1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1995 Linus Torvalds 7 * Copyright (C) 1995 Waldorf Electronics 8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle 9 * Copyright (C) 1996 Stoned Elipot 10 * Copyright (C) 1999 Silicon Graphics, Inc. 11 * Copyright (C) 2000 2001, 2002 Maciej W. Rozycki 12 */ 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/module.h> 16 #include <linux/screen_info.h> 17 #include <linux/bootmem.h> 18 #include <linux/initrd.h> 19 #include <linux/root_dev.h> 20 #include <linux/highmem.h> 21 #include <linux/console.h> 22 #include <linux/pfn.h> 23 #include <linux/debugfs.h> 24 25 #include <asm/addrspace.h> 26 #include <asm/bootinfo.h> 27 #include <asm/cache.h> 28 #include <asm/cpu.h> 29 #include <asm/sections.h> 30 #include <asm/setup.h> 31 #include <asm/system.h> 32 33 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; 34 35 EXPORT_SYMBOL(cpu_data); 36 37 #ifdef CONFIG_VT 38 struct screen_info screen_info; 39 #endif 40 41 /* 42 * Despite it's name this variable is even if we don't have PCI 43 */ 44 unsigned int PCI_DMA_BUS_IS_PHYS; 45 46 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS); 47 48 /* 49 * Setup information 50 * 51 * These are initialized so they are in the .data section 52 */ 53 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; 54 55 EXPORT_SYMBOL(mips_machtype); 56 57 struct boot_mem_map boot_mem_map; 58 59 static char command_line[CL_SIZE]; 60 char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE; 61 62 /* 63 * mips_io_port_base is the begin of the address space to which x86 style 64 * I/O ports are mapped. 65 */ 66 const unsigned long mips_io_port_base __read_mostly = -1; 67 EXPORT_SYMBOL(mips_io_port_base); 68 69 /* 70 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped 71 * for the processor. 72 */ 73 unsigned long isa_slot_offset; 74 EXPORT_SYMBOL(isa_slot_offset); 75 76 static struct resource code_resource = { .name = "Kernel code", }; 77 static struct resource data_resource = { .name = "Kernel data", }; 78 79 void __init add_memory_region(phys_t start, phys_t size, long type) 80 { 81 int x = boot_mem_map.nr_map; 82 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1; 83 84 /* Sanity check */ 85 if (start + size < start) { 86 printk("Trying to add an invalid memory region, skipped\n"); 87 return; 88 } 89 90 /* 91 * Try to merge with previous entry if any. This is far less than 92 * perfect but is sufficient for most real world cases. 93 */ 94 if (x && prev->addr + prev->size == start && prev->type == type) { 95 prev->size += size; 96 return; 97 } 98 99 if (x == BOOT_MEM_MAP_MAX) { 100 printk("Ooops! Too many entries in the memory map!\n"); 101 return; 102 } 103 104 boot_mem_map.map[x].addr = start; 105 boot_mem_map.map[x].size = size; 106 boot_mem_map.map[x].type = type; 107 boot_mem_map.nr_map++; 108 } 109 110 static void __init print_memory_map(void) 111 { 112 int i; 113 const int field = 2 * sizeof(unsigned long); 114 115 for (i = 0; i < boot_mem_map.nr_map; i++) { 116 printk(" memory: %0*Lx @ %0*Lx ", 117 field, (unsigned long long) boot_mem_map.map[i].size, 118 field, (unsigned long long) boot_mem_map.map[i].addr); 119 120 switch (boot_mem_map.map[i].type) { 121 case BOOT_MEM_RAM: 122 printk("(usable)\n"); 123 break; 124 case BOOT_MEM_ROM_DATA: 125 printk("(ROM data)\n"); 126 break; 127 case BOOT_MEM_RESERVED: 128 printk("(reserved)\n"); 129 break; 130 default: 131 printk("type %lu\n", boot_mem_map.map[i].type); 132 break; 133 } 134 } 135 } 136 137 /* 138 * Manage initrd 139 */ 140 #ifdef CONFIG_BLK_DEV_INITRD 141 142 static int __init rd_start_early(char *p) 143 { 144 unsigned long start = memparse(p, &p); 145 146 #ifdef CONFIG_64BIT 147 /* Guess if the sign extension was forgotten