xref: /openbmc/linux/arch/m68k/fpsp040/bindec.S (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1*1da177e4SLinus Torvalds|
2*1da177e4SLinus Torvalds|	bindec.sa 3.4 1/3/91
3*1da177e4SLinus Torvalds|
4*1da177e4SLinus Torvalds|	bindec
5*1da177e4SLinus Torvalds|
6*1da177e4SLinus Torvalds|	Description:
7*1da177e4SLinus Torvalds|		Converts an input in extended precision format
8*1da177e4SLinus Torvalds|		to bcd format.
9*1da177e4SLinus Torvalds|
10*1da177e4SLinus Torvalds|	Input:
11*1da177e4SLinus Torvalds|		a0 points to the input extended precision value
12*1da177e4SLinus Torvalds|		value in memory; d0 contains the k-factor sign-extended
13*1da177e4SLinus Torvalds|		to 32-bits.  The input may be either normalized,
14*1da177e4SLinus Torvalds|		unnormalized, or denormalized.
15*1da177e4SLinus Torvalds|
16*1da177e4SLinus Torvalds|	Output:	result in the FP_SCR1 space on the stack.
17*1da177e4SLinus Torvalds|
18*1da177e4SLinus Torvalds|	Saves and Modifies: D2-D7,A2,FP2
19*1da177e4SLinus Torvalds|
20*1da177e4SLinus Torvalds|	Algorithm:
21*1da177e4SLinus Torvalds|
22*1da177e4SLinus Torvalds|	A1.	Set RM and size ext;  Set SIGMA = sign of input.
23*1da177e4SLinus Torvalds|		The k-factor is saved for use in d7. Clear the
24*1da177e4SLinus Torvalds|		BINDEC_FLG for separating normalized/denormalized
25*1da177e4SLinus Torvalds|		input.  If input is unnormalized or denormalized,
26*1da177e4SLinus Torvalds|		normalize it.
27*1da177e4SLinus Torvalds|
28*1da177e4SLinus Torvalds|	A2.	Set X = abs(input).
29*1da177e4SLinus Torvalds|
30*1da177e4SLinus Torvalds|	A3.	Compute ILOG.
31*1da177e4SLinus Torvalds|		ILOG is the log base 10 of the input value.  It is
32*1da177e4SLinus Torvalds|		approximated by adding e + 0.f when the original
33*1da177e4SLinus Torvalds|		value is viewed as 2^^e * 1.f in extended precision.
34*1da177e4SLinus Torvalds|		This value is stored in d6.
35*1da177e4SLinus Torvalds|
36*1da177e4SLinus Torvalds|	A4.	Clr INEX bit.
37*1da177e4SLinus Torvalds|		The operation in A3 above may have set INEX2.
38*1da177e4SLinus Torvalds|
39*1da177e4SLinus Torvalds|	A5.	Set ICTR = 0;
40*1da177e4SLinus Torvalds|		ICTR is a flag used in A13.  It must be set before the
41*1da177e4SLinus Torvalds|		loop entry A6.
42*1da177e4SLinus Torvalds|
43*1da177e4SLinus Torvalds|	A6.	Calculate LEN.
44*1da177e4SLinus Torvalds|		LEN is the number of digits to be displayed.  The
45*1da177e4SLinus Torvalds|		k-factor can dictate either the total number of digits,
46*1da177e4SLinus Torvalds|		if it is a positive number, or the number of digits
47*1da177e4SLinus Torvalds|		after the decimal point which are to be included as
48*1da177e4SLinus Torvalds|		significant.  See the 68882 manual for examples.
49*1da177e4SLinus Torvalds|		If LEN is computed to be greater than 17, set OPERR in
50*1da177e4SLinus Torvalds|		USER_FPSR.  LEN is stored in d4.
51*1da177e4SLinus Torvalds|
52*1da177e4SLinus Torvalds|	A7.	Calculate SCALE.
53*1da177e4SLinus Torvalds|		SCALE is equal to 10^ISCALE, where ISCALE is the number
54*1da177e4SLinus Torvalds|		of decimal places needed to insure LEN integer digits
55*1da177e4SLinus Torvalds|		in the output before conversion to bcd. LAMBDA is the
56*1da177e4SLinus Torvalds|		sign of ISCALE, used in A9. Fp1 contains
57*1da177e4SLinus Torvalds|		10^^(abs(ISCALE)) using a rounding mode which is a
58*1da177e4SLinus Torvalds|		function of the original rounding mode and the signs
59*1da177e4SLinus Torvalds|		of ISCALE and X.  A table is given in the code.
60*1da177e4SLinus Torvalds|
61*1da177e4SLinus Torvalds|	A8.	Clr INEX; Force RZ.
62*1da177e4SLinus Torvalds|		The operation in A3 above may have set INEX2.
63*1da177e4SLinus Torvalds|		RZ mode is forced for the scaling operation to insure
64*1da177e4SLinus Torvalds|		only one rounding error.  The grs bits are collected in
65*1da177e4SLinus Torvalds|		the INEX flag for use in A10.
66*1da177e4SLinus Torvalds|
67*1da177e4SLinus Torvalds|	A9.	Scale X -> Y.
68*1da177e4SLinus Torvalds|		The mantissa is scaled to the desired number of
69*1da177e4SLinus Torvalds|		significant digits.  The excess digits are collected
70*1da177e4SLinus Torvalds|		in INEX2.
71*1da177e4SLinus Torvalds|
72*1da177e4SLinus Torvalds|	A10.	Or in INEX.
73*1da177e4SLinus Torvalds|		If INEX is set, round error occurred.  This is
74*1da177e4SLinus Torvalds|		compensated for by 'or-ing' in the INEX2 flag to
75*1da177e4SLinus Torvalds|		the lsb of Y.
76*1da177e4SLinus Torvalds|
77*1da177e4SLinus Torvalds|	A11.	Restore original FPCR; set size ext.
78*1da177e4SLinus Torvalds|		Perform FINT operation in the user's rounding mode.
79*1da177e4SLinus Torvalds|		Keep the size to extended.
80*1da177e4SLinus Torvalds|
81*1da177e4SLinus Torvalds|	A12.	Calculate YINT = FINT(Y) according to user's rounding
82*1da177e4SLinus Torvalds|		mode.  The FPSP routine sintd0 is used.  The output
83*1da177e4SLinus Torvalds|		is in fp0.
84*1da177e4SLinus Torvalds|
85*1da177e4SLinus Torvalds|	A13.	Check for LEN digits.
86*1da177e4SLinus Torvalds|		If the int operation results in more than LEN digits,
87*1da177e4SLinus Torvalds|		or less than LEN -1 digits, adjust ILOG and repeat from
88*1da177e4SLinus Torvalds|		A6.  This test occurs only on the first pass.  If the
89*1da177e4SLinus Torvalds|		result is exactly 10^LEN, decrement ILOG and divide
90*1da177e4SLinus Torvalds|		the mantissa by 10.
91*1da177e4SLinus Torvalds|
92*1da177e4SLinus Torvalds|	A14.	Convert the mantissa to bcd.
93*1da177e4SLinus Torvalds|		The binstr routine is used to convert the LEN digit
94*1da177e4SLinus Torvalds|		mantissa to bcd in memory.  The input to binstr is
95*1da177e4SLinus Torvalds|		to be a fraction; i.e. (mantissa)/10^LEN and adjusted
96*1da177e4SLinus Torvalds|		such that the decimal point is to the left of bit 63.
97*1da177e4SLinus Torvalds|		The bcd digits are stored in the correct position in
98*1da177e4SLinus Torvalds|		the final string area in memory.
99*1da177e4SLinus Torvalds|
100*1da177e4SLinus Torvalds|	A15.	Convert the exponent to bcd.
101*1da177e4SLinus Torvalds|		As in A14 above, the exp is converted to bcd and the
102*1da177e4SLinus Torvalds|		digits are stored in the final string.
103*1da177e4SLinus Torvalds|		Test the length of the final exponent string.  If the
104*1da177e4SLinus Torvalds|		length is 4, set operr.
105*1da177e4SLinus Torvalds|
106*1da177e4SLinus Torvalds|	A16.	Write sign bits to final string.
