1*1da177e4SLinus Torvalds| 2*1da177e4SLinus Torvalds| decbin.sa 3.3 12/19/90 3*1da177e4SLinus Torvalds| 4*1da177e4SLinus Torvalds| Description: Converts normalized packed bcd value pointed to by 5*1da177e4SLinus Torvalds| register A6 to extended-precision value in FP0. 6*1da177e4SLinus Torvalds| 7*1da177e4SLinus Torvalds| Input: Normalized packed bcd value in ETEMP(a6). 8*1da177e4SLinus Torvalds| 9*1da177e4SLinus Torvalds| Output: Exact floating-point representation of the packed bcd value. 10*1da177e4SLinus Torvalds| 11*1da177e4SLinus Torvalds| Saves and Modifies: D2-D5 12*1da177e4SLinus Torvalds| 13*1da177e4SLinus Torvalds| Speed: The program decbin takes ??? cycles to execute. 14*1da177e4SLinus Torvalds| 15*1da177e4SLinus Torvalds| Object Size: 16*1da177e4SLinus Torvalds| 17*1da177e4SLinus Torvalds| External Reference(s): None. 18*1da177e4SLinus Torvalds| 19*1da177e4SLinus Torvalds| Algorithm: 20*1da177e4SLinus Torvalds| Expected is a normal bcd (i.e. non-exceptional; all inf, zero, 21*1da177e4SLinus Torvalds| and NaN operands are dispatched without entering this routine) 22*1da177e4SLinus Torvalds| value in 68881/882 format at location ETEMP(A6). 23*1da177e4SLinus Torvalds| 24*1da177e4SLinus Torvalds| A1. Convert the bcd exponent to binary by successive adds and muls. 25*1da177e4SLinus Torvalds| Set the sign according to SE. Subtract 16 to compensate 26*1da177e4SLinus Torvalds| for the mantissa which is to be interpreted as 17 integer 27*1da177e4SLinus Torvalds| digits, rather than 1 integer and 16 fraction digits. 28*1da177e4SLinus Torvalds| Note: this operation can never overflow. 29*1da177e4SLinus Torvalds| 30*1da177e4SLinus Torvalds| A2. Convert the bcd mantissa to binary by successive 31*1da177e4SLinus Torvalds| adds and muls in FP0. Set the sign according to SM. 32*1da177e4SLinus Torvalds| The mantissa digits will be converted with the decimal point 33*1da177e4SLinus Torvalds| assumed following the least-significant digit. 34*1da177e4SLinus Torvalds| Note: this operation can never overflow. 35*1da177e4SLinus Torvalds| 36*1da177e4SLinus Torvalds| A3. Count the number of leading/trailing zeros in the 37*1da177e4SLinus Torvalds| bcd string. If SE is positive, count the leading zeros; 38*1da177e4SLinus Torvalds| if negative, count the trailing zeros. Set the adjusted 39*1da177e4SLinus Torvalds| exponent equal to the exponent from A1 and the zero count 40*1da177e4SLinus Torvalds| added if SM = 1 and subtracted if SM = 0. Scale the 41*1da177e4SLinus Torvalds| mantissa the equivalent of forcing in the bcd value: 42*1da177e4SLinus Torvalds| 43*1da177e4SLinus Torvalds| SM = 0 a non-zero digit in the integer position 44*1da177e4SLinus Torvalds| SM = 1 a non-zero digit in Mant0, lsd of the fraction 45*1da177e4SLinus Torvalds| 46*1da177e4SLinus Torvalds| this will insure that any value, regardless of its 47*1da177e4SLinus Torvalds| representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted 48*1da177e4SLinus Torvalds| consistently. 49*1da177e4SLinus Torvalds| 50*1da177e4SLinus Torvalds| A4. Calculate the factor 10^exp in FP1 using a table of 51*1da177e4SLinus Torvalds| 10^(2^n) values. To reduce the error in forming factors 52*1da177e4SLinus Torvalds| greater than 10^27, a directed rounding scheme is used with 53*1da177e4SLinus Torvalds| tables rounded to RN, RM, and RP, according to the table 54*1da177e4SLinus Torvalds| in the comments of the pwrten section. 55*1da177e4SLinus Torvalds| 56*1da177e4SLinus Torvalds| A5. Form the final binary number by scaling the mantissa by 57*1da177e4SLinus Torvalds| the exponent factor. This is done by multiplying the 58*1da177e4SLinus Torvalds| mantissa in FP0 by the factor in FP1 if the adjusted 59*1da177e4SLinus Torvalds| exponent sign is positive, and dividing FP0 by FP1 if 60*1da177e4SLinus Torvalds| it is negative. 