by bootloader */ 148 if (start < XKPHYS) 149 start = (int)start; 150 #endif 151 initrd_start = start; 152 initrd_end += start; 153 return 0; 154 } 155 early_param("rd_start", rd_start_early); 156 157 static int __init rd_size_early(char *p) 158 { 159 initrd_end += memparse(p, &p); 160 return 0; 161 } 162 early_param("rd_size", rd_size_early); 163 164 /* it returns the next free pfn after initrd */ 165 static unsigned long __init init_initrd(void) 166 { 167 unsigned long end; 168 u32 *initrd_header; 169 170 /* 171 * Board specific code or command line parser should have 172 * already set up initrd_start and initrd_end. In these cases 173 * perfom sanity checks and use them if all looks good. 174 */ 175 if (initrd_start && initrd_end > initrd_start) 176 goto sanitize; 177 178 /* 179 * See if initrd has been added to the kernel image by 180 * arch/mips/boot/addinitrd.c. In that case a header is 181 * prepended to initrd and is made up by 8 bytes. The fisrt 182 * word is a magic number and the second one is the size of 183 * initrd. Initrd start must be page aligned in any cases. 184 */ 185 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8; 186 if (initrd_header[0] != 0x494E5244) 187 goto disable; 188 initrd_start = (unsigned long)(initrd_header + 2); 189 initrd_end = initrd_start + initrd_header[1]; 190 191 sanitize: 192 if (initrd_start & ~PAGE_MASK) { 193 printk(KERN_ERR "initrd start must be page aligned\n"); 194 goto disable; 195 } 196 if (initrd_start < PAGE_OFFSET) { 197 printk(KERN_ERR "initrd start < PAGE_OFFSET\n"); 198 goto disable; 199 } 200 201 /* 202 * Sanitize initrd addresses. For example firmware 203 * can't guess if they need to pass them through 204 * 64-bits values if the kernel has been built in pure 205 * 32-bit. We need also to switch from KSEG0 to XKPHYS 206 * addresses now, so the code can now safely use __pa(). 207 */ 208 end = __pa(initrd_end); 209 initrd_end = (unsigned long)__va(end); 210 initrd_start = (unsigned long)__va(__pa(initrd_start)); 211 212 ROOT_DEV = Root_RAM0; 213 return PFN_UP(end); 214 disable: 215 initrd_start = 0; 216 initrd_end = 0; 217 return 0; 218 } 219 220 static void __init finalize_initrd(void) 221 { 222 unsigned long size = initrd_end - initrd_start; 223 224 if (size == 0) { 225 printk(KERN_INFO "Initrd not found or empty"); 226 goto disable; 227 } 228 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { 229 printk("Initrd extends beyond end of memory"); 230 goto disable; 231 } 232 233 reserve_bootmem(__pa(initrd_start), size); 234 initrd_below_start_ok = 1; 235 236 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n", 237 initrd_start, size); 238 return; 239 disable: 240 printk(" - disabling initrd\n"); 241 initrd_start = 0; 242 initrd_end = 0; 243 } 244 245 #else /* !CONFIG_BLK_DEV_INITRD */ 246 247 static unsigned long __init init_initrd(void) 248 { 249 return 0; 250 } 251 252 #define finalize_initrd() do {} while (0) 253 254 #endif 255 256 /* 257 * Initialize the bootmem allocator. It also setup initrd related data 258 * if needed. 259 */ 260 #ifdef CONFIG_SGI_IP27 261 262 static void __init bootmem_init(void) 263 { 264 init_initrd(); 265 finalize_initrd(); 266 } 267 268 #else /* !CONFIG_SGI_IP27 */ 269 270 static void __init bootmem_init(void) 271 { 272 unsigned long reserved_end; 273 unsigned long mapstart = ~0UL; 274 unsigned long bootmap_size; 275 int i; 276 277 /* 278 * Init any data related to initrd. It's a nop if INITRD is 279 * not selected. Once that done we can determine the low bound 280 * of usable memory. 281 */ 282 reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end))); 283 284 /* 285 * max_low_pfn is not a number of pages. The number of pages 286 * of the system is given by 'max_low_pfn - min_low_pfn'. 