1 /* 2 * Copyright 2001 MontaVista Software Inc. 3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net 4 * Copyright (c) 2003, 2004 Maciej W. Rozycki 5 * 6 * Common time service routines for MIPS machines. See 7 * Documentation/mips/time.README. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 */ 14 #include <linux/types.h> 15 #include <linux/kernel.h> 16 #include <linux/init.h> 17 #include <linux/sched.h> 18 #include <linux/param.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/smp.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/spinlock.h> 24 #include <linux/interrupt.h> 25 #include <linux/module.h> 26 27 #include <asm/bootinfo.h> 28 #include <asm/compiler.h> 29 #include <asm/cpu.h> 30 #include <asm/cpu-features.h> 31 #include <asm/div64.h> 32 #include <asm/sections.h> 33 #include <asm/time.h> 34 35 /* 36 * The integer part of the number of usecs per jiffy is taken from tick, 37 * but the fractional part is not recorded, so we calculate it using the 38 * initial value of HZ. This aids systems where tick isn't really an 39 * integer (e.g. for HZ = 128). 40 */ 41 #define USECS_PER_JIFFY TICK_SIZE 42 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ)) 43 44 #define TICK_SIZE (tick_nsec / 1000) 45 46 u64 jiffies_64 = INITIAL_JIFFIES; 47 48 EXPORT_SYMBOL(jiffies_64); 49 50 /* 51 * forward reference 52 */ 53 extern volatile unsigned long wall_jiffies; 54 55 DEFINE_SPINLOCK(rtc_lock); 56 57 /* 58 * By default we provide the null RTC ops 59 */ 60 static unsigned long null_rtc_get_time(void) 61 { 62 return mktime(2000, 1, 1, 0, 0, 0); 63 } 64 65 static int null_rtc_set_time(unsigned long sec) 66 { 67 return 0; 68 } 69 70 unsigned long (*rtc_get_time)(void) = null_rtc_get_time; 71 int (*rtc_set_time)(unsigned long) = null_rtc_set_time; 72 int (*rtc_set_mmss)(unsigned long); 73 74 75 /* usecs per counter cycle, shifted to left by 32 bits */ 76 static unsigned int sll32_usecs_per_cycle; 77 78 /* how many counter cycles in a jiffy */ 79 static unsigned long cycles_per_jiffy; 80 81 /* Cycle counter value at the previous timer interrupt.. */ 82 static unsigned int timerhi, timerlo; 83 84 /* expirelo is the count value for next CPU timer interrupt */ 85 static unsigned int expirelo; 86 87 88 /* 89 * Null timer ack for systems not needing one (e.g. i8254). 90 */ 91 static void null_timer_ack(void) { /* nothing */ } 92 93 /* 94 * Null high precision timer functions for systems lacking one. 95 */ 96 static unsigned int null_hpt_read(void) 97 { 98 return 0; 99 } 100 101 static void null_hpt_init(unsigned int count) { /* nothing */ } 102 103 104 /* 105 * Timer ack for an R4k-compatible timer of a known frequency. 106 */ 107 static void c0_timer_ack(void) 108 { 109 unsigned int count; 110 111 /* Ack this timer interrupt and set the next one. */ 112 expirelo += cycles_per_jiffy; 113 write_c0_compare(expirelo); 114 115 /* Check to see if we have missed any timer interrupts. */ 116 count = read_c0_count(); 117 if ((count - expirelo) < 0x7fffffff) { 118 /* missed_timer_count++; */ 119 expirelo = count + cycles_per_jiffy; 120 write_c0_compare(expirelo); 121 } 122 } 123 124 /* 125 * High precision timer functions for a R4k-compatible timer. 