61*1da177e4SLinus Torvalds| 62*1da177e4SLinus Torvalds| Clean up and return. Check if the final mul or div resulted 63*1da177e4SLinus Torvalds| in an inex2 exception. If so, set inex1 in the fpsr and 64*1da177e4SLinus Torvalds| check if the inex1 exception is enabled. If so, set d7 upper 65*1da177e4SLinus Torvalds| word to $0100. This will signal unimp.sa that an enabled inex1 66*1da177e4SLinus Torvalds| exception occurred. Unimp will fix the stack. 67*1da177e4SLinus Torvalds| 68*1da177e4SLinus Torvalds 69*1da177e4SLinus Torvalds| Copyright (C) Motorola, Inc. 1990 70*1da177e4SLinus Torvalds| All Rights Reserved 71*1da177e4SLinus Torvalds| 72*1da177e4SLinus Torvalds| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA 73*1da177e4SLinus Torvalds| The copyright notice above does not evidence any 74*1da177e4SLinus Torvalds| actual or intended publication of such source code. 75*1da177e4SLinus Torvalds 76*1da177e4SLinus Torvalds|DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package 77*1da177e4SLinus Torvalds 78*1da177e4SLinus Torvalds |section 8 79*1da177e4SLinus Torvalds 80*1da177e4SLinus Torvalds#include "fpsp.h" 81*1da177e4SLinus Torvalds 82*1da177e4SLinus Torvalds| 83*1da177e4SLinus Torvalds| PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded 84*1da177e4SLinus Torvalds| to nearest, minus, and plus, respectively. The tables include 85*1da177e4SLinus Torvalds| 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding 86*1da177e4SLinus Torvalds| is required until the power is greater than 27, however, all 87*1da177e4SLinus Torvalds| tables include the first 5 for ease of indexing. 88*1da177e4SLinus Torvalds| 89*1da177e4SLinus Torvalds |xref PTENRN 90*1da177e4SLinus Torvalds |xref PTENRM 91*1da177e4SLinus Torvalds |xref PTENRP 92*1da177e4SLinus Torvalds 93*1da177e4SLinus TorvaldsRTABLE: .byte 0,0,0,0 94*1da177e4SLinus Torvalds .byte 2,3,2,3 95*1da177e4SLinus Torvalds .byte 2,3,3,2 96*1da177e4SLinus Torvalds .byte 3,2,2,3 97*1da177e4SLinus Torvalds 98*1da177e4SLinus Torvalds .global decbin 99*1da177e4SLinus Torvalds .global calc_e 100*1da177e4SLinus Torvalds .global pwrten 101*1da177e4SLinus Torvalds .global calc_m 102*1da177e4SLinus Torvalds .global norm 103*1da177e4SLinus Torvalds .global ap_st_z 104*1da177e4SLinus Torvalds .global ap_st_n 105*1da177e4SLinus Torvalds| 106*1da177e4SLinus Torvalds .set FNIBS,7 107*1da177e4SLinus Torvalds .set FSTRT,0 108*1da177e4SLinus Torvalds| 109*1da177e4SLinus Torvalds .set ESTRT,4 110*1da177e4SLinus Torvalds .set EDIGITS,2 | 111*1da177e4SLinus Torvalds| 112*1da177e4SLinus Torvalds| Constants in single precision 113*1da177e4SLinus TorvaldsFZERO: .long 0x00000000 114*1da177e4SLinus TorvaldsFONE: .long 0x3F800000 115*1da177e4SLinus TorvaldsFTEN: .long 0x41200000 116*1da177e4SLinus Torvalds 117*1da177e4SLinus Torvalds .set TEN,10 118*1da177e4SLinus Torvalds 119*1da177e4SLinus Torvalds| 120*1da177e4SLinus Torvaldsdecbin: 121*1da177e4SLinus Torvalds | fmovel #0,FPCR ;clr real fpcr 122*1da177e4SLinus Torvalds moveml %d2-%d5,-(%a7) 123*1da177e4SLinus Torvalds| 124*1da177e4SLinus Torvalds| Calculate exponent: 125*1da177e4SLinus Torvalds| 1. Copy bcd value in memory for use as a working copy. 126*1da177e4SLinus Torvalds| 2. Calculate absolute value of exponent in d1 by mul and add. 127*1da177e4SLinus Torvalds| 3. Correct for exponent sign. 128*1da177e4SLinus Torvalds| 4. Subtract 16 to compensate for interpreting the mant as all integer digits. 