xref: /openbmc/linux/arch/mips/kernel/pm-cps.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/percpu.h>
13 #include <linux/slab.h>
14 
15 #include <asm/asm-offsets.h>
16 #include <asm/cacheflush.h>
17 #include <asm/cacheops.h>
18 #include <asm/idle.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mipsmtregs.h>
22 #include <asm/pm.h>
23 #include <asm/pm-cps.h>
24 #include <asm/smp-cps.h>
25 #include <asm/uasm.h>
26 
27 /*
28  * cps_nc_entry_fn - type of a generated non-coherent state entry function
29  * @online: the count of online coupled VPEs
30  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
31  *
32  * The code entering & exiting non-coherent states is generated at runtime
33  * using uasm, in order to ensure that the compiler cannot insert a stray
34  * memory access at an unfortunate time and to allow the generation of optimal
35  * core-specific code particularly for cache routines. If coupled_coherence
36  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37  * returns the number of VPEs that were in the wait state at the point this
38  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39  * the entry function for CPS_PM_NC_WAIT.
40  */
41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
42 
43 /*
44  * The entry point of the generated non-coherent idle state entry/exit
45  * functions. Actually per-core rather than per-CPU.
46  */
47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48 				  nc_asm_enter);
49 
50 /* Bitmap indicating which states are supported by the system */
51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
52 
53 /*
54  * Indicates the number of coupled VPEs ready to operate in a non-coherent
55  * state. Actually per-core rather than per-CPU.
56  */
57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
59 
60 /* Indicates online CPUs coupled with the current CPU */
61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
62 
63 /*
64  * Used to synchronize entry to deep idle states. Actually per-core rather
65  * than per-CPU.
66  */
67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
68 
69 /* Saved CPU state across the CPS_PM_POWER_GATED state */
70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
71 
72 /* A somewhat arbitrary number of labels & relocs for uasm */
73 static struct uasm_label labels[32] __initdata;
74 static struct uasm_reloc relocs[32] __initdata;
75 
76 /* CPU dependant sync types */
77 static unsigned stype_intervention;
78 static unsigned stype_memory;
79 static unsigned stype_ordering;
80 
81 enum mips_reg {
82 	zero, at, v0, v1, a0, a1, a2, a3,
83 	t0, t1, t2, t3, t4, t5, t6, t7,
84 	s0, s1, s2, s3, s4, s5, s6, s7,
85 	t8, t9, k0, k1, gp, sp, fp, ra,
86 };
87 
88 bool cps_pm_support_state(enum cps_pm_state state)
89 {
90 	return test_bit(state, state_support);
91 }
92 
93 static void coupled_barrier(atomic_t *a, unsigned online)
94 {
95 	/*
96 	 * This function is effectively the same as
97 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
98 	 * there's no cpuidle device.
99 	 */
100 
101 	if (!coupled_coherence)
102 		return;
103 
104 	smp_mb__before_atomic();
105 	atomic_inc(a);
106 
107 	while (atomic_read(a) < online)
108 		cpu_relax();
109 
110 	if (atomic_inc_return(a) == online * 2) {
111 		atomic_set(a, 0);
112 		return;
113 	}
114 
115 	while (atomic_read(a) > online)
116 		cpu_relax();
117 }
118 
119 int cps_pm_enter_state(enum cps_pm_state state)
120 {
121 	unsigned cpu = smp_processor_id();
122 	unsigned core = current_cpu_data.core;
123 	unsigned online, left;
124 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
125 	u32 *core_ready_count, *nc_core_ready_count;
126 	void *nc_addr;
127 	cps_nc_entry_fn entry;
128 	struct core_boot_config *core_cfg;
129 	struct vpe_boot_config *vpe_cfg;
130 
131 	/* Check that there is an entry function for this state */
132 	entry = per_cpu(nc_asm_enter, core)[state];
133 	if (!entry)
134 		return -EINVAL;
135 
136 	/* Calculate which coupled CPUs (VPEs) are online */
