xref: /openbmc/linux/arch/m68k/fpsp040/decbin.S (revision e5451c8f8330e03ad3cfa16048b4daf961af434f)
11da177e4SLinus Torvalds|
21da177e4SLinus Torvalds|	decbin.sa 3.3 12/19/90
31da177e4SLinus Torvalds|
41da177e4SLinus Torvalds|	Description: Converts normalized packed bcd value pointed to by
51da177e4SLinus Torvalds|	register A6 to extended-precision value in FP0.
61da177e4SLinus Torvalds|
71da177e4SLinus Torvalds|	Input: Normalized packed bcd value in ETEMP(a6).
81da177e4SLinus Torvalds|
91da177e4SLinus Torvalds|	Output:	Exact floating-point representation of the packed bcd value.
101da177e4SLinus Torvalds|
111da177e4SLinus Torvalds|	Saves and Modifies: D2-D5
121da177e4SLinus Torvalds|
131da177e4SLinus Torvalds|	Speed: The program decbin takes ??? cycles to execute.
141da177e4SLinus Torvalds|
151da177e4SLinus Torvalds|	Object Size:
161da177e4SLinus Torvalds|
171da177e4SLinus Torvalds|	External Reference(s): None.
181da177e4SLinus Torvalds|
191da177e4SLinus Torvalds|	Algorithm:
201da177e4SLinus Torvalds|	Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
211da177e4SLinus Torvalds|	and NaN operands are dispatched without entering this routine)
221da177e4SLinus Torvalds|	value in 68881/882 format at location ETEMP(A6).
231da177e4SLinus Torvalds|
241da177e4SLinus Torvalds|	A1.	Convert the bcd exponent to binary by successive adds and muls.
251da177e4SLinus Torvalds|	Set the sign according to SE. Subtract 16 to compensate
261da177e4SLinus Torvalds|	for the mantissa which is to be interpreted as 17 integer
271da177e4SLinus Torvalds|	digits, rather than 1 integer and 16 fraction digits.
281da177e4SLinus Torvalds|	Note: this operation can never overflow.
291da177e4SLinus Torvalds|
301da177e4SLinus Torvalds|	A2. Convert the bcd mantissa to binary by successive
311da177e4SLinus Torvalds|	adds and muls in FP0. Set the sign according to SM.
321da177e4SLinus Torvalds|	The mantissa digits will be converted with the decimal point
331da177e4SLinus Torvalds|	assumed following the least-significant digit.
341da177e4SLinus Torvalds|	Note: this operation can never overflow.
351da177e4SLinus Torvalds|
361da177e4SLinus Torvalds|	A3. Count the number of leading/trailing zeros in the
371da177e4SLinus Torvalds|	bcd string.  If SE is positive, count the leading zeros;
381da177e4SLinus Torvalds|	if negative, count the trailing zeros.  Set the adjusted
391da177e4SLinus Torvalds|	exponent equal to the exponent from A1 and the zero count
401da177e4SLinus Torvalds|	added if SM = 1 and subtracted if SM = 0.  Scale the
411da177e4SLinus Torvalds|	mantissa the equivalent of forcing in the bcd value:
421da177e4SLinus Torvalds|
431da177e4SLinus Torvalds|	SM = 0	a non-zero digit in the integer position
441da177e4SLinus Torvalds|	SM = 1	a non-zero digit in Mant0, lsd of the fraction
451da177e4SLinus Torvalds|
461da177e4SLinus Torvalds|	this will insure that any value, regardless of its
471da177e4SLinus Torvalds|	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
481da177e4SLinus Torvalds|	consistently.
491da177e4SLinus Torvalds|
501da177e4SLinus Torvalds|	A4. Calculate the factor 10^exp in FP1 using a table of
511da177e4SLinus Torvalds|	10^(2^n) values.  To reduce the error in forming factors
521da177e4SLinus Torvalds|	greater than 10^27, a directed rounding scheme is used with
531da177e4SLinus Torvalds|	tables rounded to RN, RM, and RP, according to the table
541da177e4SLinus Torvalds|	in the comments of the pwrten section.
551da177e4SLinus Torvalds|
561da177e4SLinus Torvalds|	A5. Form the final binary number by scaling the mantissa by
571da177e4SLinus Torvalds|	the exponent factor.  This is done by multiplying the
581da177e4SLinus Torvalds|	mantissa in FP0 by the factor in FP1 if the adjusted
591da177e4SLinus Torvalds|	exponent sign is positive, and dividing FP0 by FP1 if
601da177e4SLinus Torvalds|	it is negative.