129*1da177e4SLinus Torvalds| (i.e., all digits assumed left of the decimal point.) 130*1da177e4SLinus Torvalds| 131*1da177e4SLinus Torvalds| Register usage: 132*1da177e4SLinus Torvalds| 133*1da177e4SLinus Torvalds| calc_e: 134*1da177e4SLinus Torvalds| (*) d0: temp digit storage 135*1da177e4SLinus Torvalds| (*) d1: accumulator for binary exponent 136*1da177e4SLinus Torvalds| (*) d2: digit count 137*1da177e4SLinus Torvalds| (*) d3: offset pointer 138*1da177e4SLinus Torvalds| ( ) d4: first word of bcd 139*1da177e4SLinus Torvalds| ( ) a0: pointer to working bcd value 140*1da177e4SLinus Torvalds| ( ) a6: pointer to original bcd value 141*1da177e4SLinus Torvalds| (*) FP_SCR1: working copy of original bcd value 142*1da177e4SLinus Torvalds| (*) L_SCR1: copy of original exponent word 143*1da177e4SLinus Torvalds| 144*1da177e4SLinus Torvaldscalc_e: 145*1da177e4SLinus Torvalds movel #EDIGITS,%d2 |# of nibbles (digits) in fraction part 146*1da177e4SLinus Torvalds moveql #ESTRT,%d3 |counter to pick up digits 147*1da177e4SLinus Torvalds leal FP_SCR1(%a6),%a0 |load tmp bcd storage address 148*1da177e4SLinus Torvalds movel ETEMP(%a6),(%a0) |save input bcd value 149*1da177e4SLinus Torvalds movel ETEMP_HI(%a6),4(%a0) |save words 2 and 3 150*1da177e4SLinus Torvalds movel ETEMP_LO(%a6),8(%a0) |and work with these 151*1da177e4SLinus Torvalds movel (%a0),%d4 |get first word of bcd 152*1da177e4SLinus Torvalds clrl %d1 |zero d1 for accumulator 153*1da177e4SLinus Torvaldse_gd: 154*1da177e4SLinus Torvalds mulul #TEN,%d1 |mul partial product by one digit place 155*1da177e4SLinus Torvalds bfextu %d4{%d3:#4},%d0 |get the digit and zero extend into d0 156*1da177e4SLinus Torvalds addl %d0,%d1 |d1 = d1 + d0 157*1da177e4SLinus Torvalds addqb #4,%d3 |advance d3 to the next digit 158*1da177e4SLinus Torvalds dbf %d2,e_gd |if we have used all 3 digits, exit loop 159*1da177e4SLinus Torvalds btst #30,%d4 |get SE 160*1da177e4SLinus Torvalds beqs e_pos |don't negate if pos 161*1da177e4SLinus Torvalds negl %d1 |negate before subtracting 162*1da177e4SLinus Torvaldse_pos: 163*1da177e4SLinus Torvalds subl #16,%d1 |sub to compensate for shift of mant 164*1da177e4SLinus Torvalds bges e_save |if still pos, do not neg 165*1da177e4SLinus Torvalds negl %d1 |now negative, make pos and set SE 166*1da177e4SLinus Torvalds orl #0x40000000,%d4 |set SE in d4, 167*1da177e4SLinus Torvalds orl #0x40000000,(%a0) |and in working bcd 168*1da177e4SLinus Torvaldse_save: 169*1da177e4SLinus Torvalds movel %d1,L_SCR1(%a6) |save exp in memory 170*1da177e4SLinus Torvalds| 171*1da177e4SLinus Torvalds| 172*1da177e4SLinus Torvalds| Calculate mantissa: 173*1da177e4SLinus Torvalds| 1. Calculate absolute value of mantissa in fp0 by mul and add. 174*1da177e4SLinus Torvalds| 2. Correct for mantissa sign. 175*1da177e4SLinus Torvalds| (i.e., all digits assumed left of the decimal point.) 176*1da177e4SLinus Torvalds| 177*1da177e4SLinus Torvalds| Register usage: 178*1da177e4SLinus Torvalds| 179*1da177e4SLinus Torvalds| calc_m: 180*1da177e4SLinus Torvalds| (*) d0: temp digit storage 181*1da177e4SLinus Torvalds| (*) d1: lword counter 182*1da177e4SLinus Torvalds| (*) d2: digit count 183*1da177e4SLinus Torvalds| (*) d3: offset pointer 184*1da177e4SLinus Torvalds| ( ) d4: words 2 and 3 of bcd 185*1da177e4SLinus Torvalds| ( ) a0: pointer to working bcd value 186*1da177e4SLinus Torvalds| ( ) a6: pointer to original bcd value 187*1da177e4SLinus Torvalds| (*) fp0: mantissa accumulator 188*1da177e4SLinus Torvalds| ( ) FP_SCR1: working copy of original bcd value 189*1da177e4SLinus Torvalds| ( ) L_SCR1: copy of original exponent word 190*1da177e4SLinus Torvalds| 