107*1da177e4SLinus Torvalds|
108*1da177e4SLinus Torvalds|	Implementation Notes:
109*1da177e4SLinus Torvalds|
110*1da177e4SLinus Torvalds|	The registers are used as follows:
111*1da177e4SLinus Torvalds|
112*1da177e4SLinus Torvalds|		d0: scratch; LEN input to binstr
113*1da177e4SLinus Torvalds|		d1: scratch
114*1da177e4SLinus Torvalds|		d2: upper 32-bits of mantissa for binstr
115*1da177e4SLinus Torvalds|		d3: scratch;lower 32-bits of mantissa for binstr
116*1da177e4SLinus Torvalds|		d4: LEN
117*1da177e4SLinus Torvalds|		d5: LAMBDA/ICTR
118*1da177e4SLinus Torvalds|		d6: ILOG
119*1da177e4SLinus Torvalds|		d7: k-factor
120*1da177e4SLinus Torvalds|		a0: ptr for original operand/final result
121*1da177e4SLinus Torvalds|		a1: scratch pointer
122*1da177e4SLinus Torvalds|		a2: pointer to FP_X; abs(original value) in ext
123*1da177e4SLinus Torvalds|		fp0: scratch
124*1da177e4SLinus Torvalds|		fp1: scratch
125*1da177e4SLinus Torvalds|		fp2: scratch
126*1da177e4SLinus Torvalds|		F_SCR1:
127*1da177e4SLinus Torvalds|		F_SCR2:
128*1da177e4SLinus Torvalds|		L_SCR1:
129*1da177e4SLinus Torvalds|		L_SCR2:
130*1da177e4SLinus Torvalds
131*1da177e4SLinus Torvalds|		Copyright (C) Motorola, Inc. 1990
132*1da177e4SLinus Torvalds|			All Rights Reserved
133*1da177e4SLinus Torvalds|
134*1da177e4SLinus Torvalds|	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
135*1da177e4SLinus Torvalds|	The copyright notice above does not evidence any
136*1da177e4SLinus Torvalds|	actual or intended publication of such source code.
137*1da177e4SLinus Torvalds
138*1da177e4SLinus Torvalds|BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package
139*1da177e4SLinus Torvalds
140*1da177e4SLinus Torvalds#include "fpsp.h"
141*1da177e4SLinus Torvalds
142*1da177e4SLinus Torvalds	|section	8
143*1da177e4SLinus Torvalds
144*1da177e4SLinus Torvalds| Constants in extended precision
145*1da177e4SLinus TorvaldsLOG2:	.long	0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
146*1da177e4SLinus TorvaldsLOG2UP1:	.long	0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
147*1da177e4SLinus Torvalds
148*1da177e4SLinus Torvalds| Constants in single precision
149*1da177e4SLinus TorvaldsFONE:	.long	0x3F800000,0x00000000,0x00000000,0x00000000
150*1da177e4SLinus TorvaldsFTWO:	.long	0x40000000,0x00000000,0x00000000,0x00000000
151*1da177e4SLinus TorvaldsFTEN:	.long	0x41200000,0x00000000,0x00000000,0x00000000
152*1da177e4SLinus TorvaldsF4933:	.long	0x459A2800,0x00000000,0x00000000,0x00000000
153*1da177e4SLinus Torvalds
154*1da177e4SLinus TorvaldsRBDTBL:	.byte	0,0,0,0
155*1da177e4SLinus Torvalds	.byte	3,3,2,2
156*1da177e4SLinus Torvalds	.byte	3,2,2,3
157*1da177e4SLinus Torvalds	.byte	2,3,3,2
158*1da177e4SLinus Torvalds
159*1da177e4SLinus Torvalds	|xref	binstr
160*1da177e4SLinus Torvalds	|xref	sintdo
161*1da177e4SLinus Torvalds	|xref	ptenrn,ptenrm,ptenrp
162*1da177e4SLinus Torvalds
163*1da177e4SLinus Torvalds	.global	bindec
164*1da177e4SLinus Torvalds	.global	sc_mul
165*1da177e4SLinus Torvaldsbindec:
166*1da177e4SLinus Torvalds	moveml	%d2-%d7/%a2,-(%a7)
167*1da177e4SLinus Torvalds	fmovemx %fp0-%fp2,-(%a7)
168*1da177e4SLinus Torvalds
169*1da177e4SLinus Torvalds| A1. Set RM and size ext. Set SIGMA = sign input;
170*1da177e4SLinus Torvalds|     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
171*1da177e4SLinus Torvalds|     separating  normalized/denormalized input.  If the input
172*1da177e4SLinus Torvalds|     is a denormalized number, set the BINDEC_FLG memory word
173*1da177e4SLinus Torvalds|     to signal denorm.  If the input is unnormalized, normalize
174*1da177e4SLinus Torvalds|     the input and test for denormalized result.
175*1da177e4SLinus Torvalds|
176*1da177e4SLinus Torvalds	fmovel	#rm_mode,%FPCR	|set RM and ext
177*1da177e4SLinus Torvalds	movel	(%a0),L_SCR2(%a6)	|save exponent for sign check
178*1da177e4SLinus Torvalds	movel	%d0,%d7		|move k-factor to d7
179*1da177e4SLinus Torvalds	clrb	BINDEC_FLG(%a6)	|clr norm/denorm flag
180*1da177e4SLinus Torvalds	movew	STAG(%a6),%d0	|get stag
181*1da177e4SLinus Torvalds	andiw	#0xe000,%d0	|isolate stag bits
182*1da177e4SLinus Torvalds	beq	A2_str		|if zero, input is norm
183*1da177e4SLinus Torvalds|
184*1da177e4SLinus Torvalds| Normalize the denorm
185*1da177e4SLinus Torvalds|
186*1da177e4SLinus Torvaldsun_de_norm:
187*1da177e4SLinus Torvalds	movew	(%a0),%d0
188*1da177e4SLinus Torvalds	andiw	#0x7fff,%d0	|strip sign of normalized exp
189*1da177e4SLinus Torvalds	movel	4(%a0),%d1
190*1da177e4SLinus Torvalds	movel	8(%a0),%d2
191*1da177e4SLinus Torvaldsnorm_loop:
192*1da177e4SLinus Torvalds	subw	#1,%d0
193*1da177e4SLinus Torvalds	lsll	#1,%d2
194*1da177e4SLinus Torvalds	roxll	#1,%d1
195*1da177e4SLinus Torvalds	tstl	%d1
196*1da177e4SLinus Torvalds	bges	norm_loop
197*1da177e4SLinus Torvalds|
198*1da177e4SLinus Torvalds| Test if the normalized input is denormalized
199*1da177e4SLinus Torvalds|
200*1da177e4SLinus Torvalds	tstw	%d0
201*1da177e4SLinus Torvalds	bgts	pos_exp		|if greater than zero, it is a norm
202*1da177e4SLinus Torvalds	st	BINDEC_FLG(%a6)	|set flag for denorm
203*1da177e4SLinus Torvaldspos_exp:
204*1da177e4SLinus Torvalds	andiw	#0x7fff,%d0	|strip sign of normalized exp
205*1da177e4SLinus Torvalds	movew	%d0,(%a0)
206*1da177e4SLinus Torvalds	movel	%d1,4(%a0)
207*1da177e4SLinus Torvalds	movel	%d2,8(%a0)
208*1da177e4SLinus Torvalds
209*1da177e4SLinus Torvalds| A2. Set X = abs(input).
210*1da177e4SLinus Torvalds|
211*1da177e4SLinus TorvaldsA2_str:
212*1da177e4SLinus Torvalds	movel	(%a0),FP_SCR2(%a6) | move input to work space
213*1da177e4SLinus Torvalds	movel	4(%a0),FP_SCR2+4(%a6) | move input to work space
214*1da177e4SLinus Torvalds	movel	8(%a0),FP_SCR2+8(%a6) | move input to work space
215*1da177e4SLinus Torvalds	andil	#0x7fffffff,FP_SCR2(%a6) |create abs(X)
216*1da177e4SLinus Torvalds
217*1da177e4SLinus Torvalds| A3. Compute ILOG.
218*1da177e4SLinus Torvalds|     ILOG is the log base 10 of the input value.  It is approx-
219*1da177e4SLinus Torvalds|     imated by adding e + 0.f when the original value is viewed
220*1da177e4SLinus Torvalds|     as 2^^e * 1.f in extended precision.  This value is stored
221*1da177e4SLinus Torvalds|     in d6.
222*1da177e4SLinus Torvalds|
223*1da177e4SLinus Torvalds| Register usage:
224*1da177e4SLinus Torvalds|	Input/Output
225*1da177e4SLinus Torvalds|	d0: k-factor/exponent
226*1da177e4SLinus Torvalds|	d2: x/x
227*1da177e4SLinus Torvalds|	d3: x/x
228*1da177e4SLinus Torvalds|	d4: x/x
229*1da177e4SLinus Torvalds|	d5: x/x
230*1da177e4SLinus Torvalds|	d6: x/ILOG
231*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
232*1da177e4SLinus Torvalds|	a0: ptr for original operand/final result
233*1da177e4SLinus Torvalds|	a1: x/x
234*1da177e4SLinus Torvalds|	a2: x/x
235*1da177e4SLinus Torvalds|	fp0: x/float(ILOG)
236*1da177e4SLinus Torvalds|	fp1: x/x
237*1da177e4SLinus Torvalds|	fp2: x/x
238*1da177e4SLinus Torvalds|	F_SCR1:x/x
239*1da177e4SLinus Torvalds|	F_SCR2:Abs(X)/Abs(X) with $3fff exponent
240*1da177e4SLinus Torvalds|	L_SCR1:x/x
241*1da177e4SLinus Torvalds|	L_SCR2:first word of X packed/Unchanged
242*1da177e4SLinus Torvalds
243*1da177e4SLinus Torvalds	tstb	BINDEC_FLG(%a6)	|check for denorm
244*1da177e4SLinus Torvalds	beqs	A3_cont		|if clr, continue with norm
245*1da177e4SLinus Torvalds	movel	#-4933,%d6	|force ILOG = -4933
246*1da177e4SLinus Torvalds	bras	A4_str
247*1da177e4SLinus TorvaldsA3_cont:
248*1da177e4SLinus Torvalds	movew	FP_SCR2(%a6),%d0	|move exp to d0
249*1da177e4SLinus Torvalds	movew	#0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff
250*1da177e4SLinus Torvalds	fmovex	FP_SCR2(%a6),%fp0	|now fp0 has 1.f
251*1da177e4SLinus Torvalds	subw	#0x3fff,%d0	|strip off bias
252*1da177e4SLinus Torvalds	faddw	%d0,%fp0		|add in exp
253*1da177e4SLinus Torvalds	fsubs	FONE,%fp0	|subtract off 1.0
254*1da177e4SLinus Torvalds	fbge	pos_res		|if pos, branch
255*1da177e4SLinus Torvalds	fmulx	LOG2UP1,%fp0	|if neg, mul by LOG2UP1
256*1da177e4SLinus Torvalds	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
257*1da177e4SLinus Torvalds	bras	A4_str		|go move out ILOG
258*1da177e4SLinus Torvaldspos_res:
259*1da177e4SLinus Torvalds	fmulx	LOG2,%fp0	|if pos, mul by LOG2
260*1da177e4SLinus Torvalds	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
261*1da177e4SLinus Torvalds
262*1da177e4SLinus Torvalds
263*1da177e4SLinus Torvalds| A4. Clr INEX bit.