126 */ 127 static unsigned int c0_hpt_read(void) 128 { 129 return read_c0_count(); 130 } 131 132 /* For use solely as a high precision timer. */ 133 static void c0_hpt_init(unsigned int count) 134 { 135 write_c0_count(read_c0_count() - count); 136 } 137 138 /* For use both as a high precision timer and an interrupt source. */ 139 static void c0_hpt_timer_init(unsigned int count) 140 { 141 count = read_c0_count() - count; 142 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; 143 write_c0_count(expirelo - cycles_per_jiffy); 144 write_c0_compare(expirelo); 145 write_c0_count(count); 146 } 147 148 int (*mips_timer_state)(void); 149 void (*mips_timer_ack)(void); 150 unsigned int (*mips_hpt_read)(void); 151 void (*mips_hpt_init)(unsigned int); 152 153 154 /* 155 * This version of gettimeofday has microsecond resolution and better than 156 * microsecond precision on fast machines with cycle counter. 157 */ 158 void do_gettimeofday(struct timeval *tv) 159 { 160 unsigned long seq; 161 unsigned long lost; 162 unsigned long usec, sec; 163 unsigned long max_ntp_tick = tick_usec - tickadj; 164 165 do { 166 seq = read_seqbegin(&xtime_lock); 167 168 usec = do_gettimeoffset(); 169 170 lost = jiffies - wall_jiffies; 171 172 /* 173 * If time_adjust is negative then NTP is slowing the clock 174 * so make sure not to go into next possible interval. 175 * Better to lose some accuracy than have time go backwards.. 176 */ 177 if (unlikely(time_adjust < 0)) { 178 usec = min(usec, max_ntp_tick); 179 180 if (lost) 181 usec += lost * max_ntp_tick; 182 } else if (unlikely(lost)) 183 usec += lost * tick_usec; 184 185 sec = xtime.tv_sec; 186 usec += (xtime.tv_nsec / 1000); 187 188 } while (read_seqretry(&xtime_lock, seq)); 189 190 while (usec >= 1000000) { 191 usec -= 1000000; 192 sec++; 193 } 194 195 tv->tv_sec = sec; 196 tv->tv_usec = usec; 197 } 198 199 EXPORT_SYMBOL(do_gettimeofday); 200 201 int do_settimeofday(struct timespec *tv) 202 { 203 time_t wtm_sec, sec = tv->tv_sec; 204 long wtm_nsec, nsec = tv->tv_nsec; 205 206 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 207 return -EINVAL; 208 209 write_seqlock_irq(&xtime_lock); 210 211 /* 212 * This is revolting. We need to set "xtime" correctly. However, 213 * the value in this location is the value at the most recent update 214 * of wall time. Discover what correction gettimeofday() would have 215 * made, and then undo it! 216 */ 217 nsec -= do_gettimeoffset() * NSEC_PER_USEC; 218 nsec -= (jiffies - wall_jiffies) * tick_nsec; 219 220 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 221 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 222 223 set_normalized_timespec(&xtime, sec, nsec); 224 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 225 226 time_adjust = 0; /* stop active adjtime() */ 227 time_status |= STA_UNSYNC; 228 time_maxerror = NTP_PHASE_LIMIT; 229 time_esterror = NTP_PHASE_LIMIT; 230 231 write_sequnlock_irq(&xtime_lock); 232 clock_was_set(); 233 return 0; 234 } 235 236 EXPORT_SYMBOL(do_settimeofday); 237 238 /* 239 * Gettimeoffset routines. These routines returns the time duration 240 * since last timer interrupt in usecs. 241 * 242 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. 