287 */ 288 min_low_pfn = ~0UL; 289 max_low_pfn = 0; 290 291 /* 292 * Find the highest page frame number we have available. 293 */ 294 for (i = 0; i < boot_mem_map.nr_map; i++) { 295 unsigned long start, end; 296 297 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 298 continue; 299 300 start = PFN_UP(boot_mem_map.map[i].addr); 301 end = PFN_DOWN(boot_mem_map.map[i].addr 302 + boot_mem_map.map[i].size); 303 304 if (end > max_low_pfn) 305 max_low_pfn = end; 306 if (start < min_low_pfn) 307 min_low_pfn = start; 308 if (end <= reserved_end) 309 continue; 310 if (start >= mapstart) 311 continue; 312 mapstart = max(reserved_end, start); 313 } 314 315 if (min_low_pfn >= max_low_pfn) 316 panic("Incorrect memory mapping !!!"); 317 if (min_low_pfn > ARCH_PFN_OFFSET) { 318 printk(KERN_INFO 319 "Wasting %lu bytes for tracking %lu unused pages\n", 320 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page), 321 min_low_pfn - ARCH_PFN_OFFSET); 322 } else if (min_low_pfn < ARCH_PFN_OFFSET) { 323 printk(KERN_INFO 324 "%lu free pages won't be used\n", 325 ARCH_PFN_OFFSET - min_low_pfn); 326 } 327 min_low_pfn = ARCH_PFN_OFFSET; 328 329 /* 330 * Determine low and high memory ranges 331 */ 332 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) { 333 #ifdef CONFIG_HIGHMEM 334 highstart_pfn = PFN_DOWN(HIGHMEM_START); 335 highend_pfn = max_low_pfn; 336 #endif 337 max_low_pfn = PFN_DOWN(HIGHMEM_START); 338 } 339 340 /* 341 * Initialize the boot-time allocator with low memory only. 342 */ 343 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart, 344 min_low_pfn, max_low_pfn); 345 /* 346 * Register fully available low RAM pages with the bootmem allocator. 347 */ 348 for (i = 0; i < boot_mem_map.nr_map; i++) { 349 unsigned long start, end, size; 350 351 /* 352 * Reserve usable memory. 353 */ 354 if (boot_mem_map.map[i].type != BOOT_MEM_RAM) 355 continue; 356 357 start = PFN_UP(boot_mem_map.map[i].addr); 358 end = PFN_DOWN(boot_mem_map.map[i].addr 359 + boot_mem_map.map[i].size); 360 /* 361 * We are rounding up the start address of usable memory 362 * and at the end of the usable range downwards. 363 */ 364 if (start >= max_low_pfn) 365 continue; 366 if (start < reserved_end) 367 start = reserved_end; 368 if (end > max_low_pfn) 369 end = max_low_pfn; 370 371 /* 372 * ... finally, is the area going away? 373 */ 374 if (end <= start) 375 continue; 376 size = end - start; 377 378 /* Register lowmem ranges */ 379 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT); 380 memory_present(0, start, end); 381 } 382 383 /* 384 * Reserve the bootmap memory. 385 */ 386 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size); 387 388 /* 389 * Reserve initrd memory if needed. 390 */ 391 finalize_initrd(); 392 } 393 394 #endif /* CONFIG_SGI_IP27 */ 395 396 /* 397 * arch_mem_init - initialize memory managment subsystem 398 * 399 * o plat_mem_setup() detects the memory configuration and will record detected 400 * memory areas using add_memory_region. 401 * 402 * At this stage the memory configuration of the system is known to the 403 * kernel but generic memory managment system is still entirely uninitialized. 404 * 405 * o bootmem_init() 406 * o sparse_init() 407 * o paging_init() 408 * 409 * At this stage the bootmem allocator is ready to use. 410 * 411 * NOTE: historically plat_mem_setup did the entire platform initialization. 412 * This was rather impractical because it meant plat_mem_setup had to 413 * get away without any kind of memory allocator. To keep old code from 414 * breaking plat_setup was just renamed to plat_setup and a second platform 415 * initialization hook for anything else was introduced. 