + 500) / 1000) % 1000);
677 	}
678 
679 	if (!mips_timer_ack)
680 		/* No timer interrupt ack (e.g. i8254).  */
681 		mips_timer_ack = null_timer_ack;
682 
683 	/* This sets up the high precision timer for the first interrupt.  */
684 	mips_hpt_init(mips_hpt_read());
685 
686 	/*
687 	 * Call board specific timer interrupt setup.
688 	 *
689 	 * this pointer must be setup in machine setup routine.
690 	 *
691 	 * Even if a machine chooses to use a low-level timer interrupt,
692 	 * it still needs to setup the timer_irqaction.
693 	 * In that case, it might be better to set timer_irqaction.handler
694 	 * to be NULL function so that we are sure the high-level code
695 	 * is not invoked accidentally.
696 	 */
697 	board_timer_setup(&timer_irqaction);
698 }
699 
700 #define FEBRUARY		2
701 #define STARTOFTIME		1970
702 #define SECDAY			86400L
703 #define SECYR			(SECDAY * 365)
704 #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
705 #define days_in_year(y)		(leapyear(y) ? 366 : 365)
706 #define days_in_month(m)	(month_days[(m) - 1])
707 
708 static int month_days[12] = {
709 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
710 };
711 
712 void to_tm(unsigned long tim, struct rtc_time *tm)
713 {
714 	long hms, day, gday;
715 	int i;
716 
717 	gday = day = tim / SECDAY;
718 	hms = tim % SECDAY;
719 
720 	/* Hours, minutes, seconds are easy */
721 	tm->tm_hour = hms / 3600;
722 	tm->tm_min = (hms % 3600) / 60;
723 	tm->tm_sec = (hms % 3600) % 60;
724 
725 	/* Number of years in days */
726 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
727 		day -= days_in_year(i);
728 	tm->tm_year = i;
729 
730 	/* Number of months in days left */
731 	if (leapyear(tm->tm_year))
732 		days_in_month(FEBRUARY) = 29;
733 	for (i = 1; day >= days_in_month(i); i++)
734 		day -= days_in_month(i);
735 	days_in_month(FEBRUARY) = 28;
736 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
737 
738 	/* Days are what is left over (+1) from all that. */
739 	tm->tm_mday = day + 1;
740 
741 	/*
742 	 * Determine the day of week
743 	 */
744 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
745 }
746 
747 EXPORT_SYMBOL(rtc_lock);
748 EXPORT_SYMBOL(to_tm);
749 EXPORT_SYMBOL(rtc_set_time);
750 EXPORT_SYMBOL(rtc_get_time);
751 
752 unsigned long long sched_clock(void)
753 {
754 	return (unsigned long long)jiffies*(1000000000/HZ);
755 }
756