xref: /openbmc/linux/arch/mips/kernel/i8253.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * i8253.c  8253/PIT functions
3  *
4  */
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
11 
12 #include <asm/delay.h>
13 #include <asm/i8253.h>
14 #include <asm/io.h>
15 
16 static DEFINE_SPINLOCK(i8253_lock);
17 
18 /*
19  * Initialize the PIT timer.
20  *
21  * This is also called after resume to bring the PIT into operation again.
22  */
23 static void init_pit_timer(enum clock_event_mode mode,
24 			   struct clock_event_device *evt)
25 {
26 	unsigned long flags;
27 
28 	spin_lock_irqsave(&i8253_lock, flags);
29 
30 	switch(mode) {
31 	case CLOCK_EVT_MODE_PERIODIC:
32 		/* binary, mode 2, LSB/MSB, ch 0 */
33 		outb_p(0x34, PIT_MODE);
34 		outb_p(LATCH & 0xff , PIT_CH0);	/* LSB */
35 		outb(LATCH >> 8 , PIT_CH0);	/* MSB */
36 		break;
37 
38 	case CLOCK_EVT_MODE_SHUTDOWN:
39 	case CLOCK_EVT_MODE_UNUSED:
40 		if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
41 		    evt->mode == CLOCK_EVT_MODE_ONESHOT) {
42 			outb_p(0x30, PIT_MODE);
43 			outb_p(0, PIT_CH0);
44 			outb_p(0, PIT_CH0);
45 		}
46 		break;
47 
48 	case CLOCK_EVT_MODE_ONESHOT:
49 		/* One shot setup */
50 		outb_p(0x38, PIT_MODE);
51 		break;
52 
53 	case CLOCK_EVT_MODE_RESUME:
54 		/* Nothing to do here */
55 		break;
56 	}
57 	spin_unlock_irqrestore(&i8253_lock, flags);
58 }
59 
60 /*
61  * Program the next event in oneshot mode
62  *
63  * Delta is given in PIT ticks
64  */
65 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
66 {
67 	unsigned long flags;
68 
69 	spin_lock_irqsave(&i8253_lock, flags);
70 	outb_p(delta & 0xff , PIT_CH0);	/* LSB */
71 	outb(delta >> 8 , PIT_CH0);	/* MSB */
72 	spin_unlock_irqrestore(&i8253_lock, flags);
73 
74 	return 0;
75 }
76 
77 /*
78  * On UP the PIT can serve all of the possible timer functions. On SMP systems
79  * it can be solely used for the global tick.
80  *
81  * The profiling and update capabilites are switched off once the local apic is
82  * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
83  * !using_apic_timer decisions in do_timer_interrupt_hook()
84  */
85 struct clock_event_device pit_clockevent = {
86 	.name		= "pit",
87 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
88 	.set_mode	= init_pit_timer,
89 	.set_next_event = pit_next_event,
90 	.shift		= 32,
91 	.irq		= 0,
92 };
93 
94 irqreturn_t timer_interrupt(int irq, void *dev_id)
95 {
96 	pit_clockevent.event_handler(&pit_clockevent);
97 
98 	return IRQ_HANDLED;
99 }
100 
101 static struct irqaction irq0  = {
102 	.handler = timer_interrupt,
103 	.flags = IRQF_DISABLED | IRQF_NOBALANCING,
104 	.mask = CPU_MASK_NONE,
105 	.name = "timer"
106 };
107 
108 /*
109  * Initialize the conversion factor and the min/max deltas of the clock event
110  * structure and register the clock event source with the framework.
111  */
112 void __init setup_pit_timer(void)
113 {
114 	/*
115 	 * Start pit with the boot cpu mask and make it global after the
116 	 * IO_APIC has been initialized.
117 	 */
118 	pit_clockevent.cpumask = cpumask_of_cpu(0);
119 	pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, 32);
120 	pit_clockevent.max_delta_ns =
121 		clockevent_delta2ns(0x7FFF, &pit_clockevent);
122 	pit_clockevent.min_delta_ns =
123 		clockevent_delta2ns(0xF, &pit_clockevent);
124 	clockevents_register_device(&pit_clockevent);
125 
126 	irq0.mask = cpumask_of_cpu(0);
127 	setup_irq(0, &irq0);
128 }
129 
130 /*
131  * Since the PIT overflows every tick, its not very useful
132  * to just read by itself. So use jiffies to emulate a free
133  * running counter:
134  */
135 static cycle_t pit_read(void)
136 {
137 	unsigned long flags;
138 	int count;
139 	u32 jifs;
140 	static int old_count;
141 	static u32 old_jifs;
142 
143 	spin_lock_irqsave(&i8253_lock, flags);
144 	/*
145 	 * Although our caller may have the read side of xtime_lock,
146 	 * this is now a seqlock, and we are cheating in this routine
147 	 * by having side effects on state that we cannot undo if
148 	 * there is a collision on the seqlock and our caller has to
149 	 * retry.  (Namely, old_jifs and old_count.)  So we must treat
150 	 * jiffies as volatile despite the lock.  We read jiffies
151 	 * before latching the timer count to guarantee that although
152 	 * the jiffies value might be older than the count (that is,
153 	 * the counter may underflow between the last point where
154 	 * jiffies was incremented and the point where we latch the
155 	 * count), it cannot be newer.
156 	 */
157 	jifs = jiffies;
158 	outb_p(0x00, PIT_MODE);	/* latch the count ASAP */
159 	count = inb_p(PIT_CH0);	/* read the latched count */
160 	count |= inb_p(PIT_CH0) << 8;
161 
162 	/* VIA686a test code... reset the latch if count > max + 1 */
163 	if (count > LATCH) {
164 		outb_p(0x34, PIT_MODE);
165 		outb_p(LATCH & 0xff, PIT_CH0);
166 		outb(LATCH >> 8, PIT_CH0);
167 		count = LATCH - 1;
168 	}
169 
170 	/*
171 	 * It's possible for count to appear to go the wrong way for a
172 	 * couple of reasons:
173 	 *
174 	 *  1. The timer counter underflows, but we haven't handled the
175 	 *     resulting interrupt and incremented jiffies yet.
176 	 *  2. Hardware problem with the timer, not giving us continuous time,
177 	 *     the counter does small "jumps" upwards on some Pentium systems,
178 	 *     (see c't 95/10 page 335 for Neptun bug.)
179 	 *
180 	 * Previous attempts to handle these cases intelligently were
181 	 * buggy, so we just do the simple thing now.
182 	 */
183 	if (count > old_count && jifs == old_jifs) {
184 		count = old_count;
185 	}
186 	old_count = count;
187 	old_jifs = jifs;
188 
189 	spin_unlock_irqrestore(&i8253_lock, flags);
190 
191 	count = (LATCH - 1) - count;
192 
193 	return (cycle_t)(jifs * LATCH) + count;
194 }
195 
196 static struct clocksource clocksource_pit = {
197 	.name	= "pit",
198 	.rating = 110,
199 	.read	= pit_read,
200 	.mask	= CLOCKSOURCE_MASK(32),
201 	.mult	= 0,
202 	.shift	= 20,
203 };
204 
205 static int __init init_pit_clocksource(void)
206 {
207 	if (num_possible_cpus() > 1) /* PIT does not scale! */
208 		return 0;
209 
210 	clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
211 	return clocksource_register(&clocksource_pit);
212 }
213 arch_initcall(init_pit_clocksource);
214