611da177e4SLinus Torvalds|
621da177e4SLinus Torvalds|	Clean up and return.  Check if the final mul or div resulted
631da177e4SLinus Torvalds|	in an inex2 exception.  If so, set inex1 in the fpsr and
641da177e4SLinus Torvalds|	check if the inex1 exception is enabled.  If so, set d7 upper
651da177e4SLinus Torvalds|	word to $0100.  This will signal unimp.sa that an enabled inex1
661da177e4SLinus Torvalds|	exception occurred.  Unimp will fix the stack.
671da177e4SLinus Torvalds|
681da177e4SLinus Torvalds
691da177e4SLinus Torvalds|		Copyright (C) Motorola, Inc. 1990
701da177e4SLinus Torvalds|			All Rights Reserved
711da177e4SLinus Torvalds|
72*e00d82d0SMatt Waddel|       For details on the license for this file, please see the
73*e00d82d0SMatt Waddel|       file, README, in this same directory.
741da177e4SLinus Torvalds
751da177e4SLinus Torvalds|DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package
761da177e4SLinus Torvalds
771da177e4SLinus Torvalds	|section	8
781da177e4SLinus Torvalds
791da177e4SLinus Torvalds#include "fpsp.h"
801da177e4SLinus Torvalds
811da177e4SLinus Torvalds|
821da177e4SLinus Torvalds|	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
831da177e4SLinus Torvalds|	to nearest, minus, and plus, respectively.  The tables include
841da177e4SLinus Torvalds|	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
851da177e4SLinus Torvalds|	is required until the power is greater than 27, however, all
861da177e4SLinus Torvalds|	tables include the first 5 for ease of indexing.
871da177e4SLinus Torvalds|
881da177e4SLinus Torvalds	|xref	PTENRN
891da177e4SLinus Torvalds	|xref	PTENRM
901da177e4SLinus Torvalds	|xref	PTENRP
911da177e4SLinus Torvalds
921da177e4SLinus TorvaldsRTABLE:	.byte	0,0,0,0
931da177e4SLinus Torvalds	.byte	2,3,2,3
941da177e4SLinus Torvalds	.byte	2,3,3,2
951da177e4SLinus Torvalds	.byte	3,2,2,3
961da177e4SLinus Torvalds
971da177e4SLinus Torvalds	.global	decbin
981da177e4SLinus Torvalds	.global	calc_e
991da177e4SLinus Torvalds	.global	pwrten
1001da177e4SLinus Torvalds	.global	calc_m
1011da177e4SLinus Torvalds	.global	norm
1021da177e4SLinus Torvalds	.global	ap_st_z
1031da177e4SLinus Torvalds	.global	ap_st_n
1041da177e4SLinus Torvalds|
1051da177e4SLinus Torvalds	.set	FNIBS,7
1061da177e4SLinus Torvalds	.set	FSTRT,0
1071da177e4SLinus Torvalds|
1081da177e4SLinus Torvalds	.set	ESTRT,4
1091da177e4SLinus Torvalds	.set	EDIGITS,2	|
1101da177e4SLinus Torvalds|
1111da177e4SLinus Torvalds| Constants in single precision
1121da177e4SLinus TorvaldsFZERO:	.long	0x00000000
1131da177e4SLinus TorvaldsFONE:	.long	0x3F800000
1141da177e4SLinus TorvaldsFTEN:	.long	0x41200000
1151da177e4SLinus Torvalds
1161da177e4SLinus Torvalds	.set	TEN,10
1171da177e4SLinus Torvalds
1181da177e4SLinus Torvalds|
1191da177e4SLinus Torvaldsdecbin:
1201da177e4SLinus Torvalds	| fmovel	#0,FPCR		;clr real fpcr
1211da177e4SLinus Torvalds	moveml	%d2-%d5,-(%a7)
1221da177e4SLinus Torvalds|
1231da177e4SLinus Torvalds| Calculate exponent:
1241da177e4SLinus Torvalds|  1. Copy bcd value in memory for use as a working copy.
1251da177e4SLinus Torvalds|  2. Calculate absolute value of exponent in d1 by mul and add.
1261da177e4SLinus Torvalds|  3. Correct for exponent sign.
1271da177e4SLinus Torvalds|  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
1281da177e4SLinus Torvalds|     (i.e., all digits assumed left of the decimal point.)