264*1da177e4SLinus Torvalds|     The operation in A3 above may have set INEX2.
265*1da177e4SLinus Torvalds
266*1da177e4SLinus TorvaldsA4_str:
267*1da177e4SLinus Torvalds	fmovel	#0,%FPSR		|zero all of fpsr - nothing needed
268*1da177e4SLinus Torvalds
269*1da177e4SLinus Torvalds
270*1da177e4SLinus Torvalds| A5. Set ICTR = 0;
271*1da177e4SLinus Torvalds|     ICTR is a flag used in A13.  It must be set before the
272*1da177e4SLinus Torvalds|     loop entry A6. The lower word of d5 is used for ICTR.
273*1da177e4SLinus Torvalds
274*1da177e4SLinus Torvalds	clrw	%d5		|clear ICTR
275*1da177e4SLinus Torvalds
276*1da177e4SLinus Torvalds
277*1da177e4SLinus Torvalds| A6. Calculate LEN.
278*1da177e4SLinus Torvalds|     LEN is the number of digits to be displayed.  The k-factor
279*1da177e4SLinus Torvalds|     can dictate either the total number of digits, if it is
280*1da177e4SLinus Torvalds|     a positive number, or the number of digits after the
281*1da177e4SLinus Torvalds|     original decimal point which are to be included as
282*1da177e4SLinus Torvalds|     significant.  See the 68882 manual for examples.
283*1da177e4SLinus Torvalds|     If LEN is computed to be greater than 17, set OPERR in
284*1da177e4SLinus Torvalds|     USER_FPSR.  LEN is stored in d4.
285*1da177e4SLinus Torvalds|
286*1da177e4SLinus Torvalds| Register usage:
287*1da177e4SLinus Torvalds|	Input/Output
288*1da177e4SLinus Torvalds|	d0: exponent/Unchanged
289*1da177e4SLinus Torvalds|	d2: x/x/scratch
290*1da177e4SLinus Torvalds|	d3: x/x
291*1da177e4SLinus Torvalds|	d4: exc picture/LEN
292*1da177e4SLinus Torvalds|	d5: ICTR/Unchanged
293*1da177e4SLinus Torvalds|	d6: ILOG/Unchanged
294*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
295*1da177e4SLinus Torvalds|	a0: ptr for original operand/final result
296*1da177e4SLinus Torvalds|	a1: x/x
297*1da177e4SLinus Torvalds|	a2: x/x
298*1da177e4SLinus Torvalds|	fp0: float(ILOG)/Unchanged
299*1da177e4SLinus Torvalds|	fp1: x/x
300*1da177e4SLinus Torvalds|	fp2: x/x
301*1da177e4SLinus Torvalds|	F_SCR1:x/x
302*1da177e4SLinus Torvalds|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
303*1da177e4SLinus Torvalds|	L_SCR1:x/x
304*1da177e4SLinus Torvalds|	L_SCR2:first word of X packed/Unchanged
305*1da177e4SLinus Torvalds
306*1da177e4SLinus TorvaldsA6_str:
307*1da177e4SLinus Torvalds	tstl	%d7		|branch on sign of k
308*1da177e4SLinus Torvalds	bles	k_neg		|if k <= 0, LEN = ILOG + 1 - k
309*1da177e4SLinus Torvalds	movel	%d7,%d4		|if k > 0, LEN = k
310*1da177e4SLinus Torvalds	bras	len_ck		|skip to LEN check
311*1da177e4SLinus Torvaldsk_neg:
312*1da177e4SLinus Torvalds	movel	%d6,%d4		|first load ILOG to d4
313*1da177e4SLinus Torvalds	subl	%d7,%d4		|subtract off k
314*1da177e4SLinus Torvalds	addql	#1,%d4		|add in the 1
315*1da177e4SLinus Torvaldslen_ck:
316*1da177e4SLinus Torvalds	tstl	%d4		|LEN check: branch on sign of LEN
317*1da177e4SLinus Torvalds	bles	LEN_ng		|if neg, set LEN = 1
318*1da177e4SLinus Torvalds	cmpl	#17,%d4		|test if LEN > 17
319*1da177e4SLinus Torvalds	bles	A7_str		|if not, forget it
320*1da177e4SLinus Torvalds	movel	#17,%d4		|set max LEN = 17
321*1da177e4SLinus Torvalds	tstl	%d7		|if negative, never set OPERR
322*1da177e4SLinus Torvalds	bles	A7_str		|if positive, continue
323*1da177e4SLinus Torvalds	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
324*1da177e4SLinus Torvalds	bras	A7_str		|finished here
325*1da177e4SLinus TorvaldsLEN_ng:
326*1da177e4SLinus Torvalds	moveql	#1,%d4		|min LEN is 1
327*1da177e4SLinus Torvalds
328*1da177e4SLinus Torvalds
329*1da177e4SLinus Torvalds| A7. Calculate SCALE.
330*1da177e4SLinus Torvalds|     SCALE is equal to 10^ISCALE, where ISCALE is the number
331*1da177e4SLinus Torvalds|     of decimal places needed to insure LEN integer digits
332*1da177e4SLinus Torvalds|     in the output before conversion to bcd. LAMBDA is the sign
333*1da177e4SLinus Torvalds|     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
334*1da177e4SLinus Torvalds|     the rounding mode as given in the following table (see
335*1da177e4SLinus Torvalds|     Coonen, p. 7.23 as ref.; however, the SCALE variable is
336*1da177e4SLinus Torvalds|     of opposite sign in bindec.sa from Coonen).