191*1da177e4SLinus Torvaldscalc_m: 192*1da177e4SLinus Torvalds moveql #1,%d1 |word counter, init to 1 193*1da177e4SLinus Torvalds fmoves FZERO,%fp0 |accumulator 194*1da177e4SLinus Torvalds| 195*1da177e4SLinus Torvalds| 196*1da177e4SLinus Torvalds| Since the packed number has a long word between the first & second parts, 197*1da177e4SLinus Torvalds| get the integer digit then skip down & get the rest of the 198*1da177e4SLinus Torvalds| mantissa. We will unroll the loop once. 199*1da177e4SLinus Torvalds| 200*1da177e4SLinus Torvalds bfextu (%a0){#28:#4},%d0 |integer part is ls digit in long word 201*1da177e4SLinus Torvalds faddb %d0,%fp0 |add digit to sum in fp0 202*1da177e4SLinus Torvalds| 203*1da177e4SLinus Torvalds| 204*1da177e4SLinus Torvalds| Get the rest of the mantissa. 205*1da177e4SLinus Torvalds| 206*1da177e4SLinus Torvaldsloadlw: 207*1da177e4SLinus Torvalds movel (%a0,%d1.L*4),%d4 |load mantissa longword into d4 208*1da177e4SLinus Torvalds moveql #FSTRT,%d3 |counter to pick up digits 209*1da177e4SLinus Torvalds moveql #FNIBS,%d2 |reset number of digits per a0 ptr 210*1da177e4SLinus Torvaldsmd2b: 211*1da177e4SLinus Torvalds fmuls FTEN,%fp0 |fp0 = fp0 * 10 212*1da177e4SLinus Torvalds bfextu %d4{%d3:#4},%d0 |get the digit and zero extend 213*1da177e4SLinus Torvalds faddb %d0,%fp0 |fp0 = fp0 + digit 214*1da177e4SLinus Torvalds| 215*1da177e4SLinus Torvalds| 216*1da177e4SLinus Torvalds| If all the digits (8) in that long word have been converted (d2=0), 217*1da177e4SLinus Torvalds| then inc d1 (=2) to point to the next long word and reset d3 to 0 218*1da177e4SLinus Torvalds| to initialize the digit offset, and set d2 to 7 for the digit count; 219*1da177e4SLinus Torvalds| else continue with this long word. 220*1da177e4SLinus Torvalds| 221*1da177e4SLinus Torvalds addqb #4,%d3 |advance d3 to the next digit 222*1da177e4SLinus Torvalds dbf %d2,md2b |check for last digit in this lw 223*1da177e4SLinus Torvaldsnextlw: 224*1da177e4SLinus Torvalds addql #1,%d1 |inc lw pointer in mantissa 225*1da177e4SLinus Torvalds cmpl #2,%d1 |test for last lw 226*1da177e4SLinus Torvalds ble loadlw |if not, get last one 227*1da177e4SLinus Torvalds 228*1da177e4SLinus Torvalds| 229*1da177e4SLinus Torvalds| Check the sign of the mant and make the value in fp0 the same sign. 230*1da177e4SLinus Torvalds| 231*1da177e4SLinus Torvaldsm_sign: 232*1da177e4SLinus Torvalds btst #31,(%a0) |test sign of the mantissa 233*1da177e4SLinus Torvalds beq ap_st_z |if clear, go to append/strip zeros 234*1da177e4SLinus Torvalds fnegx %fp0 |if set, negate fp0 235*1da177e4SLinus Torvalds 236*1da177e4SLinus Torvalds| 237*1da177e4SLinus Torvalds| Append/strip zeros: 238*1da177e4SLinus Torvalds| 239*1da177e4SLinus Torvalds| For adjusted exponents which have an absolute value greater than 27*, 240*1da177e4SLinus Torvalds| this routine calculates the amount needed to normalize the mantissa 241*1da177e4SLinus Torvalds| for the adjusted exponent. That number is subtracted from the exp 242*1da177e4SLinus Torvalds| if the exp was positive, and added if it was negative. The purpose 243*1da177e4SLinus Torvalds| of this is to reduce the value of the exponent and the possibility 244*1da177e4SLinus Torvalds| of error in calculation of pwrten. 245*1da177e4SLinus Torvalds| 246*1da177e4SLinus Torvalds| 1. Branch on the sign of the adjusted exponent. 247*1da177e4SLinus Torvalds| 2p.(positive exp) 248*1da177e4SLinus Torvalds| 2. Check M16 and the digits in lwords 2 and 3 in descending order. 249*1da177e4SLinus Torvalds| 3. Add one for each zero encountered until a non-zero digit. 