1291da177e4SLinus Torvalds|
1301da177e4SLinus Torvalds| Register usage:
1311da177e4SLinus Torvalds|
1321da177e4SLinus Torvalds|  calc_e:
1331da177e4SLinus Torvalds|	(*)  d0: temp digit storage
1341da177e4SLinus Torvalds|	(*)  d1: accumulator for binary exponent
1351da177e4SLinus Torvalds|	(*)  d2: digit count
1361da177e4SLinus Torvalds|	(*)  d3: offset pointer
1371da177e4SLinus Torvalds|	( )  d4: first word of bcd
1381da177e4SLinus Torvalds|	( )  a0: pointer to working bcd value
1391da177e4SLinus Torvalds|	( )  a6: pointer to original bcd value
1401da177e4SLinus Torvalds|	(*)  FP_SCR1: working copy of original bcd value
1411da177e4SLinus Torvalds|	(*)  L_SCR1: copy of original exponent word
1421da177e4SLinus Torvalds|
1431da177e4SLinus Torvaldscalc_e:
1441da177e4SLinus Torvalds	movel	#EDIGITS,%d2	|# of nibbles (digits) in fraction part
1451da177e4SLinus Torvalds	moveql	#ESTRT,%d3	|counter to pick up digits
1461da177e4SLinus Torvalds	leal	FP_SCR1(%a6),%a0	|load tmp bcd storage address
1471da177e4SLinus Torvalds	movel	ETEMP(%a6),(%a0)	|save input bcd value
1481da177e4SLinus Torvalds	movel	ETEMP_HI(%a6),4(%a0) |save words 2 and 3
1491da177e4SLinus Torvalds	movel	ETEMP_LO(%a6),8(%a0) |and work with these
1501da177e4SLinus Torvalds	movel	(%a0),%d4	|get first word of bcd
1511da177e4SLinus Torvalds	clrl	%d1		|zero d1 for accumulator
1521da177e4SLinus Torvaldse_gd:
1531da177e4SLinus Torvalds	mulul	#TEN,%d1	|mul partial product by one digit place
1541da177e4SLinus Torvalds	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend into d0
1551da177e4SLinus Torvalds	addl	%d0,%d1		|d1 = d1 + d0
1561da177e4SLinus Torvalds	addqb	#4,%d3		|advance d3 to the next digit
1571da177e4SLinus Torvalds	dbf	%d2,e_gd	|if we have used all 3 digits, exit loop
1581da177e4SLinus Torvalds	btst	#30,%d4		|get SE
1591da177e4SLinus Torvalds	beqs	e_pos		|don't negate if pos
1601da177e4SLinus Torvalds	negl	%d1		|negate before subtracting
1611da177e4SLinus Torvaldse_pos:
1621da177e4SLinus Torvalds	subl	#16,%d1		|sub to compensate for shift of mant
1631da177e4SLinus Torvalds	bges	e_save		|if still pos, do not neg
1641da177e4SLinus Torvalds	negl	%d1		|now negative, make pos and set SE
1651da177e4SLinus Torvalds	orl	#0x40000000,%d4	|set SE in d4,
1661da177e4SLinus Torvalds	orl	#0x40000000,(%a0)	|and in working bcd
1671da177e4SLinus Torvaldse_save:
1681da177e4SLinus Torvalds	movel	%d1,L_SCR1(%a6)	|save exp in memory
1691da177e4SLinus Torvalds|
1701da177e4SLinus Torvalds|
1711da177e4SLinus Torvalds| Calculate mantissa:
1721da177e4SLinus Torvalds|  1. Calculate absolute value of mantissa in fp0 by mul and add.
1731da177e4SLinus Torvalds|  2. Correct for mantissa sign.
1741da177e4SLinus Torvalds|     (i.e., all digits assumed left of the decimal point.)
1751da177e4SLinus Torvalds|
1761da177e4SLinus Torvalds| Register usage:
1771da177e4SLinus Torvalds|
1781da177e4SLinus Torvalds|  calc_m:
1791da177e4SLinus Torvalds|	(*)  d0: temp digit storage
1801da177e4SLinus Torvalds|	(*)  d1: lword counter
1811da177e4SLinus Torvalds|	(*)  d2: digit count
1821da177e4SLinus Torvalds|	(*)  d3: offset pointer
1831da177e4SLinus Torvalds|	( )  d4: words 2 and 3 of bcd
1841da177e4SLinus Torvalds|	( )  a0: pointer to working bcd value
1851da177e4SLinus Torvalds|	( )  a6: pointer to original bcd value
1861da177e4SLinus Torvalds|	(*) fp0: mantissa accumulator
1871da177e4SLinus Torvalds|	( )  FP_SCR1: working copy of original bcd value
1881da177e4SLinus Torvalds|	( )  L_SCR1: copy of original exponent word
1891da177e4SLinus Torvalds|
1901da177e4SLinus Torvaldscalc_m:
1911da177e4SLinus Torvalds	moveql	#1,%d1		|word counter, init to 1
1921da177e4SLinus Torvalds	fmoves	FZERO,%fp0	|accumulator
1931da177e4SLinus Torvalds|
1941da177e4SLinus Torvalds|
1951da177e4SLinus Torvalds|  Since the packed number has a long word between the first & second parts,
1961da177e4SLinus Torvalds|  get the integer digit then skip down & get the rest of the
1971da177e4SLinus Torvalds|  mantissa.  We will unroll the loop once.