337*1da177e4SLinus Torvalds|
338*1da177e4SLinus Torvalds|	Initial					USE
339*1da177e4SLinus Torvalds|	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5]
340*1da177e4SLinus Torvalds|	----------------------------------------------
341*1da177e4SLinus Torvalds|	 RN	00	   0	   0		00/0	RN
342*1da177e4SLinus Torvalds|	 RN	00	   0	   1		00/0	RN
343*1da177e4SLinus Torvalds|	 RN	00	   1	   0		00/0	RN
344*1da177e4SLinus Torvalds|	 RN	00	   1	   1		00/0	RN
345*1da177e4SLinus Torvalds|	 RZ	01	   0	   0		11/3	RP
346*1da177e4SLinus Torvalds|	 RZ	01	   0	   1		11/3	RP
347*1da177e4SLinus Torvalds|	 RZ	01	   1	   0		10/2	RM
348*1da177e4SLinus Torvalds|	 RZ	01	   1	   1		10/2	RM
349*1da177e4SLinus Torvalds|	 RM	10	   0	   0		11/3	RP
350*1da177e4SLinus Torvalds|	 RM	10	   0	   1		10/2	RM
351*1da177e4SLinus Torvalds|	 RM	10	   1	   0		10/2	RM
352*1da177e4SLinus Torvalds|	 RM	10	   1	   1		11/3	RP
353*1da177e4SLinus Torvalds|	 RP	11	   0	   0		10/2	RM
354*1da177e4SLinus Torvalds|	 RP	11	   0	   1		11/3	RP
355*1da177e4SLinus Torvalds|	 RP	11	   1	   0		11/3	RP
356*1da177e4SLinus Torvalds|	 RP	11	   1	   1		10/2	RM
357*1da177e4SLinus Torvalds|
358*1da177e4SLinus Torvalds| Register usage:
359*1da177e4SLinus Torvalds|	Input/Output
360*1da177e4SLinus Torvalds|	d0: exponent/scratch - final is 0
361*1da177e4SLinus Torvalds|	d2: x/0 or 24 for A9
362*1da177e4SLinus Torvalds|	d3: x/scratch - offset ptr into PTENRM array
363*1da177e4SLinus Torvalds|	d4: LEN/Unchanged
364*1da177e4SLinus Torvalds|	d5: 0/ICTR:LAMBDA
365*1da177e4SLinus Torvalds|	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
366*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
367*1da177e4SLinus Torvalds|	a0: ptr for original operand/final result
368*1da177e4SLinus Torvalds|	a1: x/ptr to PTENRM array
369*1da177e4SLinus Torvalds|	a2: x/x
370*1da177e4SLinus Torvalds|	fp0: float(ILOG)/Unchanged
371*1da177e4SLinus Torvalds|	fp1: x/10^ISCALE
372*1da177e4SLinus Torvalds|	fp2: x/x
373*1da177e4SLinus Torvalds|	F_SCR1:x/x
374*1da177e4SLinus Torvalds|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
375*1da177e4SLinus Torvalds|	L_SCR1:x/x
376*1da177e4SLinus Torvalds|	L_SCR2:first word of X packed/Unchanged
377*1da177e4SLinus Torvalds
378*1da177e4SLinus TorvaldsA7_str:
379*1da177e4SLinus Torvalds	tstl	%d7		|test sign of k
380*1da177e4SLinus Torvalds	bgts	k_pos		|if pos and > 0, skip this
381*1da177e4SLinus Torvalds	cmpl	%d6,%d7		|test k - ILOG
382*1da177e4SLinus Torvalds	blts	k_pos		|if ILOG >= k, skip this
383*1da177e4SLinus Torvalds	movel	%d7,%d6		|if ((k<0) & (ILOG < k)) ILOG = k
384*1da177e4SLinus Torvaldsk_pos:
385*1da177e4SLinus Torvalds	movel	%d6,%d0		|calc ILOG + 1 - LEN in d0
386*1da177e4SLinus Torvalds	addql	#1,%d0		|add the 1
387*1da177e4SLinus Torvalds	subl	%d4,%d0		|sub off LEN
388*1da177e4SLinus Torvalds	swap	%d5		|use upper word of d5 for LAMBDA
389*1da177e4SLinus Torvalds	clrw	%d5		|set it zero initially
390*1da177e4SLinus Torvalds	clrw	%d2		|set up d2 for very small case
391*1da177e4SLinus Torvalds	tstl	%d0		|test sign of ISCALE
392*1da177e4SLinus Torvalds	bges	iscale		|if pos, skip next inst
393*1da177e4SLinus Torvalds	addqw	#1,%d5		|if neg, set LAMBDA true
394*1da177e4SLinus Torvalds	cmpl	#0xffffecd4,%d0	|test iscale <= -4908
395*1da177e4SLinus Torvalds	bgts	no_inf		|if false, skip rest
396*1da177e4SLinus Torvalds	addil	#24,%d0		|add in 24 to iscale
397*1da177e4SLinus Torvalds	movel	#24,%d2		|put 24 in d2 for A9
398*1da177e4SLinus Torvaldsno_inf:
399*1da177e4SLinus Torvalds	negl	%d0		|and take abs of ISCALE
400*1da177e4SLinus Torvaldsiscale:
401*1da177e4SLinus Torvalds	fmoves	FONE,%fp1	|init fp1 to 1
402*1da177e4SLinus Torvalds	bfextu	USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits
403*1da177e4SLinus Torvalds	lslw	#1,%d1		|put them in bits 2:1
404*1da177e4SLinus Torvalds	addw	%d5,%d1		|add in LAMBDA
405*1da177e4SLinus Torvalds	lslw	#1,%d1		|put them in bits 3:1
406*1da177e4SLinus Torvalds	tstl	L_SCR2(%a6)	|test sign of original x
407*1da177e4SLinus Torvalds	bges	x_pos		|if pos, don't set bit 0
408*1da177e4SLinus Torvalds	addql	#1,%d1		|if neg, set bit 0
409*1da177e4SLinus Torvaldsx_pos:
410*1da177e4SLinus Torvalds	leal	RBDTBL,%a2	|load rbdtbl base
411*1da177e4SLinus Torvalds	moveb	(%a2,%d1),%d3	|load d3 with new rmode
412*1da177e4SLinus Torvalds	lsll	#4,%d3		|put bits in proper position
413*1da177e4SLinus Torvalds	fmovel	%d3,%fpcr		|load bits into fpu
414*1da177e4SLinus Torvalds	lsrl	#4,%d3		|put bits in proper position
415*1da177e4SLinus Torvalds	tstb	%d3		|decode new rmode for pten table
416*1da177e4SLinus Torvalds	bnes	not_rn		|if zero, it is RN
417*1da177e4SLinus Torvalds	leal	PTENRN,%a1	|load a1 with RN table base
418*1da177e4SLinus Torvalds	bras	rmode		|exit decode
419*1da177e4SLinus Torvaldsnot_rn:
420*1da177e4SLinus Torvalds	lsrb	#1,%d3		|get lsb in carry
421*1da177e4SLinus Torvalds	bccs	not_rp		|if carry clear, it is RM
422*1da177e4SLinus Torvalds	leal	PTENRP,%a1	|load a1 with RP table base
423*1da177e4SLinus Torvalds	bras	rmode		|exit decode
424*1da177e4SLinus Torvaldsnot_rp:
425*1da177e4SLinus Torvalds	leal	PTENRM,%a1	|load a1 with RM table base
426*1da177e4SLinus Torvaldsrmode:
427*1da177e4SLinus Torvalds	clrl	%d3		|clr table index
428*1da177e4SLinus Torvaldse_loop:
429*1da177e4SLinus Torvalds	lsrl	#1,%d0		|shift next bit into carry
430*1da177e4SLinus Torvalds	bccs	e_next		|if zero, skip the mul
431*1da177e4SLinus Torvalds	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
432*1da177e4SLinus Torvaldse_next:
433*1da177e4SLinus Torvalds	addl	#12,%d3		|inc d3 to next pwrten table entry
434*1da177e4SLinus Torvalds	tstl	%d0		|test if ISCALE is zero
435*1da177e4SLinus Torvalds	bnes	e_loop		|if not, loop
436*1da177e4SLinus Torvalds
437*1da177e4SLinus Torvalds
438*1da177e4SLinus Torvalds| A8. Clr INEX; Force RZ.
439*1da177e4SLinus Torvalds|     The operation in A3 above may have set INEX2.
440*1da177e4SLinus Torvalds|     RZ mode is forced for the scaling operation to insure
441*1da177e4SLinus Torvalds|     only one rounding error.  The grs bits are collected in
442*1da177e4SLinus Torvalds|     the INEX flag for use in A10.
443*1da177e4SLinus Torvalds|
444*1da177e4SLinus Torvalds| Register usage:
445*1da177e4SLinus Torvalds|	Input/Output
446*1da177e4SLinus Torvalds
447*1da177e4SLinus Torvalds	fmovel	#0,%FPSR		|clr INEX
448*1da177e4SLinus Torvalds	fmovel	#rz_mode,%FPCR	|set RZ rounding mode
449*1da177e4SLinus Torvalds
450*1da177e4SLinus Torvalds
451*1da177e4SLinus Torvalds| A9. Scale X -> Y.
452*1da177e4SLinus Torvalds|     The mantissa is scaled to the desired number of significant
453*1da177e4SLinus Torvalds|     digits.  The excess digits are collected in INEX2. If mul,
454*1da177e4SLinus Torvalds|     Check d2 for excess 10 exponential value.  If not zero,
455*1da177e4SLinus Torvalds|     the iscale value would have caused the pwrten calculation
456*1da177e4SLinus Torvalds|     to overflow.  Only a negative iscale can cause this, so
457*1da177e4SLinus Torvalds|     multiply by 10^(d2), which is now only allowed to be 24,
458*1da177e4SLinus Torvalds|     with a multiply by 10^8 and 10^16, which is exact since
459*1da177e4SLinus Torvalds|     10^24 is exact.  If the input was denormalized, we must
460*1da177e4SLinus Torvalds|     create a busy stack frame with the mul command and the
461*1da177e4SLinus Torvalds|     two operands, and allow the fpu to complete the multiply.