137 #ifdef CONFIG_MIPS_MT
138 	if (cpu_online(cpu)) {
139 		cpumask_and(coupled_mask, cpu_online_mask,
140 			    &cpu_sibling_map[cpu]);
141 		online = cpumask_weight(coupled_mask);
142 		cpumask_clear_cpu(cpu, coupled_mask);
143 	} else
144 #endif
145 	{
146 		cpumask_clear(coupled_mask);
147 		online = 1;
148 	}
149 
150 	/* Setup the VPE to run mips_cps_pm_restore when started again */
151 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
152 		/* Power gating relies upon CPS SMP */
153 		if (!mips_cps_smp_in_use())
154 			return -EINVAL;
155 
156 		core_cfg = &mips_cps_core_bootcfg[core];
157 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
158 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
159 		vpe_cfg->gp = (unsigned long)current_thread_info();
160 		vpe_cfg->sp = 0;
161 	}
162 
163 	/* Indicate that this CPU might not be coherent */
164 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
165 	smp_mb__after_atomic();
166 
167 	/* Create a non-coherent mapping of the core ready_count */
168 	core_ready_count = per_cpu(ready_count, core);
169 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
170 				   (unsigned long)core_ready_count);
171 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
172 	nc_core_ready_count = nc_addr;
173 
174 	/* Ensure ready_count is zero-initialised before the assembly runs */
175 	ACCESS_ONCE(*nc_core_ready_count) = 0;
176 	coupled_barrier(&per_cpu(pm_barrier, core), online);
177 
178 	/* Run the generated entry code */
179 	left = entry(online, nc_core_ready_count);
180 
181 	/* Remove the non-coherent mapping of ready_count */
182 	kunmap_noncoherent();
183 
184 	/* Indicate that this CPU is definitely coherent */
185 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
186 
187 	/*
188 	 * If this VPE is the first to leave the non-coherent wait state then
189 	 * it needs to wake up any coupled VPEs still running their wait
190 	 * instruction so that they return to cpuidle, which can then complete
191 	 * coordination between the coupled VPEs & provide the governor with
192 	 * a chance to reflect on the length of time the VPEs were in the
193 	 * idle state.
194 	 */
195 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
196 		arch_send_call_function_ipi_mask(coupled_mask);
197 
198 	return 0;
199 }
200 
201 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
202 					 struct uasm_reloc **pr,
203 					 const struct cache_desc *cache,
204 					 unsigned op, int lbl)
205 {
206 	unsigned cache_size = cache->ways << cache->waybit;
207 	unsigned i;
208 	const unsigned unroll_lines = 32;
209 
210 	/* If the cache isn't present this function has it easy */
211 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
212 		return;
213 
214 	/* Load base address */
215 	UASM_i_LA(pp, t0, (long)CKSEG0);
216 
217 	/* Calculate end address */
218 	if (cache_size < 0x8000)
219 		uasm_i_addiu(pp, t1, t0, cache_size);
220 	else
221 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
222 
223 	/* Start of cache op loop */
224 	uasm_build_label(pl, *pp, lbl);
225 
226 	/* Generate the cache ops */
227 	for (i = 0; i < unroll_lines; i++)
228 		uasm_i_cache(pp, op, i * cache->linesz, t0);
229 
230 	/* Update the base address */
231 	uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
232 
233 	/* Loop if we haven't reached the end address yet */
234 	uasm_il_bne(pp, pr, t0, t1, lbl);
235 	uasm_i_nop(pp);
236 }
237 
238 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
239 				    struct uasm_reloc **pr,
240 				    const struct cpuinfo_mips *cpu_info,
241 				    int lbl)
242 {
243 	unsigned i, fsb_size = 8;
244 	unsigned num_loads = (fsb_size * 3) / 2;
245 	unsigned line_stride = 2;
246 	unsigned line_size = cpu_info->dcache.linesz;
247 	unsigned perf_counter, perf_event;
248 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
249 
250 	/*
251 	 * Determine whether this CPU requires an FSB flush, and if so which
252 	 * performance counter/event reflect stalls due to a full FSB.