243 * Otherwise use calibrate_gettimeoffset() 244 * 245 * If the CPU does not have the counter register, you can either supply 246 * your own gettimeoffset() routine, or use null_gettimeoffset(), which 247 * gives the same resolution as HZ. 248 */ 249 250 static unsigned long null_gettimeoffset(void) 251 { 252 return 0; 253 } 254 255 256 /* The function pointer to one of the gettimeoffset funcs. */ 257 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; 258 259 260 static unsigned long fixed_rate_gettimeoffset(void) 261 { 262 u32 count; 263 unsigned long res; 264 265 /* Get last timer tick in absolute kernel time */ 266 count = mips_hpt_read(); 267 268 /* .. relative to previous jiffy (32 bits is enough) */ 269 count -= timerlo; 270 271 __asm__("multu %1,%2" 272 : "=h" (res) 273 : "r" (count), "r" (sll32_usecs_per_cycle) 274 : "lo", GCC_REG_ACCUM); 275 276 /* 277 * Due to possible jiffies inconsistencies, we need to check 278 * the result so that we'll get a timer that is monotonic. 279 */ 280 if (res >= USECS_PER_JIFFY) 281 res = USECS_PER_JIFFY - 1; 282 283 return res; 284 } 285 286 287 /* 288 * Cached "1/(clocks per usec) * 2^32" value. 289 * It has to be recalculated once each jiffy. 290 */ 291 static unsigned long cached_quotient; 292 293 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ 294 static unsigned long last_jiffies; 295 296 /* 297 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej. 298 */ 299 static unsigned long calibrate_div32_gettimeoffset(void) 300 { 301 u32 count; 302 unsigned long res, tmp; 303 unsigned long quotient; 304 305 tmp = jiffies; 306 307 quotient = cached_quotient; 308 309 if (last_jiffies != tmp) { 310 last_jiffies = tmp; 311 if (last_jiffies != 0) { 312 unsigned long r0; 313 do_div64_32(r0, timerhi, timerlo, tmp); 314 do_div64_32(quotient, USECS_PER_JIFFY, 315 USECS_PER_JIFFY_FRAC, r0); 316 cached_quotient = quotient; 317 } 318 } 319 320 /* Get last timer tick in absolute kernel time */ 321 count = mips_hpt_read(); 322 323 /* .. relative to previous jiffy (32 bits is enough) */ 324 count -= timerlo; 325 326 __asm__("multu %1,%2" 327 : "=h" (res) 328 : "r" (count), "r" (quotient) 329 : "lo", GCC_REG_ACCUM); 330 331 /* 332 * Due to possible jiffies inconsistencies, we need to check 333 * the result so that we'll get a timer that is monotonic. 334 */ 335 if (res >= USECS_PER_JIFFY) 336 res = USECS_PER_JIFFY - 1; 337 338 return res; 339 } 340 341 static unsigned long calibrate_div64_gettimeoffset(void) 342 { 343 u32 count; 344 unsigned long res, tmp; 345 unsigned long quotient; 346 347 tmp = jiffies; 348 349 quotient = cached_quotient; 350 351 if (last_jiffies != tmp) { 352 last_jiffies = tmp; 353 if (last_jiffies) { 354 unsigned long r0; 355 __asm__(".set push\n\t" 356 ".set mips3\n\t" 357 "lwu %0,%3\n\t" 358 "dsll32 %1,%2,0\n\t" 359 "or %1,%1,%0\n\t" 360 "ddivu $0,%1,%4\n\t" 361 "mflo %1\n\t" 362 "dsll32 %0,%5,0\n\t" 363 "or %0,%0,%6\n\t" 364 "ddivu $0,%0,%1\n\t" 365 "mflo %0\n\t" 366 ".set pop" 367 : "=&r" (quotient), "=&r" (r0) 368 : "r" (timerhi), "m" (timerlo), 369 "r" (tmp), "r" (USECS_PER_JIFFY), 370 "r" (USECS_PER_JIFFY_FRAC) 371 : "hi", "lo", GCC_REG_ACCUM); 372 cached_quotient = quotient; 373 } 374 } 375 376 /* Get last timer tick in absolute kernel time */ 377 count = mips_hpt_read(); 378 379 /* .. relative to previous jiffy (32 bits is enough) */ 380 count -= timerlo; 381 382 __asm__("multu %1,%2" 383 : "=h" (res) 384 : "r" (count), "r" (quotient) 385 : "lo", GCC_REG_ACCUM); 386 387 /* 388 * Due to possible jiffies inconsistencies, we need to check 389 * the result so that we'll get a timer that is monotonic. 390 */ 391 if (res >= USECS_PER_JIFFY) 392 res = USECS_PER_JIFFY - 1; 393 394 return res; 395 } 396 397 398 /* last time when xtime and rtc are sync'ed up */ 399 static long last_rtc_update; 400 401 /* 402 * local_timer_interrupt() does profiling and process accounting 403 * on a per-CPU basis. 