462*1da177e4SLinus Torvalds|
463*1da177e4SLinus Torvalds| Register usage:
464*1da177e4SLinus Torvalds|	Input/Output
465*1da177e4SLinus Torvalds|	d0: FPCR with RZ mode/Unchanged
466*1da177e4SLinus Torvalds|	d2: 0 or 24/unchanged
467*1da177e4SLinus Torvalds|	d3: x/x
468*1da177e4SLinus Torvalds|	d4: LEN/Unchanged
469*1da177e4SLinus Torvalds|	d5: ICTR:LAMBDA
470*1da177e4SLinus Torvalds|	d6: ILOG/Unchanged
471*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
472*1da177e4SLinus Torvalds|	a0: ptr for original operand/final result
473*1da177e4SLinus Torvalds|	a1: ptr to PTENRM array/Unchanged
474*1da177e4SLinus Torvalds|	a2: x/x
475*1da177e4SLinus Torvalds|	fp0: float(ILOG)/X adjusted for SCALE (Y)
476*1da177e4SLinus Torvalds|	fp1: 10^ISCALE/Unchanged
477*1da177e4SLinus Torvalds|	fp2: x/x
478*1da177e4SLinus Torvalds|	F_SCR1:x/x
479*1da177e4SLinus Torvalds|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
480*1da177e4SLinus Torvalds|	L_SCR1:x/x
481*1da177e4SLinus Torvalds|	L_SCR2:first word of X packed/Unchanged
482*1da177e4SLinus Torvalds
483*1da177e4SLinus TorvaldsA9_str:
484*1da177e4SLinus Torvalds	fmovex	(%a0),%fp0	|load X from memory
485*1da177e4SLinus Torvalds	fabsx	%fp0		|use abs(X)
486*1da177e4SLinus Torvalds	tstw	%d5		|LAMBDA is in lower word of d5
487*1da177e4SLinus Torvalds	bne	sc_mul		|if neg (LAMBDA = 1), scale by mul
488*1da177e4SLinus Torvalds	fdivx	%fp1,%fp0		|calculate X / SCALE -> Y to fp0
489*1da177e4SLinus Torvalds	bras	A10_st		|branch to A10
490*1da177e4SLinus Torvalds
491*1da177e4SLinus Torvaldssc_mul:
492*1da177e4SLinus Torvalds	tstb	BINDEC_FLG(%a6)	|check for denorm
493*1da177e4SLinus Torvalds	beqs	A9_norm		|if norm, continue with mul
494*1da177e4SLinus Torvalds	fmovemx %fp1-%fp1,-(%a7)	|load ETEMP with 10^ISCALE
495*1da177e4SLinus Torvalds	movel	8(%a0),-(%a7)	|load FPTEMP with input arg
496*1da177e4SLinus Torvalds	movel	4(%a0),-(%a7)
497*1da177e4SLinus Torvalds	movel	(%a0),-(%a7)
498*1da177e4SLinus Torvalds	movel	#18,%d3		|load count for busy stack
499*1da177e4SLinus TorvaldsA9_loop:
500*1da177e4SLinus Torvalds	clrl	-(%a7)		|clear lword on stack
501*1da177e4SLinus Torvalds	dbf	%d3,A9_loop
502*1da177e4SLinus Torvalds	moveb	VER_TMP(%a6),(%a7) |write current version number
503*1da177e4SLinus Torvalds	moveb	#BUSY_SIZE-4,1(%a7) |write current busy size
504*1da177e4SLinus Torvalds	moveb	#0x10,0x44(%a7)	|set fcefpte[15] bit
505*1da177e4SLinus Torvalds	movew	#0x0023,0x40(%a7)	|load cmdreg1b with mul command
506*1da177e4SLinus Torvalds	moveb	#0xfe,0x8(%a7)	|load all 1s to cu savepc
507*1da177e4SLinus Torvalds	frestore (%a7)+		|restore frame to fpu for completion
508*1da177e4SLinus Torvalds	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
509*1da177e4SLinus Torvalds	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
510*1da177e4SLinus Torvalds	bras	A10_st
511*1da177e4SLinus TorvaldsA9_norm:
512*1da177e4SLinus Torvalds	tstw	%d2		|test for small exp case
513*1da177e4SLinus Torvalds	beqs	A9_con		|if zero, continue as normal
514*1da177e4SLinus Torvalds	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
515*1da177e4SLinus Torvalds	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
516*1da177e4SLinus TorvaldsA9_con:
517*1da177e4SLinus Torvalds	fmulx	%fp1,%fp0		|calculate X * SCALE -> Y to fp0
518*1da177e4SLinus Torvalds
519*1da177e4SLinus Torvalds
520*1da177e4SLinus Torvalds| A10. Or in INEX.
521*1da177e4SLinus Torvalds|      If INEX is set, round error occurred.  This is compensated
522*1da177e4SLinus Torvalds|      for by 'or-ing' in the INEX2 flag to the lsb of Y.
523*1da177e4SLinus Torvalds|
524*1da177e4SLinus Torvalds| Register usage:
525*1da177e4SLinus Torvalds|	Input/Output
526*1da177e4SLinus Torvalds|	d0: FPCR with RZ mode/FPSR with INEX2 isolated
527*1da177e4SLinus Torvalds|	d2: x/x
528*1da177e4SLinus Torvalds|	d3: x/x
529*1da177e4SLinus Torvalds|	d4: LEN/Unchanged
530*1da177e4SLinus Torvalds|	d5: ICTR:LAMBDA
531*1da177e4SLinus Torvalds|	d6: ILOG/Unchanged
532*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
533*1da177e4SLinus Torvalds|	a0: ptr for original operand/final result
534*1da177e4SLinus Torvalds|	a1: ptr to PTENxx array/Unchanged
535*1da177e4SLinus Torvalds|	a2: x/ptr to FP_SCR2(a6)
536*1da177e4SLinus Torvalds|	fp0: Y/Y with lsb adjusted
537*1da177e4SLinus Torvalds|	fp1: 10^ISCALE/Unchanged
538*1da177e4SLinus Torvalds|	fp2: x/x
539*1da177e4SLinus Torvalds
540*1da177e4SLinus TorvaldsA10_st:
541*1da177e4SLinus Torvalds	fmovel	%FPSR,%d0		|get FPSR
542*1da177e4SLinus Torvalds	fmovex	%fp0,FP_SCR2(%a6)	|move Y to memory
543*1da177e4SLinus Torvalds	leal	FP_SCR2(%a6),%a2	|load a2 with ptr to FP_SCR2
544*1da177e4SLinus Torvalds	btstl	#9,%d0		|check if INEX2 set
545*1da177e4SLinus Torvalds	beqs	A11_st		|if clear, skip rest
546*1da177e4SLinus Torvalds	oril	#1,8(%a2)	|or in 1 to lsb of mantissa
547*1da177e4SLinus Torvalds	fmovex	FP_SCR2(%a6),%fp0	|write adjusted Y back to fpu
548*1da177e4SLinus Torvalds
549*1da177e4SLinus Torvalds
550*1da177e4SLinus Torvalds| A11. Restore original FPCR; set size ext.
551*1da177e4SLinus Torvalds|      Perform FINT operation in the user's rounding mode.  Keep
552*1da177e4SLinus Torvalds|      the size to extended.  The sintdo entry point in the sint
553*1da177e4SLinus Torvalds|      routine expects the FPCR value to be in USER_FPCR for
554*1da177e4SLinus Torvalds|      mode and precision.  The original FPCR is saved in L_SCR1.
555*1da177e4SLinus Torvalds
556*1da177e4SLinus TorvaldsA11_st:
557*1da177e4SLinus Torvalds	movel	USER_FPCR(%a6),L_SCR1(%a6) |save it for later
558*1da177e4SLinus Torvalds	andil	#0x00000030,USER_FPCR(%a6) |set size to ext,
559*1da177e4SLinus Torvalds|					;block exceptions
560*1da177e4SLinus Torvalds
561*1da177e4SLinus Torvalds
562*1da177e4SLinus Torvalds| A12. Calculate YINT = FINT(Y) according to user's rounding mode.
563*1da177e4SLinus Torvalds|      The FPSP routine sintd0 is used.  The output is in fp0.
564*1da177e4SLinus Torvalds|
565*1da177e4SLinus Torvalds| Register usage:
566*1da177e4SLinus Torvalds|	Input/Output
567*1da177e4SLinus Torvalds|	d0: FPSR with AINEX cleared/FPCR with size set to ext
568*1da177e4SLinus Torvalds|	d2: x/x/scratch
569*1da177e4SLinus Torvalds|	d3: x/x
570*1da177e4SLinus Torvalds|	d4: LEN/Unchanged
571*1da177e4SLinus Torvalds|	d5: ICTR:LAMBDA/Unchanged
572*1da177e4SLinus Torvalds|	d6: ILOG/Unchanged
573*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
574*1da177e4SLinus Torvalds|	a0: ptr for original operand/src ptr for sintdo
575*1da177e4SLinus Torvalds|	a1: ptr to PTENxx array/Unchanged
576*1da177e4SLinus Torvalds|	a2: ptr to FP_SCR2(a6)/Unchanged
577*1da177e4SLinus Torvalds|	a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
578*1da177e4SLinus Torvalds|	fp0: Y/YINT
579*1da177e4SLinus Torvalds|	fp1: 10^ISCALE/Unchanged
580*1da177e4SLinus Torvalds|	fp2: x/x
581*1da177e4SLinus Torvalds|	F_SCR1:x/x
582*1da177e4SLinus Torvalds|	F_SCR2:Y adjusted for inex/Y with original exponent
583*1da177e4SLinus Torvalds|	L_SCR1:x/original USER_FPCR
584*1da177e4SLinus Torvalds|	L_SCR2:first word of X packed/Unchanged
585*1da177e4SLinus Torvalds
586*1da177e4SLinus TorvaldsA12_st:
587*1da177e4SLinus Torvalds	moveml	%d0-%d1/%a0-%a1,-(%a7)	|save regs used by sintd0
588*1da177e4SLinus Torvalds	movel	L_SCR1(%a6),-(%a7)
589*1da177e4SLinus Torvalds	movel	L_SCR2(%a6),-(%a7)
590*1da177e4SLinus Torvalds	leal	FP_SCR2(%a6),%a0		|a0 is ptr to F_SCR2(a6)
591*1da177e4SLinus Torvalds	fmovex	%fp0,(%a0)		|move Y to memory at FP_SCR2(a6)
592*1da177e4SLinus Torvalds	tstl	L_SCR2(%a6)		|test sign of original operand
593*1da177e4SLinus Torvalds	bges	do_fint			|if pos, use Y
594*1da177e4SLinus Torvalds	orl	#0x80000000,(%a0)		|if neg, use -Y
595*1da177e4SLinus Torvaldsdo_fint:
596*1da177e4SLinus Torvalds	movel	USER_FPSR(%a6),-(%a7)
597*1da177e4SLinus Torvalds	bsr	sintdo			|sint routine returns int in fp0
598*1da177e4SLinus Torvalds	moveb	(%a7),USER_FPSR(%a6)
599*1da177e4SLinus Torvalds	addl	#4,%a7
600*1da177e4SLinus Torvalds	movel	(%a7)+,L_SCR2(%a6)
601*1da177e4SLinus Torvalds	movel	(%a7)+,L_SCR1(%a6)
602*1da177e4SLinus Torvalds	moveml	(%a7)+,%d0-%d1/%a0-%a1	|restore regs used by sint
603*1da177e4SLinus Torvalds	movel	L_SCR2(%a6),FP_SCR2(%a6)	|restore original exponent
604*1da177e4SLinus Torvalds	movel	L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR
605*1da177e4SLinus Torvalds
606*1da177e4SLinus Torvalds
607*1da177e4SLinus Torvalds| A13. Check for LEN digits.