253 	 */
254 	switch (__get_cpu_type(cpu_info->cputype)) {
255 	case CPU_INTERAPTIV:
256 		perf_counter = 1;
257 		perf_event = 51;
258 		break;
259 
260 	case CPU_PROAPTIV:
261 		/* Newer proAptiv cores don't require this workaround */
262 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
263 			return 0;
264 
265 		/* On older ones it's unavailable */
266 		return -1;
267 
268 	/* CPUs which do not require the workaround */
269 	case CPU_P5600:
270 		return 0;
271 
272 	default:
273 		WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n");
274 		return -1;
275 	}
276 
277 	/*
278 	 * Ensure that the fill/store buffer (FSB) is not holding the results
279 	 * of a prefetch, since if it is then the CPC sequencer may become
280 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
281 	 */
282 
283 	/* Preserve perf counter setup */
284 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
285 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
286 
287 	/* Setup perf counter to count FSB full pipeline stalls */
288 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
289 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
290 	uasm_i_ehb(pp);
291 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
292 	uasm_i_ehb(pp);
293 
294 	/* Base address for loads */
295 	UASM_i_LA(pp, t0, (long)CKSEG0);
296 
297 	/* Start of clear loop */
298 	uasm_build_label(pl, *pp, lbl);
299 
300 	/* Perform some loads to fill the FSB */
301 	for (i = 0; i < num_loads; i++)
302 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
303 
304 	/*
305 	 * Invalidate the new D-cache entries so that the cache will need
306 	 * refilling (via the FSB) if the loop is executed again.
307 	 */
308 	for (i = 0; i < num_loads; i++) {
309 		uasm_i_cache(pp, Hit_Invalidate_D,
310 			     i * line_size * line_stride, t0);
311 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
312 			     i * line_size * line_stride, t0);
313 	}
314 
315 	/* Completion barrier */
316 	uasm_i_sync(pp, stype_memory);
317 	uasm_i_ehb(pp);
318 
319 	/* Check whether the pipeline stalled due to the FSB being full */
320 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
321 
322 	/* Loop if it didn't */
323 	uasm_il_beqz(pp, pr, t1, lbl);
324 	uasm_i_nop(pp);
325 
326 	/* Restore perf counter 1. The count may well now be wrong... */
327 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
328 	uasm_i_ehb(pp);
329 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
330 	uasm_i_ehb(pp);
331 
332 	return 0;
333 }
334 
335 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
336 				       struct uasm_reloc **pr,
337 				       unsigned r_addr, int lbl)
338 {
339 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
340 	uasm_build_label(pl, *pp, lbl);
341 	uasm_i_ll(pp, t1, 0, r_addr);
342 	uasm_i_or(pp, t1, t1, t0);
343 	uasm_i_sc(pp, t1, 0, r_addr);
344 	uasm_il_beqz(pp, pr, t1, lbl);
345 	uasm_i_nop(pp);
346 }
347 
348 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
349 {
350 	struct uasm_label *l = labels;
351 	struct uasm_reloc *r = relocs;
352 	u32 *buf, *p;
353 	const unsigned r_online = a0;
354 	const unsigned r_nc_count = a1;
355 	const unsigned r_pcohctl = t7;
356 	const unsigned max_instrs = 256;
357 	unsigned cpc_cmd;
358 	int err;
359 	enum {
360 		lbl_incready = 1,
361 		lbl_poll_cont,
362 		lbl_secondary_hang,
363 		lbl_disable_coherence,
364 		lbl_flush_fsb,
365 		lbl_invicache,
366 		lbl_flushdcache,
367 		lbl_hang,
368 		lbl_set_cont,
369 		lbl_secondary_cont,
370 		lbl_decready,
371 	};
372 
373 	/* Allocate a buffer to hold the generated code */
374 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
375 	if (!buf)
376 		return NULL;
377 
378 	/* Clear labels & relocs ready for (re)use */
379 	memset(labels, 0, sizeof(labels));
380 	memset(relocs, 0, sizeof(relocs));
381 
382 	if (config_enabled(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
383 		/* Power gating relies upon CPS SMP */
384 		if (!mips_cps_smp_in_use())
385 			goto out_err;
386 
387 		/*
388 		 * Save CPU state. Note the non-standard calling convention
389 		 * with the return address placed in v0 to avoid clobbering
390 		 * the ra register before it is saved.