404 * 405 * In UP mode, it is invoked from the (global) timer_interrupt. 406 * 407 * In SMP mode, it might invoked by per-CPU timer interrupt, or 408 * a broadcasted inter-processor interrupt which itself is triggered 409 * by the global timer interrupt. 410 */ 411 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 412 { 413 if (current->pid) 414 profile_tick(CPU_PROFILING, regs); 415 update_process_times(user_mode(regs)); 416 } 417 418 /* 419 * High-level timer interrupt service routines. This function 420 * is set as irqaction->handler and is invoked through do_IRQ. 421 */ 422 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 423 { 424 unsigned long j; 425 unsigned int count; 426 427 count = mips_hpt_read(); 428 mips_timer_ack(); 429 430 /* Update timerhi/timerlo for intra-jiffy calibration. */ 431 timerhi += count < timerlo; /* Wrap around */ 432 timerlo = count; 433 434 /* 435 * call the generic timer interrupt handling 436 */ 437 do_timer(regs); 438 439 /* 440 * If we have an externally synchronized Linux clock, then update 441 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be 442 * called as close as possible to 500 ms before the new second starts. 443 */ 444 write_seqlock(&xtime_lock); 445 if ((time_status & STA_UNSYNC) == 0 && 446 xtime.tv_sec > last_rtc_update + 660 && 447 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && 448 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { 449 if (rtc_set_mmss(xtime.tv_sec) == 0) { 450 last_rtc_update = xtime.tv_sec; 451 } else { 452 /* do it again in 60 s */ 453 last_rtc_update = xtime.tv_sec - 600; 454 } 455 } 456 write_sequnlock(&xtime_lock); 457 458 /* 459 * If jiffies has overflown in this timer_interrupt, we must 460 * update the timer[hi]/[lo] to make fast gettimeoffset funcs 461 * quotient calc still valid. -arca 462 * 463 * The first timer interrupt comes late as interrupts are 464 * enabled long after timers are initialized. Therefore the 465 * high precision timer is fast, leading to wrong gettimeoffset() 466 * calculations. We deal with it by setting it based on the 467 * number of its ticks between the second and the third interrupt. 468 * That is still somewhat imprecise, but it's a good estimate. 469 * --macro 470 */ 471 j = jiffies; 472 if (j < 4) { 473 static unsigned int prev_count; 474 static int hpt_initialized; 475 476 switch (j) { 477 case 0: 478 timerhi = timerlo = 0; 479 mips_hpt_init(count); 480 break; 481 case 2: 482 prev_count = count; 483 break; 484 case 3: 485 if (!hpt_initialized) { 486 unsigned int c3 = 3 * (count - prev_count); 487 488 timerhi = 0; 489 timerlo = c3; 490 mips_hpt_init(count - c3); 491 hpt_initialized = 1; 492 } 493 break; 494 default: 495 break; 496 } 497 } 498 499 /* 500 * In UP mode, we call local_timer_interrupt() to do profiling 501 * and process accouting. 502 * 503 * In SMP mode, local_timer_interrupt() is invoked by appropriate 504 * low-level local timer interrupt handler. 