608*1da177e4SLinus Torvalds|      If the int operation results in more than LEN digits,
609*1da177e4SLinus Torvalds|      or less than LEN -1 digits, adjust ILOG and repeat from
610*1da177e4SLinus Torvalds|      A6.  This test occurs only on the first pass.  If the
611*1da177e4SLinus Torvalds|      result is exactly 10^LEN, decrement ILOG and divide
612*1da177e4SLinus Torvalds|      the mantissa by 10.  The calculation of 10^LEN cannot
613*1da177e4SLinus Torvalds|      be inexact, since all powers of ten upto 10^27 are exact
614*1da177e4SLinus Torvalds|      in extended precision, so the use of a previous power-of-ten
615*1da177e4SLinus Torvalds|      table will introduce no error.
616*1da177e4SLinus Torvalds|
617*1da177e4SLinus Torvalds|
618*1da177e4SLinus Torvalds| Register usage:
619*1da177e4SLinus Torvalds|	Input/Output
620*1da177e4SLinus Torvalds|	d0: FPCR with size set to ext/scratch final = 0
621*1da177e4SLinus Torvalds|	d2: x/x
622*1da177e4SLinus Torvalds|	d3: x/scratch final = x
623*1da177e4SLinus Torvalds|	d4: LEN/LEN adjusted
624*1da177e4SLinus Torvalds|	d5: ICTR:LAMBDA/LAMBDA:ICTR
625*1da177e4SLinus Torvalds|	d6: ILOG/ILOG adjusted
626*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
627*1da177e4SLinus Torvalds|	a0: pointer into memory for packed bcd string formation
628*1da177e4SLinus Torvalds|	a1: ptr to PTENxx array/Unchanged
629*1da177e4SLinus Torvalds|	a2: ptr to FP_SCR2(a6)/Unchanged
630*1da177e4SLinus Torvalds|	fp0: int portion of Y/abs(YINT) adjusted
631*1da177e4SLinus Torvalds|	fp1: 10^ISCALE/Unchanged
632*1da177e4SLinus Torvalds|	fp2: x/10^LEN
633*1da177e4SLinus Torvalds|	F_SCR1:x/x
634*1da177e4SLinus Torvalds|	F_SCR2:Y with original exponent/Unchanged
635*1da177e4SLinus Torvalds|	L_SCR1:original USER_FPCR/Unchanged
636*1da177e4SLinus Torvalds|	L_SCR2:first word of X packed/Unchanged
637*1da177e4SLinus Torvalds
638*1da177e4SLinus TorvaldsA13_st:
639*1da177e4SLinus Torvalds	swap	%d5		|put ICTR in lower word of d5
640*1da177e4SLinus Torvalds	tstw	%d5		|check if ICTR = 0
641*1da177e4SLinus Torvalds	bne	not_zr		|if non-zero, go to second test
642*1da177e4SLinus Torvalds|
643*1da177e4SLinus Torvalds| Compute 10^(LEN-1)
644*1da177e4SLinus Torvalds|
645*1da177e4SLinus Torvalds	fmoves	FONE,%fp2	|init fp2 to 1.0
646*1da177e4SLinus Torvalds	movel	%d4,%d0		|put LEN in d0
647*1da177e4SLinus Torvalds	subql	#1,%d0		|d0 = LEN -1
648*1da177e4SLinus Torvalds	clrl	%d3		|clr table index
649*1da177e4SLinus Torvaldsl_loop:
650*1da177e4SLinus Torvalds	lsrl	#1,%d0		|shift next bit into carry
651*1da177e4SLinus Torvalds	bccs	l_next		|if zero, skip the mul
652*1da177e4SLinus Torvalds	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
653*1da177e4SLinus Torvaldsl_next:
654*1da177e4SLinus Torvalds	addl	#12,%d3		|inc d3 to next pwrten table entry
655*1da177e4SLinus Torvalds	tstl	%d0		|test if LEN is zero
656*1da177e4SLinus Torvalds	bnes	l_loop		|if not, loop
657*1da177e4SLinus Torvalds|
658*1da177e4SLinus Torvalds| 10^LEN-1 is computed for this test and A14.  If the input was
659*1da177e4SLinus Torvalds| denormalized, check only the case in which YINT > 10^LEN.
660*1da177e4SLinus Torvalds|
661*1da177e4SLinus Torvalds	tstb	BINDEC_FLG(%a6)	|check if input was norm
662*1da177e4SLinus Torvalds	beqs	A13_con		|if norm, continue with checking
663*1da177e4SLinus Torvalds	fabsx	%fp0		|take abs of YINT
664*1da177e4SLinus Torvalds	bra	test_2
665*1da177e4SLinus Torvalds|
666*1da177e4SLinus Torvalds| Compare abs(YINT) to 10^(LEN-1) and 10^LEN
667*1da177e4SLinus Torvalds|
668*1da177e4SLinus TorvaldsA13_con:
669*1da177e4SLinus Torvalds	fabsx	%fp0		|take abs of YINT
670*1da177e4SLinus Torvalds	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^(LEN-1)
671*1da177e4SLinus Torvalds	fbge	test_2		|if greater, do next test
672*1da177e4SLinus Torvalds	subql	#1,%d6		|subtract 1 from ILOG
673*1da177e4SLinus Torvalds	movew	#1,%d5		|set ICTR
674*1da177e4SLinus Torvalds	fmovel	#rm_mode,%FPCR	|set rmode to RM
675*1da177e4SLinus Torvalds	fmuls	FTEN,%fp2	|compute 10^LEN
676*1da177e4SLinus Torvalds	bra	A6_str		|return to A6 and recompute YINT
677*1da177e4SLinus Torvaldstest_2:
678*1da177e4SLinus Torvalds	fmuls	FTEN,%fp2	|compute 10^LEN
679*1da177e4SLinus Torvalds	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^LEN
680*1da177e4SLinus Torvalds	fblt	A14_st		|if less, all is ok, go to A14
681*1da177e4SLinus Torvalds	fbgt	fix_ex		|if greater, fix and redo
682*1da177e4SLinus Torvalds	fdivs	FTEN,%fp0	|if equal, divide by 10
683*1da177e4SLinus Torvalds	addql	#1,%d6		| and inc ILOG
684*1da177e4SLinus Torvalds	bras	A14_st		| and continue elsewhere
685*1da177e4SLinus Torvaldsfix_ex:
686*1da177e4SLinus Torvalds	addql	#1,%d6		|increment ILOG by 1
687*1da177e4SLinus Torvalds	movew	#1,%d5		|set ICTR
688*1da177e4SLinus Torvalds	fmovel	#rm_mode,%FPCR	|set rmode to RM
689*1da177e4SLinus Torvalds	bra	A6_str		|return to A6 and recompute YINT
690*1da177e4SLinus Torvalds|
691*1da177e4SLinus Torvalds| Since ICTR <> 0, we have already been through one adjustment,
692*1da177e4SLinus Torvalds| and shouldn't have another; this is to check if abs(YINT) = 10^LEN
693*1da177e4SLinus Torvalds| 10^LEN is again computed using whatever table is in a1 since the
694*1da177e4SLinus Torvalds| value calculated cannot be inexact.