1981da177e4SLinus Torvalds|
1991da177e4SLinus Torvalds	bfextu	(%a0){#28:#4},%d0	|integer part is ls digit in long word
2001da177e4SLinus Torvalds	faddb	%d0,%fp0		|add digit to sum in fp0
2011da177e4SLinus Torvalds|
2021da177e4SLinus Torvalds|
2031da177e4SLinus Torvalds|  Get the rest of the mantissa.
2041da177e4SLinus Torvalds|
2051da177e4SLinus Torvaldsloadlw:
2061da177e4SLinus Torvalds	movel	(%a0,%d1.L*4),%d4	|load mantissa longword into d4
2071da177e4SLinus Torvalds	moveql	#FSTRT,%d3	|counter to pick up digits
2081da177e4SLinus Torvalds	moveql	#FNIBS,%d2	|reset number of digits per a0 ptr
2091da177e4SLinus Torvaldsmd2b:
2101da177e4SLinus Torvalds	fmuls	FTEN,%fp0	|fp0 = fp0 * 10
2111da177e4SLinus Torvalds	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend
2121da177e4SLinus Torvalds	faddb	%d0,%fp0	|fp0 = fp0 + digit
2131da177e4SLinus Torvalds|
2141da177e4SLinus Torvalds|
2151da177e4SLinus Torvalds|  If all the digits (8) in that long word have been converted (d2=0),
2161da177e4SLinus Torvalds|  then inc d1 (=2) to point to the next long word and reset d3 to 0
2171da177e4SLinus Torvalds|  to initialize the digit offset, and set d2 to 7 for the digit count;
2181da177e4SLinus Torvalds|  else continue with this long word.
2191da177e4SLinus Torvalds|
2201da177e4SLinus Torvalds	addqb	#4,%d3		|advance d3 to the next digit
2211da177e4SLinus Torvalds	dbf	%d2,md2b		|check for last digit in this lw
2221da177e4SLinus Torvaldsnextlw:
2231da177e4SLinus Torvalds	addql	#1,%d1		|inc lw pointer in mantissa
2241da177e4SLinus Torvalds	cmpl	#2,%d1		|test for last lw
2251da177e4SLinus Torvalds	ble	loadlw		|if not, get last one
2261da177e4SLinus Torvalds
2271da177e4SLinus Torvalds|
2281da177e4SLinus Torvalds|  Check the sign of the mant and make the value in fp0 the same sign.
2291da177e4SLinus Torvalds|
2301da177e4SLinus Torvaldsm_sign:
2311da177e4SLinus Torvalds	btst	#31,(%a0)	|test sign of the mantissa
2321da177e4SLinus Torvalds	beq	ap_st_z		|if clear, go to append/strip zeros
2331da177e4SLinus Torvalds	fnegx	%fp0		|if set, negate fp0
2341da177e4SLinus Torvalds
2351da177e4SLinus Torvalds|
2361da177e4SLinus Torvalds| Append/strip zeros:
2371da177e4SLinus Torvalds|
2381da177e4SLinus Torvalds|  For adjusted exponents which have an absolute value greater than 27*,
2391da177e4SLinus Torvalds|  this routine calculates the amount needed to normalize the mantissa
2401da177e4SLinus Torvalds|  for the adjusted exponent.  That number is subtracted from the exp
2411da177e4SLinus Torvalds|  if the exp was positive, and added if it was negative.  The purpose
2421da177e4SLinus Torvalds|  of this is to reduce the value of the exponent and the possibility
2431da177e4SLinus Torvalds|  of error in calculation of pwrten.
2441da177e4SLinus Torvalds|
2451da177e4SLinus Torvalds|  1. Branch on the sign of the adjusted exponent.
2461da177e4SLinus Torvalds|  2p.(positive exp)
2471da177e4SLinus Torvalds|   2. Check M16 and the digits in lwords 2 and 3 in descending order.
2481da177e4SLinus Torvalds|   3. Add one for each zero encountered until a non-zero digit.
2491da177e4SLinus Torvalds|   4. Subtract the count from the exp.
2501da177e4SLinus Torvalds|   5. Check if the exp has crossed zero in #3 above; make the exp abs
2511da177e4SLinus Torvalds|	   and set SE.
2521da177e4SLinus Torvalds|	6. Multiply the mantissa by 10**count.
2531da177e4SLinus Torvalds|  2n.(negative exp)
2541da177e4SLinus Torvalds|   2. Check the digits in lwords 3 and 2 in descending order.
2551da177e4SLinus Torvalds|   3. Add one for each zero encountered until a non-zero digit.
2561da177e4SLinus Torvalds|   4. Add the count to the exp.
2571da177e4SLinus Torvalds|   5. Check if the exp has crossed zero in #3 above; clear SE.
2581da177e4SLinus Torvalds|   6. Divide the mantissa by 10**count.