250*1da177e4SLinus Torvalds| 4. Subtract the count from the exp. 251*1da177e4SLinus Torvalds| 5. Check if the exp has crossed zero in #3 above; make the exp abs 252*1da177e4SLinus Torvalds| and set SE. 253*1da177e4SLinus Torvalds| 6. Multiply the mantissa by 10**count. 254*1da177e4SLinus Torvalds| 2n.(negative exp) 255*1da177e4SLinus Torvalds| 2. Check the digits in lwords 3 and 2 in descending order. 256*1da177e4SLinus Torvalds| 3. Add one for each zero encountered until a non-zero digit. 257*1da177e4SLinus Torvalds| 4. Add the count to the exp. 258*1da177e4SLinus Torvalds| 5. Check if the exp has crossed zero in #3 above; clear SE. 259*1da177e4SLinus Torvalds| 6. Divide the mantissa by 10**count. 260*1da177e4SLinus Torvalds| 261*1da177e4SLinus Torvalds| *Why 27? If the adjusted exponent is within -28 < expA < 28, than 262*1da177e4SLinus Torvalds| any adjustment due to append/strip zeros will drive the resultant 263*1da177e4SLinus Torvalds| exponent towards zero. Since all pwrten constants with a power 264*1da177e4SLinus Torvalds| of 27 or less are exact, there is no need to use this routine to 265*1da177e4SLinus Torvalds| attempt to lessen the resultant exponent. 266*1da177e4SLinus Torvalds| 267*1da177e4SLinus Torvalds| Register usage: 268*1da177e4SLinus Torvalds| 269*1da177e4SLinus Torvalds| ap_st_z: 270*1da177e4SLinus Torvalds| (*) d0: temp digit storage 271*1da177e4SLinus Torvalds| (*) d1: zero count 272*1da177e4SLinus Torvalds| (*) d2: digit count 273*1da177e4SLinus Torvalds| (*) d3: offset pointer 274*1da177e4SLinus Torvalds| ( ) d4: first word of bcd 275*1da177e4SLinus Torvalds| (*) d5: lword counter 276*1da177e4SLinus Torvalds| ( ) a0: pointer to working bcd value 277*1da177e4SLinus Torvalds| ( ) FP_SCR1: working copy of original bcd value 278*1da177e4SLinus Torvalds| ( ) L_SCR1: copy of original exponent word 279*1da177e4SLinus Torvalds| 280*1da177e4SLinus Torvalds| 281*1da177e4SLinus Torvalds| First check the absolute value of the exponent to see if this 282*1da177e4SLinus Torvalds| routine is necessary. If so, then check the sign of the exponent 283*1da177e4SLinus Torvalds| and do append (+) or strip (-) zeros accordingly. 284*1da177e4SLinus Torvalds| This section handles a positive adjusted exponent. 285*1da177e4SLinus Torvalds| 286*1da177e4SLinus Torvaldsap_st_z: 287*1da177e4SLinus Torvalds movel L_SCR1(%a6),%d1 |load expA for range test 288*1da177e4SLinus Torvalds cmpl #27,%d1 |test is with 27 289*1da177e4SLinus Torvalds ble pwrten |if abs(expA) <28, skip ap/st zeros 290*1da177e4SLinus Torvalds btst #30,(%a0) |check sign of exp 291*1da177e4SLinus Torvalds bne ap_st_n |if neg, go to neg side 292*1da177e4SLinus Torvalds clrl %d1 |zero count reg 293*1da177e4SLinus Torvalds movel (%a0),%d4 |load lword 1 to d4 294*1da177e4SLinus Torvalds bfextu %d4{#28:#4},%d0 |get M16 in d0 295*1da177e4SLinus Torvalds bnes ap_p_fx |if M16 is non-zero, go fix exp 296*1da177e4SLinus Torvalds addql #1,%d1 |inc zero count 297*1da177e4SLinus Torvalds moveql #1,%d5 |init lword counter 298*1da177e4SLinus Torvalds movel (%a0,%d5.L*4),%d4 |get lword 2 to d4 299*1da177e4SLinus Torvalds bnes ap_p_cl |if lw 2 is zero, skip it 300*1da177e4SLinus Torvalds addql #8,%d1 |and inc count by 8 301*1da177e4SLinus Torvalds addql #1,%d5 |inc lword counter 302*1da177e4SLinus Torvalds movel (%a0,%d5.L*4),%d4 |get lword 3 to d4 303*1da177e4SLinus Torvaldsap_p_cl: 304*1da177e4SLinus Torvalds clrl %d3 |init offset reg 305*1da177e4SLinus Torvalds moveql #7,%d2 |init digit counter 306*1da177e4SLinus Torvaldsap_p_gd: 307*1da177e4SLinus Torvalds bfextu %d4{%d3:#4},%d0 |get digit 308*1da177e4SLinus Torvalds bnes ap_p_fx |if non-zero, go to fix exp 309*1da177e4SLinus