695*1da177e4SLinus Torvalds|
696*1da177e4SLinus Torvaldsnot_zr:
697*1da177e4SLinus Torvalds	fmoves	FONE,%fp2	|init fp2 to 1.0
698*1da177e4SLinus Torvalds	movel	%d4,%d0		|put LEN in d0
699*1da177e4SLinus Torvalds	clrl	%d3		|clr table index
700*1da177e4SLinus Torvaldsz_loop:
701*1da177e4SLinus Torvalds	lsrl	#1,%d0		|shift next bit into carry
702*1da177e4SLinus Torvalds	bccs	z_next		|if zero, skip the mul
703*1da177e4SLinus Torvalds	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
704*1da177e4SLinus Torvaldsz_next:
705*1da177e4SLinus Torvalds	addl	#12,%d3		|inc d3 to next pwrten table entry
706*1da177e4SLinus Torvalds	tstl	%d0		|test if LEN is zero
707*1da177e4SLinus Torvalds	bnes	z_loop		|if not, loop
708*1da177e4SLinus Torvalds	fabsx	%fp0		|get abs(YINT)
709*1da177e4SLinus Torvalds	fcmpx	%fp2,%fp0		|check if abs(YINT) = 10^LEN
710*1da177e4SLinus Torvalds	fbne	A14_st		|if not, skip this
711*1da177e4SLinus Torvalds	fdivs	FTEN,%fp0	|divide abs(YINT) by 10
712*1da177e4SLinus Torvalds	addql	#1,%d6		|and inc ILOG by 1
713*1da177e4SLinus Torvalds	addql	#1,%d4		| and inc LEN
714*1da177e4SLinus Torvalds	fmuls	FTEN,%fp2	| if LEN++, the get 10^^LEN
715*1da177e4SLinus Torvalds
716*1da177e4SLinus Torvalds
717*1da177e4SLinus Torvalds| A14. Convert the mantissa to bcd.
718*1da177e4SLinus Torvalds|      The binstr routine is used to convert the LEN digit
719*1da177e4SLinus Torvalds|      mantissa to bcd in memory.  The input to binstr is
720*1da177e4SLinus Torvalds|      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
721*1da177e4SLinus Torvalds|      such that the decimal point is to the left of bit 63.
722*1da177e4SLinus Torvalds|      The bcd digits are stored in the correct position in
723*1da177e4SLinus Torvalds|      the final string area in memory.
724*1da177e4SLinus Torvalds|
725*1da177e4SLinus Torvalds|
726*1da177e4SLinus Torvalds| Register usage:
727*1da177e4SLinus Torvalds|	Input/Output
728*1da177e4SLinus Torvalds|	d0: x/LEN call to binstr - final is 0
729*1da177e4SLinus Torvalds|	d1: x/0
730*1da177e4SLinus Torvalds|	d2: x/ms 32-bits of mant of abs(YINT)
731*1da177e4SLinus Torvalds|	d3: x/ls 32-bits of mant of abs(YINT)
732*1da177e4SLinus Torvalds|	d4: LEN/Unchanged
733*1da177e4SLinus Torvalds|	d5: ICTR:LAMBDA/LAMBDA:ICTR
734*1da177e4SLinus Torvalds|	d6: ILOG
735*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
736*1da177e4SLinus Torvalds|	a0: pointer into memory for packed bcd string formation
737*1da177e4SLinus Torvalds|	    /ptr to first mantissa byte in result string
738*1da177e4SLinus Torvalds|	a1: ptr to PTENxx array/Unchanged
739*1da177e4SLinus Torvalds|	a2: ptr to FP_SCR2(a6)/Unchanged
740*1da177e4SLinus Torvalds|	fp0: int portion of Y/abs(YINT) adjusted
741*1da177e4SLinus Torvalds|	fp1: 10^ISCALE/Unchanged
742*1da177e4SLinus Torvalds|	fp2: 10^LEN/Unchanged
743*1da177e4SLinus Torvalds|	F_SCR1:x/Work area for final result
744*1da177e4SLinus Torvalds|	F_SCR2:Y with original exponent/Unchanged
745*1da177e4SLinus Torvalds|	L_SCR1:original USER_FPCR/Unchanged
746*1da177e4SLinus Torvalds|	L_SCR2:first word of X packed/Unchanged
747*1da177e4SLinus Torvalds
748*1da177e4SLinus TorvaldsA14_st:
749*1da177e4SLinus Torvalds	fmovel	#rz_mode,%FPCR	|force rz for conversion
750*1da177e4SLinus Torvalds	fdivx	%fp2,%fp0		|divide abs(YINT) by 10^LEN
751*1da177e4SLinus Torvalds	leal	FP_SCR1(%a6),%a0
752*1da177e4SLinus Torvalds	fmovex	%fp0,(%a0)	|move abs(YINT)/10^LEN to memory
753*1da177e4SLinus Torvalds	movel	4(%a0),%d2	|move 2nd word of FP_RES to d2
754*1da177e4SLinus Torvalds	movel	8(%a0),%d3	|move 3rd word of FP_RES to d3
755*1da177e4SLinus Torvalds	clrl	4(%a0)		|zero word 2 of FP_RES
756*1da177e4SLinus Torvalds	clrl	8(%a0)		|zero word 3 of FP_RES
757*1da177e4SLinus Torvalds	movel	(%a0),%d0		|move exponent to d0
758*1da177e4SLinus Torvalds	swap	%d0		|put exponent in lower word
759*1da177e4SLinus Torvalds	beqs	no_sft		|if zero, don't shift
760*1da177e4SLinus Torvalds	subil	#0x3ffd,%d0	|sub bias less 2 to make fract
761*1da177e4SLinus Torvalds	tstl	%d0		|check if > 1
762*1da177e4SLinus Torvalds	bgts	no_sft		|if so, don't shift
763*1da177e4SLinus Torvalds	negl	%d0		|make exp positive
764*1da177e4SLinus Torvaldsm_loop:
765*1da177e4SLinus Torvalds	lsrl	#1,%d2		|shift d2:d3 right, add 0s
766*1da177e4SLinus Torvalds	roxrl	#1,%d3		|the number of places
767*1da177e4SLinus Torvalds	dbf	%d0,m_loop	|given in d0
768*1da177e4SLinus Torvaldsno_sft:
769*1da177e4SLinus Torvalds	tstl	%d2		|check for mantissa of zero
770*1da177e4SLinus Torvalds	bnes	no_zr		|if not, go on
771*1da177e4SLinus Torvalds	tstl	%d3		|continue zero check
772*1da177e4SLinus Torvalds	beqs	zer_m		|if zero, go directly to binstr
773*1da177e4SLinus Torvaldsno_zr:
774*1da177e4SLinus Torvalds	clrl	%d1		|put zero in d1 for addx
775*1da177e4SLinus Torvalds	addil	#0x00000080,%d3	|inc at bit 7
776*1da177e4SLinus Torvalds	addxl	%d1,%d2		|continue inc
777*1da177e4SLinus Torvalds	andil	#0xffffff80,%d3	|strip off lsb not used by 882
778*1da177e4SLinus Torvaldszer_m:
779*1da177e4SLinus Torvalds	movel	%d4,%d0		|put LEN in d0 for binstr call
780*1da177e4SLinus Torvalds	addql	#3,%a0		|a0 points to M16 byte in result
781*1da177e4SLinus Torvalds	bsr	binstr		|call binstr to convert mant
782*1da177e4SLinus Torvalds
783*1da177e4SLinus Torvalds
784*1da177e4SLinus Torvalds| A15. Convert the exponent to bcd.
785*1da177e4SLinus Torvalds|      As in A14 above, the exp is converted to bcd and the
786*1da177e4SLinus Torvalds|      digits are stored in the final string.
787*1da177e4SLinus Torvalds|
788*1da177e4SLinus Torvalds|      Digits are stored in L_SCR1(a6) on return from BINDEC as:
789*1da177e4SLinus Torvalds|
790*1da177e4SLinus Torvalds|	 32               16 15                0
791*1da177e4SLinus Torvalds|	-----------------------------------------
792*1da177e4SLinus Torvalds|	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
793*1da177e4SLinus Torvalds|	-----------------------------------------
794*1da177e4SLinus Torvalds|
795*1da177e4SLinus Torvalds| And are moved into their proper places in FP_SCR1.  If digit e4
796*1da177e4SLinus Torvalds| is non-zero, OPERR is signaled.  In all cases, all 4 digits are
797*1da177e4SLinus Torvalds| written as specified in the 881/882 manual for packed decimal.