2591da177e4SLinus Torvalds|
2601da177e4SLinus Torvalds|  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
2611da177e4SLinus Torvalds|   any adjustment due to append/strip zeros will drive the resultant
2621da177e4SLinus Torvalds|   exponent towards zero.  Since all pwrten constants with a power
2631da177e4SLinus Torvalds|   of 27 or less are exact, there is no need to use this routine to
2641da177e4SLinus Torvalds|   attempt to lessen the resultant exponent.
2651da177e4SLinus Torvalds|
2661da177e4SLinus Torvalds| Register usage:
2671da177e4SLinus Torvalds|
2681da177e4SLinus Torvalds|  ap_st_z:
2691da177e4SLinus Torvalds|	(*)  d0: temp digit storage
2701da177e4SLinus Torvalds|	(*)  d1: zero count
2711da177e4SLinus Torvalds|	(*)  d2: digit count
2721da177e4SLinus Torvalds|	(*)  d3: offset pointer
2731da177e4SLinus Torvalds|	( )  d4: first word of bcd
2741da177e4SLinus Torvalds|	(*)  d5: lword counter
2751da177e4SLinus Torvalds|	( )  a0: pointer to working bcd value
2761da177e4SLinus Torvalds|	( )  FP_SCR1: working copy of original bcd value
2771da177e4SLinus Torvalds|	( )  L_SCR1: copy of original exponent word
2781da177e4SLinus Torvalds|
2791da177e4SLinus Torvalds|
2801da177e4SLinus Torvalds| First check the absolute value of the exponent to see if this
2811da177e4SLinus Torvalds| routine is necessary.  If so, then check the sign of the exponent
2821da177e4SLinus Torvalds| and do append (+) or strip (-) zeros accordingly.
2831da177e4SLinus Torvalds| This section handles a positive adjusted exponent.
2841da177e4SLinus Torvalds|
2851da177e4SLinus Torvaldsap_st_z:
2861da177e4SLinus Torvalds	movel	L_SCR1(%a6),%d1	|load expA for range test
2871da177e4SLinus Torvalds	cmpl	#27,%d1		|test is with 27
2881da177e4SLinus Torvalds	ble	pwrten		|if abs(expA) <28, skip ap/st zeros
2891da177e4SLinus Torvalds	btst	#30,(%a0)	|check sign of exp
2901da177e4SLinus Torvalds	bne	ap_st_n		|if neg, go to neg side
2911da177e4SLinus Torvalds	clrl	%d1		|zero count reg
2921da177e4SLinus Torvalds	movel	(%a0),%d4		|load lword 1 to d4
2931da177e4SLinus Torvalds	bfextu	%d4{#28:#4},%d0	|get M16 in d0
2941da177e4SLinus Torvalds	bnes	ap_p_fx		|if M16 is non-zero, go fix exp
2951da177e4SLinus Torvalds	addql	#1,%d1		|inc zero count
2961da177e4SLinus Torvalds	moveql	#1,%d5		|init lword counter
2971da177e4SLinus Torvalds	movel	(%a0,%d5.L*4),%d4	|get lword 2 to d4
2981da177e4SLinus Torvalds	bnes	ap_p_cl		|if lw 2 is zero, skip it
2991da177e4SLinus Torvalds	addql	#8,%d1		|and inc count by 8
3001da177e4SLinus Torvalds	addql	#1,%d5		|inc lword counter
3011da177e4SLinus Torvalds	movel	(%a0,%d5.L*4),%d4	|get lword 3 to d4
3021da177e4SLinus Torvaldsap_p_cl:
3031da177e4SLinus Torvalds	clrl	%d3		|init offset reg
3041da177e4SLinus Torvalds	moveql	#7,%d2		|init digit counter
3051da177e4SLinus Torvaldsap_p_gd:
3061da177e4SLinus Torvalds	bfextu	%d4{%d3:#4},%d0	|get digit
3071da177e4SLinus Torvalds	bnes	ap_p_fx		|if non-zero, go to fix exp
3081da177e4SLinus Torvalds	addql	#4,%d3		|point to next digit
3091da177e4SLinus Torvalds	addql	#1,%d1		|inc digit counter
3101da177e4SLinus Torvalds	dbf	%d2,ap_p_gd	|get next digit
3111da177e4SLinus Torvaldsap_p_fx:
3121da177e4SLinus Torvalds	movel	%d1,%d0		|copy counter to d2
3131da177e4SLinus Torvalds	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
3141da177e4SLinus Torvalds	subl	%d0,%d1		|subtract count from exp
3151da177e4SLinus Torvalds	bges	ap_p_fm		|if still pos, go to pwrten
3161da177e4SLinus Torvalds	negl	%d1		|now its neg; get abs
3171da177e4SLinus Torvalds	movel	(%a0),%d4		|load lword 1 to d4
3181da177e4SLinus Torvalds	orl	#0x40000000,%d4	| and set SE in d4
3191da177e4SLinus Torvalds	orl	#0x40000000,(%a0)	| and in memory
3201da177e4SLinus Torvalds|
3211da177e4SLinus Torvalds| Calculate the mantissa multiplier to compensate for the striping of
3221da177e4SLinus Torvalds| zeros from the mantissa.