391 		 */
392 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
393 		uasm_i_jalr(&p, v0, t0);
394 		uasm_i_nop(&p);
395 	}
396 
397 	/*
398 	 * Load addresses of required CM & CPC registers. This is done early
399 	 * because they're needed in both the enable & disable coherence steps
400 	 * but in the coupled case the enable step will only run on one VPE.
401 	 */
402 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
403 
404 	if (coupled_coherence) {
405 		/* Increment ready_count */
406 		uasm_i_sync(&p, stype_ordering);
407 		uasm_build_label(&l, p, lbl_incready);
408 		uasm_i_ll(&p, t1, 0, r_nc_count);
409 		uasm_i_addiu(&p, t2, t1, 1);
410 		uasm_i_sc(&p, t2, 0, r_nc_count);
411 		uasm_il_beqz(&p, &r, t2, lbl_incready);
412 		uasm_i_addiu(&p, t1, t1, 1);
413 
414 		/* Ordering barrier */
415 		uasm_i_sync(&p, stype_ordering);
416 
417 		/*
418 		 * If this is the last VPE to become ready for non-coherence
419 		 * then it should branch below.
420 		 */
421 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
422 		uasm_i_nop(&p);
423 
424 		if (state < CPS_PM_POWER_GATED) {
425 			/*
426 			 * Otherwise this is not the last VPE to become ready
427 			 * for non-coherence. It needs to wait until coherence
428 			 * has been disabled before proceeding, which it will do
429 			 * by polling for the top bit of ready_count being set.
430 			 */
431 			uasm_i_addiu(&p, t1, zero, -1);
432 			uasm_build_label(&l, p, lbl_poll_cont);
433 			uasm_i_lw(&p, t0, 0, r_nc_count);
434 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
435 			uasm_i_ehb(&p);
436 			uasm_i_yield(&p, zero, t1);
437 			uasm_il_b(&p, &r, lbl_poll_cont);
438 			uasm_i_nop(&p);
439 		} else {
440 			/*
441 			 * The core will lose power & this VPE will not continue
442 			 * so it can simply halt here.
443 			 */
444 			uasm_i_addiu(&p, t0, zero, TCHALT_H);
445 			uasm_i_mtc0(&p, t0, 2, 4);
446 			uasm_build_label(&l, p, lbl_secondary_hang);
447 			uasm_il_b(&p, &r, lbl_secondary_hang);
448 			uasm_i_nop(&p);
449 		}
450 	}
451 
452 	/*
453 	 * This is the point of no return - this VPE will now proceed to
454 	 * disable coherence. At this point we *must* be sure that no other
455 	 * VPE within the core will interfere with the L1 dcache.
456 	 */
457 	uasm_build_label(&l, p, lbl_disable_coherence);
458 
459 	/* Invalidate the L1 icache */
460 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
461 			      Index_Invalidate_I, lbl_invicache);
462 
463 	/* Writeback & invalidate the L1 dcache */
464 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
465 			      Index_Writeback_Inv_D, lbl_flushdcache);
466 
467 	/* Completion barrier */
468 	uasm_i_sync(&p, stype_memory);
469 	uasm_i_ehb(&p);
470 
471 	/*
472 	 * Disable all but self interventions. The load from COHCTL is defined
473 	 * by the interAptiv & proAptiv SUMs as ensuring that the operation
474 	 * resulting from the preceeding store is complete.