798*1da177e4SLinus Torvalds|
799*1da177e4SLinus Torvalds| Register usage:
800*1da177e4SLinus Torvalds|	Input/Output
801*1da177e4SLinus Torvalds|	d0: x/LEN call to binstr - final is 0
802*1da177e4SLinus Torvalds|	d1: x/scratch (0);shift count for final exponent packing
803*1da177e4SLinus Torvalds|	d2: x/ms 32-bits of exp fraction/scratch
804*1da177e4SLinus Torvalds|	d3: x/ls 32-bits of exp fraction
805*1da177e4SLinus Torvalds|	d4: LEN/Unchanged
806*1da177e4SLinus Torvalds|	d5: ICTR:LAMBDA/LAMBDA:ICTR
807*1da177e4SLinus Torvalds|	d6: ILOG
808*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
809*1da177e4SLinus Torvalds|	a0: ptr to result string/ptr to L_SCR1(a6)
810*1da177e4SLinus Torvalds|	a1: ptr to PTENxx array/Unchanged
811*1da177e4SLinus Torvalds|	a2: ptr to FP_SCR2(a6)/Unchanged
812*1da177e4SLinus Torvalds|	fp0: abs(YINT) adjusted/float(ILOG)
813*1da177e4SLinus Torvalds|	fp1: 10^ISCALE/Unchanged
814*1da177e4SLinus Torvalds|	fp2: 10^LEN/Unchanged
815*1da177e4SLinus Torvalds|	F_SCR1:Work area for final result/BCD result
816*1da177e4SLinus Torvalds|	F_SCR2:Y with original exponent/ILOG/10^4
817*1da177e4SLinus Torvalds|	L_SCR1:original USER_FPCR/Exponent digits on return from binstr
818*1da177e4SLinus Torvalds|	L_SCR2:first word of X packed/Unchanged
819*1da177e4SLinus Torvalds
820*1da177e4SLinus TorvaldsA15_st:
821*1da177e4SLinus Torvalds	tstb	BINDEC_FLG(%a6)	|check for denorm
822*1da177e4SLinus Torvalds	beqs	not_denorm
823*1da177e4SLinus Torvalds	ftstx	%fp0		|test for zero
824*1da177e4SLinus Torvalds	fbeq	den_zero	|if zero, use k-factor or 4933
825*1da177e4SLinus Torvalds	fmovel	%d6,%fp0		|float ILOG
826*1da177e4SLinus Torvalds	fabsx	%fp0		|get abs of ILOG
827*1da177e4SLinus Torvalds	bras	convrt
828*1da177e4SLinus Torvaldsden_zero:
829*1da177e4SLinus Torvalds	tstl	%d7		|check sign of the k-factor
830*1da177e4SLinus Torvalds	blts	use_ilog	|if negative, use ILOG
831*1da177e4SLinus Torvalds	fmoves	F4933,%fp0	|force exponent to 4933
832*1da177e4SLinus Torvalds	bras	convrt		|do it
833*1da177e4SLinus Torvaldsuse_ilog:
834*1da177e4SLinus Torvalds	fmovel	%d6,%fp0		|float ILOG
835*1da177e4SLinus Torvalds	fabsx	%fp0		|get abs of ILOG
836*1da177e4SLinus Torvalds	bras	convrt
837*1da177e4SLinus Torvaldsnot_denorm:
838*1da177e4SLinus Torvalds	ftstx	%fp0		|test for zero
839*1da177e4SLinus Torvalds	fbne	not_zero	|if zero, force exponent
840*1da177e4SLinus Torvalds	fmoves	FONE,%fp0	|force exponent to 1
841*1da177e4SLinus Torvalds	bras	convrt		|do it
842*1da177e4SLinus Torvaldsnot_zero:
843*1da177e4SLinus Torvalds	fmovel	%d6,%fp0		|float ILOG
844*1da177e4SLinus Torvalds	fabsx	%fp0		|get abs of ILOG
845*1da177e4SLinus Torvaldsconvrt:
846*1da177e4SLinus Torvalds	fdivx	24(%a1),%fp0	|compute ILOG/10^4
847*1da177e4SLinus Torvalds	fmovex	%fp0,FP_SCR2(%a6)	|store fp0 in memory
848*1da177e4SLinus Torvalds	movel	4(%a2),%d2	|move word 2 to d2
849*1da177e4SLinus Torvalds	movel	8(%a2),%d3	|move word 3 to d3
850*1da177e4SLinus Torvalds	movew	(%a2),%d0		|move exp to d0
851*1da177e4SLinus Torvalds	beqs	x_loop_fin	|if zero, skip the shift
852*1da177e4SLinus Torvalds	subiw	#0x3ffd,%d0	|subtract off bias
853*1da177e4SLinus Torvalds	negw	%d0		|make exp positive
854*1da177e4SLinus Torvaldsx_loop:
855*1da177e4SLinus Torvalds	lsrl	#1,%d2		|shift d2:d3 right
856*1da177e4SLinus Torvalds	roxrl	#1,%d3		|the number of places
857*1da177e4SLinus Torvalds	dbf	%d0,x_loop	|given in d0
858*1da177e4SLinus Torvaldsx_loop_fin:
859*1da177e4SLinus Torvalds	clrl	%d1		|put zero in d1 for addx
860*1da177e4SLinus Torvalds	addil	#0x00000080,%d3	|inc at bit 6
861*1da177e4SLinus Torvalds	addxl	%d1,%d2		|continue inc
862*1da177e4SLinus Torvalds	andil	#0xffffff80,%d3	|strip off lsb not used by 882
863*1da177e4SLinus Torvalds	movel	#4,%d0		|put 4 in d0 for binstr call
864*1da177e4SLinus Torvalds	leal	L_SCR1(%a6),%a0	|a0 is ptr to L_SCR1 for exp digits
865*1da177e4SLinus Torvalds	bsr	binstr		|call binstr to convert exp
866*1da177e4SLinus Torvalds	movel	L_SCR1(%a6),%d0	|load L_SCR1 lword to d0
867*1da177e4SLinus Torvalds	movel	#12,%d1		|use d1 for shift count
868*1da177e4SLinus Torvalds	lsrl	%d1,%d0		|shift d0 right by 12
869*1da177e4SLinus Torvalds	bfins	%d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1
870*1da177e4SLinus Torvalds	lsrl	%d1,%d0		|shift d0 right by 12
871*1da177e4SLinus Torvalds	bfins	%d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1
872*1da177e4SLinus Torvalds	tstb	%d0		|check if e4 is zero
873*1da177e4SLinus Torvalds	beqs	A16_st		|if zero, skip rest
874*1da177e4SLinus Torvalds	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
875*1da177e4SLinus Torvalds
876*1da177e4SLinus Torvalds
877*1da177e4SLinus Torvalds| A16. Write sign bits to final string.
878*1da177e4SLinus Torvalds|	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
879*1da177e4SLinus Torvalds|
880*1da177e4SLinus Torvalds| Register usage:
881*1da177e4SLinus Torvalds|	Input/Output
882*1da177e4SLinus Torvalds|	d0: x/scratch - final is x
883*1da177e4SLinus Torvalds|	d2: x/x
884*1da177e4SLinus Torvalds|	d3: x/x
885*1da177e4SLinus Torvalds|	d4: LEN/Unchanged
886*1da177e4SLinus Torvalds|	d5: ICTR:LAMBDA/LAMBDA:ICTR
887*1da177e4SLinus Torvalds|	d6: ILOG/ILOG adjusted
888*1da177e4SLinus Torvalds|	d7: k-factor/Unchanged
889*1da177e4SLinus Torvalds|	a0: ptr to L_SCR1(a6)/Unchanged
890*1da177e4SLinus Torvalds|	a1: ptr to PTENxx array/Unchanged
891*1da177e4SLinus Torvalds|	a2: ptr to FP_SCR2(a6)/Unchanged
892*1da177e4SLinus Torvalds|	fp0: float(ILOG)/Unchanged
893*1da177e4SLinus Torvalds|	fp1: 10^ISCALE/Unchanged
894*1da177e4SLinus Torvalds|	fp2: 10^LEN/Unchanged
895*1da177e4SLinus Torvalds|	F_SCR1:BCD result with correct signs
896*1da177e4SLinus Torvalds|	F_SCR2:ILOG/10^4
897*1da177e4SLinus Torvalds|	L_SCR1:Exponent digits on return from binstr
898*1da177e4SLinus Torvalds|	L_SCR2:first word of X packed/Unchanged
899*1da177e4SLinus Torvalds
900*1da177e4SLinus TorvaldsA16_st:
901*1da177e4SLinus Torvalds	clrl	%d0		|clr d0 for collection of signs
902*1da177e4SLinus Torvalds	andib	#0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1
903*1da177e4SLinus Torvalds	tstl	L_SCR2(%a6)	|check sign of original mantissa
904*1da177e4SLinus Torvalds	bges	mant_p		|if pos, don't set SM
905*1da177e4SLinus Torvalds	moveql	#2,%d0		|move 2 in to d0 for SM
906*1da177e4SLinus Torvaldsmant_p:
907*1da177e4SLinus Torvalds	tstl	%d6		|check sign of ILOG
908*1da177e4SLinus Torvalds	bges	wr_sgn		|if pos, don't set SE
909*1da177e4SLinus Torvalds	addql	#1,%d0		|set bit 0 in d0 for SE
910*1da177e4SLinus Torvaldswr_sgn:
911*1da177e4SLinus Torvalds	bfins	%d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1
912*1da177e4SLinus Torvalds
913*1da177e4SLinus Torvalds| Clean up and restore all registers used.
914*1da177e4SLinus Torvalds
915*1da177e4SLinus Torvalds	fmovel	#0,%FPSR		|clear possible inex2/ainex bits
916*1da177e4SLinus Torvalds	fmovemx (%a7)+,%fp0-%fp2
917*1da177e4SLinus Torvalds	moveml	(%a7)+,%d2-%d7/%a2
918*1da177e4SLinus Torvalds	rts
919*1da177e4SLinus Torvalds
920*1da177e4SLinus Torvalds	|end
921