3231da177e4SLinus Torvalds|
3241da177e4SLinus Torvaldsap_p_fm:
3251da177e4SLinus Torvalds	movel	#PTENRN,%a1	|get address of power-of-ten table
3261da177e4SLinus Torvalds	clrl	%d3		|init table index
3271da177e4SLinus Torvalds	fmoves	FONE,%fp1	|init fp1 to 1
3281da177e4SLinus Torvalds	moveql	#3,%d2		|init d2 to count bits in counter
3291da177e4SLinus Torvaldsap_p_el:
3301da177e4SLinus Torvalds	asrl	#1,%d0		|shift lsb into carry
3311da177e4SLinus Torvalds	bccs	ap_p_en		|if 1, mul fp1 by pwrten factor
3321da177e4SLinus Torvalds	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
3331da177e4SLinus Torvaldsap_p_en:
3341da177e4SLinus Torvalds	addl	#12,%d3		|inc d3 to next rtable entry
3351da177e4SLinus Torvalds	tstl	%d0		|check if d0 is zero
3361da177e4SLinus Torvalds	bnes	ap_p_el		|if not, get next bit
3371da177e4SLinus Torvalds	fmulx	%fp1,%fp0		|mul mantissa by 10**(no_bits_shifted)
3381da177e4SLinus Torvalds	bra	pwrten		|go calc pwrten
3391da177e4SLinus Torvalds|
3401da177e4SLinus Torvalds| This section handles a negative adjusted exponent.
3411da177e4SLinus Torvalds|
3421da177e4SLinus Torvaldsap_st_n:
3431da177e4SLinus Torvalds	clrl	%d1		|clr counter
3441da177e4SLinus Torvalds	moveql	#2,%d5		|set up d5 to point to lword 3
3451da177e4SLinus Torvalds	movel	(%a0,%d5.L*4),%d4	|get lword 3
3461da177e4SLinus Torvalds	bnes	ap_n_cl		|if not zero, check digits
3471da177e4SLinus Torvalds	subl	#1,%d5		|dec d5 to point to lword 2
3481da177e4SLinus Torvalds	addql	#8,%d1		|inc counter by 8
3491da177e4SLinus Torvalds	movel	(%a0,%d5.L*4),%d4	|get lword 2
3501da177e4SLinus Torvaldsap_n_cl:
3511da177e4SLinus Torvalds	movel	#28,%d3		|point to last digit
3521da177e4SLinus Torvalds	moveql	#7,%d2		|init digit counter
3531da177e4SLinus Torvaldsap_n_gd:
3541da177e4SLinus Torvalds	bfextu	%d4{%d3:#4},%d0	|get digit
3551da177e4SLinus Torvalds	bnes	ap_n_fx		|if non-zero, go to exp fix
3561da177e4SLinus Torvalds	subql	#4,%d3		|point to previous digit
3571da177e4SLinus Torvalds	addql	#1,%d1		|inc digit counter
3581da177e4SLinus Torvalds	dbf	%d2,ap_n_gd	|get next digit
3591da177e4SLinus Torvaldsap_n_fx:
3601da177e4SLinus Torvalds	movel	%d1,%d0		|copy counter to d0
3611da177e4SLinus Torvalds	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
3621da177e4SLinus Torvalds	subl	%d0,%d1		|subtract count from exp
3631da177e4SLinus Torvalds	bgts	ap_n_fm		|if still pos, go fix mantissa
3641da177e4SLinus Torvalds	negl	%d1		|take abs of exp and clr SE
3651da177e4SLinus Torvalds	movel	(%a0),%d4		|load lword 1 to d4
3661da177e4SLinus Torvalds	andl	#0xbfffffff,%d4	| and clr SE in d4
3671da177e4SLinus Torvalds	andl	#0xbfffffff,(%a0)	| and in memory
3681da177e4SLinus Torvalds|
3691da177e4SLinus Torvalds| Calculate the mantissa multiplier to compensate for the appending of
3701da177e4SLinus Torvalds| zeros to the mantissa.