Torvalds addql #4,%d3 |point to next digit 310*1da177e4SLinus Torvalds addql #1,%d1 |inc digit counter 311*1da177e4SLinus Torvalds dbf %d2,ap_p_gd |get next digit 312*1da177e4SLinus Torvaldsap_p_fx: 313*1da177e4SLinus Torvalds movel %d1,%d0 |copy counter to d2 314*1da177e4SLinus Torvalds movel L_SCR1(%a6),%d1 |get adjusted exp from memory 315*1da177e4SLinus Torvalds subl %d0,%d1 |subtract count from exp 316*1da177e4SLinus Torvalds bges ap_p_fm |if still pos, go to pwrten 317*1da177e4SLinus Torvalds negl %d1 |now its neg; get abs 318*1da177e4SLinus Torvalds movel (%a0),%d4 |load lword 1 to d4 319*1da177e4SLinus Torvalds orl #0x40000000,%d4 | and set SE in d4 320*1da177e4SLinus Torvalds orl #0x40000000,(%a0) | and in memory 321*1da177e4SLinus Torvalds| 322*1da177e4SLinus Torvalds| Calculate the mantissa multiplier to compensate for the striping of 323*1da177e4SLinus Torvalds| zeros from the mantissa. 324*1da177e4SLinus Torvalds| 325*1da177e4SLinus Torvaldsap_p_fm: 326*1da177e4SLinus Torvalds movel #PTENRN,%a1 |get address of power-of-ten table 327*1da177e4SLinus Torvalds clrl %d3 |init table index 328*1da177e4SLinus Torvalds fmoves FONE,%fp1 |init fp1 to 1 329*1da177e4SLinus Torvalds moveql #3,%d2 |init d2 to count bits in counter 330*1da177e4SLinus Torvaldsap_p_el: 331*1da177e4SLinus Torvalds asrl #1,%d0 |shift lsb into carry 332*1da177e4SLinus Torvalds bccs ap_p_en |if 1, mul fp1 by pwrten factor 333*1da177e4SLinus Torvalds fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 334*1da177e4SLinus Torvaldsap_p_en: 335*1da177e4SLinus Torvalds addl #12,%d3 |inc d3 to next rtable entry 336*1da177e4SLinus Torvalds tstl %d0 |check if d0 is zero 337*1da177e4SLinus Torvalds bnes ap_p_el |if not, get next bit 338*1da177e4SLinus Torvalds fmulx %fp1,%fp0 |mul mantissa by 10**(no_bits_shifted) 339*1da177e4SLinus Torvalds bra pwrten |go calc pwrten 340*1da177e4SLinus Torvalds| 341*1da177e4SLinus Torvalds| This section handles a negative adjusted exponent. 342*1da177e4SLinus Torvalds| 343*1da177e4SLinus Torvaldsap_st_n: 344*1da177e4SLinus Torvalds clrl %d1 |clr counter 345*1da177e4SLinus Torvalds moveql #2,%d5 |set up d5 to point to lword 3 346*1da177e4SLinus Torvalds movel (%a0,%d5.L*4),%d4 |get lword 3 347*1da177e4SLinus Torvalds bnes ap_n_cl |if not zero, check digits 348*1da177e4SLinus Torvalds subl #1,%d5 |dec d5 to point to lword 2 349*1da177e4SLinus Torvalds addql #8,%d1 |inc counter by 8 350*1da177e4SLinus Torvalds movel (%a0,%d5.L*4),%d4 |get lword 2 351*1da177e4SLinus Torvaldsap_n_cl: 352*1da177e4SLinus Torvalds movel #28,%d3 |point to last digit 353*1da177e4SLinus Torvalds moveql #7,%d2 |init digit counter 354*1da177e4SLinus Torvaldsap_n_gd: 355*1da177e4SLinus Torvalds bfextu %d4{%d3:#4},%d0 |get digit 356*1da177e4SLinus Torvalds bnes ap_n_fx |if non-zero, go to exp fix 357*1da177e4SLinus Torvalds subql #4,%d3 |point to previous digit 358*1da177e4SLinus Torvalds addql #1,%d1 |inc digit counter 359*1da177e4SLinus Torvalds dbf %d2,ap_n_gd |get next digit 360*1da177e4SLinus Torvaldsap_n_fx: 361*1da177e4SLinus Torvalds movel %d1,%d0 |copy counter to d0 362*1da177e4SLinus Torvalds movel L_SCR1(%a6),%d1 |get adjusted exp from memory 363*1da177e4SLinus Torvalds subl %d0,%d1 |subtract count from exp 364*1da177e4SLinus Torvalds bgts ap_n_fm |if still pos, go fix mantissa 365*1da177e4SLinus Torvalds negl %d1 |take abs of exp and clr SE 366*1da177e4SLinus Torvalds movel (%a0),%d4 |load lword 1 to d4 367*1da177e4SLinus Torvalds andl #0xbfffffff,%d4 | and clr SE in d4 368*1da177e4SLinus Torvalds andl #0xbfffffff,(%a0) | and in memory 369*1da177e4SLinus Torvalds| 370*1da177e4SLinus Torvalds| Calculate the mantissa multiplier to compensate for the appending of 371*1da177e4SLinus Torvalds| zeros to the mantissa. 