505 */ 506 local_timer_interrupt(irq, dev_id, regs); 507 508 return IRQ_HANDLED; 509 } 510 511 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) 512 { 513 irq_enter(); 514 kstat_this_cpu.irqs[irq]++; 515 516 /* we keep interrupt disabled all the time */ 517 timer_interrupt(irq, NULL, regs); 518 519 irq_exit(); 520 } 521 522 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) 523 { 524 irq_enter(); 525 if (smp_processor_id() != 0) 526 kstat_this_cpu.irqs[irq]++; 527 528 /* we keep interrupt disabled all the time */ 529 local_timer_interrupt(irq, NULL, regs); 530 531 irq_exit(); 532 } 533 534 /* 535 * time_init() - it does the following things. 536 * 537 * 1) board_time_init() - 538 * a) (optional) set up RTC routines, 539 * b) (optional) calibrate and set the mips_hpt_frequency 540 * (only needed if you intended to use fixed_rate_gettimeoffset 541 * or use cpu counter as timer interrupt source) 542 * 2) setup xtime based on rtc_get_time(). 543 * 3) choose a appropriate gettimeoffset routine. 544 * 4) calculate a couple of cached variables for later usage 545 * 5) board_timer_setup() - 546 * a) (optional) over-write any choices made above by time_init(). 547 * b) machine specific code should setup the timer irqaction. 548 * c) enable the timer interrupt 549 */ 550 551 void (*board_time_init)(void); 552 void (*board_timer_setup)(struct irqaction *irq); 553 554 unsigned int mips_hpt_frequency; 555 556 static struct irqaction timer_irqaction = { 557 .handler = timer_interrupt, 558 .flags = SA_INTERRUPT, 559 .name = "timer", 560 }; 561 562 static unsigned int __init calibrate_hpt(void) 563 { 564 u64 frequency; 565 u32 hpt_start, hpt_end, hpt_count, hz; 566 567 const int loops = HZ / 10; 568 int log_2_loops = 0; 569 int i; 570 571 /* 572 * We want to calibrate for 0.1s, but to avoid a 64-bit 573 * division we round the number of loops up to the nearest 574 * power of 2. 575 */ 576 while (loops > 1 << log_2_loops) 577 log_2_loops++; 578 i = 1 << log_2_loops; 579 580 /* 581 * Wait for a rising edge of the timer interrupt. 582 */ 583 while (mips_timer_state()); 584 while (!mips_timer_state()); 585 586 /* 587 * Now see how many high precision timer ticks happen 588 * during the calculated number of periods between timer 589 * interrupts. 590 */ 591 hpt_start = mips_hpt_read(); 592 do { 593 while (mips_timer_state()); 594 while (!mips_timer_state()); 595 } while (--i); 596 hpt_end = mips_hpt_read(); 597 598 hpt_count = hpt_end - hpt_start; 599 hz = HZ; 600 frequency = (u64)hpt_count * (u64)hz; 601 602 return frequency >> log_2_loops; 603 } 604 605 void __init time_init(void) 606 { 607 if (board_time_init) 608 board_time_init(); 609 610 if (!rtc_set_mmss) 611 rtc_set_mmss = rtc_set_time; 612 613 xtime.tv_sec = rtc_get_time(); 614 xtime.tv_nsec = 0; 615 616 set_normalized_timespec(&wall_to_monotonic, 617 -xtime.tv_sec, -xtime.tv_nsec); 618 619 /* Choose appropriate high precision timer routines. */ 620 if (!cpu_has_counter && !mips_hpt_read) { 621 /* No high precision timer -- sorry. */ 622 mips_hpt_read = null_hpt_read; 623 mips_hpt_init = null_hpt_init; 624 } else if (!mips_hpt_frequency && !mips_timer_state) { 625 /* A high precision timer of unknown frequency. */ 626 if (!mips_hpt_read) { 627 /* No external high precision timer -- use R4k. */ 628 mips_hpt_read = c0_hpt_read; 629 mips_hpt_init = c0_hpt_init; 630 } 631 632 if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) || 633 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || 634 (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) 635 /* 636 * We need to calibrate the counter but we don't have 637 * 64-bit division. 638 */ 639 do_gettimeoffset = calibrate_div32_gettimeoffset; 640 else 641 /* 642 * We need to calibrate the counter but we *do* have 643 * 64-bit division. 