475 	 */
476 	uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
477 	uasm_i_sw(&p, t0, 0, r_pcohctl);
478 	uasm_i_lw(&p, t0, 0, r_pcohctl);
479 
480 	/* Sync to ensure previous interventions are complete */
481 	uasm_i_sync(&p, stype_intervention);
482 	uasm_i_ehb(&p);
483 
484 	/* Disable coherence */
485 	uasm_i_sw(&p, zero, 0, r_pcohctl);
486 	uasm_i_lw(&p, t0, 0, r_pcohctl);
487 
488 	if (state >= CPS_PM_CLOCK_GATED) {
489 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
490 					lbl_flush_fsb);
491 		if (err)
492 			goto out_err;
493 
494 		/* Determine the CPC command to issue */
495 		switch (state) {
496 		case CPS_PM_CLOCK_GATED:
497 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
498 			break;
499 		case CPS_PM_POWER_GATED:
500 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
501 			break;
502 		default:
503 			BUG();
504 			goto out_err;
505 		}
506 
507 		/* Issue the CPC command */
508 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
509 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
510 		uasm_i_sw(&p, t1, 0, t0);
511 
512 		if (state == CPS_PM_POWER_GATED) {
513 			/* If anything goes wrong just hang */
514 			uasm_build_label(&l, p, lbl_hang);
515 			uasm_il_b(&p, &r, lbl_hang);
516 			uasm_i_nop(&p);
517 
518 			/*
519 			 * There's no point generating more code, the core is
520 			 * powered down & if powered back up will run from the
521 			 * reset vector not from here.
522 			 */
523 			goto gen_done;
524 		}
525 
526 		/* Completion barrier */
527 		uasm_i_sync(&p, stype_memory);
528 		uasm_i_ehb(&p);
529 	}
530 
531 	if (state == CPS_PM_NC_WAIT) {
532 		/*
533 		 * At this point it is safe for all VPEs to proceed with
534 		 * execution. This VPE will set the top bit of ready_count
535 		 * to indicate to the other VPEs that they may continue.
536 		 */
537 		if (coupled_coherence)
538 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
539 					    lbl_set_cont);
540 
541 		/*
542 		 * VPEs which did not disable coherence will continue
543 		 * executing, after coherence has been disabled, from this
544 		 * point.
545 		 */
546 		uasm_build_label(&l, p, lbl_secondary_cont);
547 
548 		/* Now perform our wait */
549 		uasm_i_wait(&p, 0);
550 	}
551 
552 	/*
553 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
554 	 * will run this. The first will actually re-enable coherence & the
555 	 * rest will just be performing a rather unusual nop.
556 	 */
557 	uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
558 	uasm_i_sw(&p, t0, 0, r_pcohctl);
559 	uasm_i_lw(&p, t0, 0, r_pcohctl);
560 
561 	/* Completion barrier */
562 	uasm_i_sync(&p, stype_memory);
563 	uasm_i_ehb(&p);
564 
565 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
566 		/* Decrement ready_count */
567 		uasm_build_label(&l, p, lbl_decready);
568 		uasm_i_sync(&p, stype_ordering);
569 		uasm_i_ll(&p, t1, 0, r_nc_count);
570 		uasm_i_addiu(&p, t2, t1, -1);
571 		uasm_i_sc(&p, t2, 0, r_nc_count);
572 		uasm_il_beqz(&p, &r, t2, lbl_decready);
573 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
574 
575 		/* Ordering barrier */
576 		uasm_i_sync(&p, stype_ordering);
577 	}
578 
579 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
580 		/*
581 		 * At this point it is safe for all VPEs to proceed with
582 		 * execution. This VPE will set the top bit of ready_count
583 		 * to indicate to the other VPEs that they may continue.
584 		 */
585 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
586 
587 		/*
588 		 * This core will be reliant upon another core sending a
589 		 * power-up command to the CPC in order to resume operation.
590 		 * Thus an arbitrary VPE can't trigger the core leaving the
591 		 * idle state and the one that disables coherence might as well
592 		 * be the one to re-enable it. The rest will continue from here
593 		 * after that has been done.