3711da177e4SLinus Torvalds|
3721da177e4SLinus Torvaldsap_n_fm:
3731da177e4SLinus Torvalds	movel	#PTENRN,%a1	|get address of power-of-ten table
3741da177e4SLinus Torvalds	clrl	%d3		|init table index
3751da177e4SLinus Torvalds	fmoves	FONE,%fp1	|init fp1 to 1
3761da177e4SLinus Torvalds	moveql	#3,%d2		|init d2 to count bits in counter
3771da177e4SLinus Torvaldsap_n_el:
3781da177e4SLinus Torvalds	asrl	#1,%d0		|shift lsb into carry
3791da177e4SLinus Torvalds	bccs	ap_n_en		|if 1, mul fp1 by pwrten factor
3801da177e4SLinus Torvalds	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
3811da177e4SLinus Torvaldsap_n_en:
3821da177e4SLinus Torvalds	addl	#12,%d3		|inc d3 to next rtable entry
3831da177e4SLinus Torvalds	tstl	%d0		|check if d0 is zero
3841da177e4SLinus Torvalds	bnes	ap_n_el		|if not, get next bit
3851da177e4SLinus Torvalds	fdivx	%fp1,%fp0		|div mantissa by 10**(no_bits_shifted)
3861da177e4SLinus Torvalds|
3871da177e4SLinus Torvalds|
3881da177e4SLinus Torvalds| Calculate power-of-ten factor from adjusted and shifted exponent.
3891da177e4SLinus Torvalds|
3901da177e4SLinus Torvalds| Register usage:
3911da177e4SLinus Torvalds|
3921da177e4SLinus Torvalds|  pwrten:
3931da177e4SLinus Torvalds|	(*)  d0: temp
3941da177e4SLinus Torvalds|	( )  d1: exponent
3951da177e4SLinus Torvalds|	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
3961da177e4SLinus Torvalds|	(*)  d3: FPCR work copy
3971da177e4SLinus Torvalds|	( )  d4: first word of bcd
3981da177e4SLinus Torvalds|	(*)  a1: RTABLE pointer
3991da177e4SLinus Torvalds|  calc_p:
4001da177e4SLinus Torvalds|	(*)  d0: temp
4011da177e4SLinus Torvalds|	( )  d1: exponent
4021da177e4SLinus Torvalds|	(*)  d3: PWRTxx table index
4031da177e4SLinus Torvalds|	( )  a0: pointer to working copy of bcd
4041da177e4SLinus Torvalds|	(*)  a1: PWRTxx pointer
4051da177e4SLinus Torvalds|	(*) fp1: power-of-ten accumulator
4061da177e4SLinus Torvalds|
4071da177e4SLinus Torvalds| Pwrten calculates the exponent factor in the selected rounding mode
4081da177e4SLinus Torvalds| according to the following table:
4091da177e4SLinus Torvalds|
4101da177e4SLinus Torvalds|	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
4111da177e4SLinus Torvalds|
4121da177e4SLinus Torvalds|	ANY	  ANY	RN	RN
4131da177e4SLinus Torvalds|
4141da177e4SLinus Torvalds|	 +	   +	RP	RP
4151da177e4SLinus Torvalds|	 -	   +	RP	RM
4161da177e4SLinus Torvalds|	 +	   -	RP	RM
4171da177e4SLinus Torvalds|	 -	   -	RP	RP
4181da177e4SLinus Torvalds|
4191da177e4SLinus Torvalds|	 +	   +	RM	RM
4201da177e4SLinus Torvalds|	 -	   +	RM	RP
4211da177e4SLinus Torvalds|	 +	   -	RM	RP
4221da177e4SLinus Torvalds|	 -	   -	RM	RM
4231da177e4SLinus Torvalds|
4241da177e4SLinus Torvalds|	 +	   +	RZ	RM
4251da177e4SLinus Torvalds|	 -	   +	RZ	RM
4261da177e4SLinus Torvalds|	 +	   -	RZ	RP
4271da177e4SLinus Torvalds|	 -	   -	RZ	RP
4281da177e4SLinus Torvalds|
4291da177e4SLinus Torvalds|
4301da177e4SLinus Torvaldspwrten:
4311da177e4SLinus Torvalds	movel	USER_FPCR(%a6),%d3 |get user's FPCR
4321da177e4SLinus Torvalds	bfextu	%d3{#26:#2},%d2	|isolate rounding mode bits
4331da177e4SLinus Torvalds	movel	(%a0),%d4		|reload 1st bcd word to d4
4341da177e4SLinus Torvalds	asll	#2,%d2		|format d2 to be
4351da177e4SLinus Torvalds	bfextu	%d4{#0:#2},%d0	| {FPCR[6],FPCR[5],SM,SE}
4361da177e4SLinus Torvalds	addl	%d0,%d2		|in d2 as index into RTABLE
4371da177e4SLinus Torvalds	leal	RTABLE,%a1	|load rtable base
4381da177e4SLinus Torvalds	moveb	(%a1,%d2),%d0	|load new rounding bits from table
4391da177e4SLinus Torvalds	clrl	%d3			|clear d3 to force no exc and extended