644 */ 645 do_gettimeoffset = calibrate_div64_gettimeoffset; 646 } else { 647 /* We know counter frequency. Or we can get it. */ 648 if (!mips_hpt_read) { 649 /* No external high precision timer -- use R4k. */ 650 mips_hpt_read = c0_hpt_read; 651 652 if (mips_timer_state) 653 mips_hpt_init = c0_hpt_init; 654 else { 655 /* No external timer interrupt -- use R4k. */ 656 mips_hpt_init = c0_hpt_timer_init; 657 mips_timer_ack = c0_timer_ack; 658 } 659 } 660 if (!mips_hpt_frequency) 661 mips_hpt_frequency = calibrate_hpt(); 662 663 do_gettimeoffset = fixed_rate_gettimeoffset; 664 665 /* Calculate cache parameters. */ 666 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; 667 668 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */ 669 do_div64_32(sll32_usecs_per_cycle, 670 1000000, mips_hpt_frequency / 2, 671 mips_hpt_frequency); 672 673 /* Report the high precision timer rate for a reference. */ 674 printk("Using %u.%03u MHz high precision timer.\n", 675 ((mips_hpt_frequency + 500) / 1000) / 1000, 676 ((mips_hpt_frequency + 500) / 1000) % 1000); 677 } 678 679 if (!mips_timer_ack) 680 /* No timer interrupt ack (e.g. i8254). */ 681 mips_timer_ack = null_timer_ack; 682 683 /* This sets up the high precision timer for the first interrupt. */ 684 mips_hpt_init(mips_hpt_read()); 685 686 /* 687 * Call board specific timer interrupt setup. 688 * 689 * this pointer must be setup in machine setup routine. 690 * 691 * Even if a machine chooses to use a low-level timer interrupt, 692 * it still needs to setup the timer_irqaction. 693 * In that case, it might be better to set timer_irqaction.handler 694 * to be NULL function so that we are sure the high-level code 695 * is not invoked accidentally. 696 */ 697 board_timer_setup(&timer_irqaction); 698 } 699 700 #define FEBRUARY 2 701 #define STARTOFTIME 1970 702 #define SECDAY 86400L 703 #define SECYR (SECDAY * 365) 704 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400)) 705 #define days_in_year(y) (leapyear(y) ? 366 : 365) 706 #define days_in_month(m) (month_days[(m) - 1]) 707 708 static int month_days[12] = { 709 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 710 }; 711 712 void to_tm(unsigned long tim, struct rtc_time *tm) 713 { 714 long hms, day, gday; 715 int i; 716 717 gday = day = tim / SECDAY; 718 hms = tim % SECDAY; 719 720 /* Hours, minutes, seconds are easy */ 721 tm->tm_hour = hms / 3600; 722 tm->tm_min = (hms % 3600) / 60; 723 tm->tm_sec = (hms % 3600) % 60; 724 725 /* Number of years in days */ 726 for (i = STARTOFTIME; day >= days_in_year(i); i++) 727 day -= days_in_year(i); 728 tm->tm_year = i; 729 730 /* Number of months in days left */ 731 if (leapyear(tm->tm_year)) 732 days_in_month(FEBRUARY) = 29; 733 for (i = 1; day >= days_in_month(i); i++) 734 day -= days_in_month(i); 735 days_in_month(FEBRUARY) = 28; 736 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ 737 738 /* Days are what is left over (+1) from all that. */ 739 tm->tm_mday = day + 1; 740 741 /* 742 * Determine the day of week 743 */ 744 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */ 745 } 746 747 EXPORT_SYMBOL(rtc_lock); 748 EXPORT_SYMBOL(to_tm); 749 EXPORT_SYMBOL(rtc_set_time); 750 EXPORT_SYMBOL(rtc_get_time); 751 752 unsigned long long sched_clock(void) 753 { 754 return (unsigned long long)jiffies*(1000000000/HZ); 755 } 756