416 */ 417 418 static int usermem __initdata = 0; 419 420 static int __init early_parse_mem(char *p) 421 { 422 unsigned long start, size; 423 424 /* 425 * If a user specifies memory size, we 426 * blow away any automatically generated 427 * size. 428 */ 429 if (usermem == 0) { 430 boot_mem_map.nr_map = 0; 431 usermem = 1; 432 } 433 start = 0; 434 size = memparse(p, &p); 435 if (*p == '@') 436 start = memparse(p + 1, &p); 437 438 add_memory_region(start, size, BOOT_MEM_RAM); 439 return 0; 440 } 441 early_param("mem", early_parse_mem); 442 443 static void __init arch_mem_init(char **cmdline_p) 444 { 445 extern void plat_mem_setup(void); 446 447 /* call board setup routine */ 448 plat_mem_setup(); 449 450 printk("Determined physical RAM map:\n"); 451 print_memory_map(); 452 453 strlcpy(command_line, arcs_cmdline, sizeof(command_line)); 454 strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); 455 456 *cmdline_p = command_line; 457 458 parse_early_param(); 459 460 if (usermem) { 461 printk("User-defined physical RAM map:\n"); 462 print_memory_map(); 463 } 464 465 bootmem_init(); 466 sparse_init(); 467 paging_init(); 468 } 469 470 static void __init resource_init(void) 471 { 472 int i; 473 474 if (UNCAC_BASE != IO_BASE) 475 return; 476 477 code_resource.start = __pa_symbol(&_text); 478 code_resource.end = __pa_symbol(&_etext) - 1; 479 data_resource.start = __pa_symbol(&_etext); 480 data_resource.end = __pa_symbol(&_edata) - 1; 481 482 /* 483 * Request address space for all standard RAM. 484 */ 485 for (i = 0; i < boot_mem_map.nr_map; i++) { 486 struct resource *res; 487 unsigned long start, end; 488 489 start = boot_mem_map.map[i].addr; 490 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1; 491 if (start >= HIGHMEM_START) 492 continue; 493 if (end >= HIGHMEM_START) 494 end = HIGHMEM_START - 1; 495 496 res = alloc_bootmem(sizeof(struct resource)); 497 switch (boot_mem_map.map[i].type) { 498 case BOOT_MEM_RAM: 499 case BOOT_MEM_ROM_DATA: 500 res->name = "System RAM"; 501 break; 502 case BOOT_MEM_RESERVED: 503 default: 504 res->name = "reserved"; 505 } 506 507 res->start = start; 508 res->end = end; 509 510 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 511 request_resource(&iomem_resource, res); 512 513 /* 514 * We don't know which RAM region contains kernel data, 515 * so we try it repeatedly and let the resource manager 516 * test it. 517 */ 518 request_resource(res, &code_resource); 519 request_resource(res, &data_resource); 520 } 521 } 522 523 void __init setup_arch(char **cmdline_p) 524 { 525 cpu_probe(); 526 prom_init(); 527 528 #ifdef CONFIG_EARLY_PRINTK 529 { 530 extern void setup_early_printk(void); 531 532 setup_early_printk(); 533 } 534 #endif 535 cpu_report(); 536 537 #if defined(CONFIG_VT) 538 #if defined(CONFIG_VGA_CONSOLE) 539 conswitchp = &vga_con; 540 #elif defined(CONFIG_DUMMY_CONSOLE) 541 conswitchp = &dummy_con; 542 #endif 543 #endif 544 545 arch_mem_init(cmdline_p); 546 547 resource_init(); 548 #ifdef CONFIG_SMP 549 plat_smp_setup(); 550 #endif 551 } 552 553 static int __init fpu_disable(char *s) 554 { 555 int i; 556 557 for (i = 0; i < NR_CPUS; i++) 558 cpu_data[i].options &= ~MIPS_CPU_FPU; 559 560 return 1; 561 } 562 563 __setup("nofpu", fpu_disable); 564 565 static int __init dsp_disable(char *s) 566 { 567 cpu_data[0].ases &= ~MIPS_ASE_DSP; 568 569 return 1; 570 } 571 572 __setup("nodsp", dsp_disable); 573 574 unsigned long kernelsp[NR_CPUS]; 575 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; 576 577 #ifdef CONFIG_DEBUG_FS 578 struct dentry *mips_debugfs_dir; 579 static int __init debugfs_mips(void) 580 { 581 struct dentry *d; 582 583 d = debugfs_create_dir("mips", NULL); 584 if (IS_ERR(d)) 585 return PTR_ERR(d); 586 mips_debugfs_dir = d; 587 return 0; 588 } 589 arch_initcall(debugfs_mips); 590 #endif 591