4401da177e4SLinus Torvalds	bfins	%d0,%d3{#26:#2}	|stuff new rounding bits in FPCR
4411da177e4SLinus Torvalds	fmovel	%d3,%FPCR		|write new FPCR
4421da177e4SLinus Torvalds	asrl	#1,%d0		|write correct PTENxx table
4431da177e4SLinus Torvalds	bccs	not_rp		|to a1
4441da177e4SLinus Torvalds	leal	PTENRP,%a1	|it is RP
4451da177e4SLinus Torvalds	bras	calc_p		|go to init section
4461da177e4SLinus Torvaldsnot_rp:
4471da177e4SLinus Torvalds	asrl	#1,%d0		|keep checking
4481da177e4SLinus Torvalds	bccs	not_rm
4491da177e4SLinus Torvalds	leal	PTENRM,%a1	|it is RM
4501da177e4SLinus Torvalds	bras	calc_p		|go to init section
4511da177e4SLinus Torvaldsnot_rm:
4521da177e4SLinus Torvalds	leal	PTENRN,%a1	|it is RN
4531da177e4SLinus Torvaldscalc_p:
4541da177e4SLinus Torvalds	movel	%d1,%d0		|copy exp to d0;use d0
4551da177e4SLinus Torvalds	bpls	no_neg		|if exp is negative,
4561da177e4SLinus Torvalds	negl	%d0		|invert it
4571da177e4SLinus Torvalds	orl	#0x40000000,(%a0)	|and set SE bit
4581da177e4SLinus Torvaldsno_neg:
4591da177e4SLinus Torvalds	clrl	%d3		|table index
4601da177e4SLinus Torvalds	fmoves	FONE,%fp1	|init fp1 to 1
4611da177e4SLinus Torvaldse_loop:
4621da177e4SLinus Torvalds	asrl	#1,%d0		|shift next bit into carry
4631da177e4SLinus Torvalds	bccs	e_next		|if zero, skip the mul
4641da177e4SLinus Torvalds	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
4651da177e4SLinus Torvaldse_next:
4661da177e4SLinus Torvalds	addl	#12,%d3		|inc d3 to next rtable entry
4671da177e4SLinus Torvalds	tstl	%d0		|check if d0 is zero
4681da177e4SLinus Torvalds	bnes	e_loop		|not zero, continue shifting
4691da177e4SLinus Torvalds|
4701da177e4SLinus Torvalds|
4711da177e4SLinus Torvalds|  Check the sign of the adjusted exp and make the value in fp0 the
4721da177e4SLinus Torvalds|  same sign. If the exp was pos then multiply fp1*fp0;
4731da177e4SLinus Torvalds|  else divide fp0/fp1.
4741da177e4SLinus Torvalds|
4751da177e4SLinus Torvalds| Register Usage:
4761da177e4SLinus Torvalds|  norm:
4771da177e4SLinus Torvalds|	( )  a0: pointer to working bcd value
4781da177e4SLinus Torvalds|	(*) fp0: mantissa accumulator
4791da177e4SLinus Torvalds|	( ) fp1: scaling factor - 10**(abs(exp))
4801da177e4SLinus Torvalds|
4811da177e4SLinus Torvaldsnorm:
4821da177e4SLinus Torvalds	btst	#30,(%a0)	|test the sign of the exponent
4831da177e4SLinus Torvalds	beqs	mul		|if clear, go to multiply
4841da177e4SLinus Torvaldsdiv:
4851da177e4SLinus Torvalds	fdivx	%fp1,%fp0		|exp is negative, so divide mant by exp
4861da177e4SLinus Torvalds	bras	end_dec
4871da177e4SLinus Torvaldsmul:
4881da177e4SLinus Torvalds	fmulx	%fp1,%fp0		|exp is positive, so multiply by exp
4891da177e4SLinus Torvalds|
4901da177e4SLinus Torvalds|
4911da177e4SLinus Torvalds| Clean up and return with result in fp0.
4921da177e4SLinus Torvalds|
4931da177e4SLinus Torvalds| If the final mul/div in decbin incurred an inex exception,
4941da177e4SLinus Torvalds| it will be inex2, but will be reported as inex1 by get_op.
4951da177e4SLinus Torvalds|
4961da177e4SLinus Torvaldsend_dec:
4971da177e4SLinus Torvalds	fmovel	%FPSR,%d0		|get status register
4981da177e4SLinus Torvalds	bclrl	#inex2_bit+8,%d0	|test for inex2 and clear it
4991da177e4SLinus Torvalds	fmovel	%d0,%FPSR		|return status reg w/o inex2
5001da177e4SLinus Torvalds	beqs	no_exc		|skip this if no exc
5011da177e4SLinus Torvalds	orl	#inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
5021da177e4SLinus Torvaldsno_exc:
5031da177e4SLinus Torvalds	moveml	(%a7)+,%d2-%d5
5041da177e4SLinus Torvalds	rts
5051da177e4SLinus Torvalds	|end
506