372*1da177e4SLinus Torvalds| 373*1da177e4SLinus Torvaldsap_n_fm: 374*1da177e4SLinus Torvalds movel #PTENRN,%a1 |get address of power-of-ten table 375*1da177e4SLinus Torvalds clrl %d3 |init table index 376*1da177e4SLinus Torvalds fmoves FONE,%fp1 |init fp1 to 1 377*1da177e4SLinus Torvalds moveql #3,%d2 |init d2 to count bits in counter 378*1da177e4SLinus Torvaldsap_n_el: 379*1da177e4SLinus Torvalds asrl #1,%d0 |shift lsb into carry 380*1da177e4SLinus Torvalds bccs ap_n_en |if 1, mul fp1 by pwrten factor 381*1da177e4SLinus Torvalds fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 382*1da177e4SLinus Torvaldsap_n_en: 383*1da177e4SLinus Torvalds addl #12,%d3 |inc d3 to next rtable entry 384*1da177e4SLinus Torvalds tstl %d0 |check if d0 is zero 385*1da177e4SLinus Torvalds bnes ap_n_el |if not, get next bit 386*1da177e4SLinus Torvalds fdivx %fp1,%fp0 |div mantissa by 10**(no_bits_shifted) 387*1da177e4SLinus Torvalds| 388*1da177e4SLinus Torvalds| 389*1da177e4SLinus Torvalds| Calculate power-of-ten factor from adjusted and shifted exponent. 390*1da177e4SLinus Torvalds| 391*1da177e4SLinus Torvalds| Register usage: 392*1da177e4SLinus Torvalds| 393*1da177e4SLinus Torvalds| pwrten: 394*1da177e4SLinus Torvalds| (*) d0: temp 395*1da177e4SLinus Torvalds| ( ) d1: exponent 396*1da177e4SLinus Torvalds| (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp 397*1da177e4SLinus Torvalds| (*) d3: FPCR work copy 398*1da177e4SLinus Torvalds| ( ) d4: first word of bcd 399*1da177e4SLinus Torvalds| (*) a1: RTABLE pointer 400*1da177e4SLinus Torvalds| calc_p: 401*1da177e4SLinus Torvalds| (*) d0: temp 402*1da177e4SLinus Torvalds| ( ) d1: exponent 403*1da177e4SLinus Torvalds| (*) d3: PWRTxx table index 404*1da177e4SLinus Torvalds| ( ) a0: pointer to working copy of bcd 405*1da177e4SLinus Torvalds| (*) a1: PWRTxx pointer 406*1da177e4SLinus Torvalds| (*) fp1: power-of-ten accumulator 407*1da177e4SLinus Torvalds| 408*1da177e4SLinus Torvalds| Pwrten calculates the exponent factor in the selected rounding mode 409*1da177e4SLinus Torvalds| according to the following table: 410*1da177e4SLinus Torvalds| 411*1da177e4SLinus Torvalds| Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode 412*1da177e4SLinus Torvalds| 413*1da177e4SLinus Torvalds| ANY ANY RN RN 414*1da177e4SLinus Torvalds| 415*1da177e4SLinus Torvalds| + + RP RP 416*1da177e4SLinus Torvalds| - + RP RM 417*1da177e4SLinus Torvalds| + - RP RM 418*1da177e4SLinus Torvalds| - - RP RP 419*1da177e4SLinus Torvalds| 420*1da177e4SLinus Torvalds| + + RM RM 421*1da177e4SLinus Torvalds| - + RM RP 422*1da177e4SLinus Torvalds| + - RM RP 423*1da177e4SLinus Torvalds| - - RM RM 424*1da177e4SLinus Torvalds| 425*1da177e4SLinus Torvalds| + + RZ RM 426*1da177e4SLinus Torvalds| - + RZ RM 427*1da177e4SLinus Torvalds| + - RZ RP 428*1da177e4SLinus Torvalds| - - RZ RP 429*1da177e4SLinus Torvalds| 430*1da177e4SLinus Torvalds| 431*1da177e4SLinus Torvaldspwrten: 432*1da177e4SLinus Torvalds movel USER_FPCR(%a6),%d3 |get user's FPCR 433*1da177e4SLinus Torvalds bfextu %d3{#26:#2},%d2 |isolate rounding mode bits 434*1da177e4SLinus Torvalds movel (%a0),%d4 |reload 1st bcd word to d4 435*1da177e4SLinus Torvalds asll #2,%d2 |format d2 to be 436*1da177e4SLinus Torvalds bfextu %d4{#0:#2},%d0 | {FPCR[6],FPCR[5],SM,SE} 437*1da177e4SLinus Torvalds addl %d0,%d2 |in d2 as index into RTABLE 438*1da177e4SLinus Torvalds leal RTABLE,%a1 |load rtable base 439*1da177e4SLinus Torvalds moveb (%a1,%d2),%d0 |load new rounding bits from table 440*1da177e4SLinus