594 		 */
595 		uasm_build_label(&l, p, lbl_secondary_cont);
596 
597 		/* Ordering barrier */
598 		uasm_i_sync(&p, stype_ordering);
599 	}
600 
601 	/* The core is coherent, time to return to C code */
602 	uasm_i_jr(&p, ra);
603 	uasm_i_nop(&p);
604 
605 gen_done:
606 	/* Ensure the code didn't exceed the resources allocated for it */
607 	BUG_ON((p - buf) > max_instrs);
608 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
609 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
610 
611 	/* Patch branch offsets */
612 	uasm_resolve_relocs(relocs, labels);
613 
614 	/* Flush the icache */
615 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
616 
617 	return buf;
618 out_err:
619 	kfree(buf);
620 	return NULL;
621 }
622 
623 static int __init cps_gen_core_entries(unsigned cpu)
624 {
625 	enum cps_pm_state state;
626 	unsigned core = cpu_data[cpu].core;
627 	unsigned dlinesz = cpu_data[cpu].dcache.linesz;
628 	void *entry_fn, *core_rc;
629 
630 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
631 		if (per_cpu(nc_asm_enter, core)[state])
632 			continue;
633 		if (!test_bit(state, state_support))
634 			continue;
635 
636 		entry_fn = cps_gen_entry_code(cpu, state);
637 		if (!entry_fn) {
638 			pr_err("Failed to generate core %u state %u entry\n",
639 			       core, state);
640 			clear_bit(state, state_support);
641 		}
642 
643 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
644 	}
645 
646 	if (!per_cpu(ready_count, core)) {
647 		core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
648 		if (!core_rc) {
649 			pr_err("Failed allocate core %u ready_count\n", core);
650 			return -ENOMEM;
651 		}
652 		per_cpu(ready_count_alloc, core) = core_rc;
653 
654 		/* Ensure ready_count is aligned to a cacheline boundary */
655 		core_rc += dlinesz - 1;
656 		core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
657 		per_cpu(ready_count, core) = core_rc;
658 	}
659 
660 	return 0;
661 }
662 
663 static int __init cps_pm_init(void)
664 {
665 	unsigned cpu;
666 	int err;
667 
668 	/* Detect appropriate sync types for the system */
669 	switch (current_cpu_data.cputype) {
670 	case CPU_INTERAPTIV:
671 	case CPU_PROAPTIV:
672 	case CPU_M5150:
673 	case CPU_P5600:
674 		stype_intervention = 0x2;
675 		stype_memory = 0x3;
676 		stype_ordering = 0x10;
677 		break;
678 
679 	default:
680 		pr_warn("Power management is using heavyweight sync 0\n");
681 	}
682 
683 	/* A CM is required for all non-coherent states */
684 	if (!mips_cm_present()) {
685 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
686 		goto out;
687 	}
688 
689 	/*
690 	 * If interrupts were enabled whilst running a wait instruction on a
691 	 * non-coherent core then the VPE may end up processing interrupts
692 	 * whilst non-coherent. That would be bad.
693 	 */
694 	if (cpu_wait == r4k_wait_irqoff)
695 		set_bit(CPS_PM_NC_WAIT, state_support);
696 	else
697 		pr_warn("pm-cps: non-coherent wait unavailable\n");
698 
699 	/* Detect whether a CPC is present */
700 	if (mips_cpc_present()) {
701 		/* Detect whether clock gating is implemented */
702 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
703 			set_bit(CPS_PM_CLOCK_GATED, state_support);
704 		else
705 			pr_warn("pm-cps: CPC does not support clock gating\n");
706 
707 		/* Power gating is available with CPS SMP & any CPC */
708 		if (mips_cps_smp_in_use())
709 			set_bit(CPS_PM_POWER_GATED, state_support);
710 		else
711 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
712 	} else {
713 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
714 	}
715 
716 	for_each_present_cpu(cpu) {
717 		err = cps_gen_core_entries(cpu);
718 		if (err)
719 			return err;
720 	}
721 out:
722 	return 0;
723 }
724 arch_initcall(cps_pm_init);
725