Torvalds clrl %d3 |clear d3 to force no exc and extended 441*1da177e4SLinus Torvalds bfins %d0,%d3{#26:#2} |stuff new rounding bits in FPCR 442*1da177e4SLinus Torvalds fmovel %d3,%FPCR |write new FPCR 443*1da177e4SLinus Torvalds asrl #1,%d0 |write correct PTENxx table 444*1da177e4SLinus Torvalds bccs not_rp |to a1 445*1da177e4SLinus Torvalds leal PTENRP,%a1 |it is RP 446*1da177e4SLinus Torvalds bras calc_p |go to init section 447*1da177e4SLinus Torvaldsnot_rp: 448*1da177e4SLinus Torvalds asrl #1,%d0 |keep checking 449*1da177e4SLinus Torvalds bccs not_rm 450*1da177e4SLinus Torvalds leal PTENRM,%a1 |it is RM 451*1da177e4SLinus Torvalds bras calc_p |go to init section 452*1da177e4SLinus Torvaldsnot_rm: 453*1da177e4SLinus Torvalds leal PTENRN,%a1 |it is RN 454*1da177e4SLinus Torvaldscalc_p: 455*1da177e4SLinus Torvalds movel %d1,%d0 |copy exp to d0;use d0 456*1da177e4SLinus Torvalds bpls no_neg |if exp is negative, 457*1da177e4SLinus Torvalds negl %d0 |invert it 458*1da177e4SLinus Torvalds orl #0x40000000,(%a0) |and set SE bit 459*1da177e4SLinus Torvaldsno_neg: 460*1da177e4SLinus Torvalds clrl %d3 |table index 461*1da177e4SLinus Torvalds fmoves FONE,%fp1 |init fp1 to 1 462*1da177e4SLinus Torvaldse_loop: 463*1da177e4SLinus Torvalds asrl #1,%d0 |shift next bit into carry 464*1da177e4SLinus Torvalds bccs e_next |if zero, skip the mul 465*1da177e4SLinus Torvalds fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 466*1da177e4SLinus Torvaldse_next: 467*1da177e4SLinus Torvalds addl #12,%d3 |inc d3 to next rtable entry 468*1da177e4SLinus Torvalds tstl %d0 |check if d0 is zero 469*1da177e4SLinus Torvalds bnes e_loop |not zero, continue shifting 470*1da177e4SLinus Torvalds| 471*1da177e4SLinus Torvalds| 472*1da177e4SLinus Torvalds| Check the sign of the adjusted exp and make the value in fp0 the 473*1da177e4SLinus Torvalds| same sign. If the exp was pos then multiply fp1*fp0; 474*1da177e4SLinus Torvalds| else divide fp0/fp1. 475*1da177e4SLinus Torvalds| 476*1da177e4SLinus Torvalds| Register Usage: 477*1da177e4SLinus Torvalds| norm: 478*1da177e4SLinus Torvalds| ( ) a0: pointer to working bcd value 479*1da177e4SLinus Torvalds| (*) fp0: mantissa accumulator 480*1da177e4SLinus Torvalds| ( ) fp1: scaling factor - 10**(abs(exp)) 481*1da177e4SLinus Torvalds| 482*1da177e4SLinus Torvaldsnorm: 483*1da177e4SLinus Torvalds btst #30,(%a0) |test the sign of the exponent 484*1da177e4SLinus Torvalds beqs mul |if clear, go to multiply 485*1da177e4SLinus Torvaldsdiv: 486*1da177e4SLinus Torvalds fdivx %fp1,%fp0 |exp is negative, so divide mant by exp 487*1da177e4SLinus Torvalds bras end_dec 488*1da177e4SLinus Torvaldsmul: 489*1da177e4SLinus Torvalds fmulx %fp1,%fp0 |exp is positive, so multiply by exp 490*1da177e4SLinus Torvalds| 491*1da177e4SLinus Torvalds| 492*1da177e4SLinus Torvalds| Clean up and return with result in fp0. 493*1da177e4SLinus Torvalds| 494*1da177e4SLinus Torvalds| If the final mul/div in decbin incurred an inex exception, 495*1da177e4SLinus Torvalds| it will be inex2, but will be reported as inex1 by get_op. 496*1da177e4SLinus Torvalds| 497*1da177e4SLinus Torvaldsend_dec: 498*1da177e4SLinus Torvalds fmovel %FPSR,%d0 |get status register 499*1da177e4SLinus Torvalds bclrl #inex2_bit+8,%d0 |test for inex2 and clear it 500*1da177e4SLinus Torvalds fmovel %d0,%FPSR |return status reg w/o inex2 501*1da177e4SLinus Torvalds beqs no_exc |skip this if no exc 502*1da177e4SLinus Torvalds orl #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex 503*1da177e4SLinus Torvaldsno_exc: 504*1da177e4SLinus Torvalds moveml (%a7)+,%d2-%d5 505*1da177e4SLinus Torvalds rts 506*1da177e4SLinus Torvalds |end 507