1*1da177e4SLinus Torvalds| 2*1da177e4SLinus Torvalds| bindec.sa 3.4 1/3/91 3*1da177e4SLinus Torvalds| 4*1da177e4SLinus Torvalds| bindec 5*1da177e4SLinus Torvalds| 6*1da177e4SLinus Torvalds| Description: 7*1da177e4SLinus Torvalds| Converts an input in extended precision format 8*1da177e4SLinus Torvalds| to bcd format. 9*1da177e4SLinus Torvalds| 10*1da177e4SLinus Torvalds| Input: 11*1da177e4SLinus Torvalds| a0 points to the input extended precision value 12*1da177e4SLinus Torvalds| value in memory; d0 contains the k-factor sign-extended 13*1da177e4SLinus Torvalds| to 32-bits. The input may be either normalized, 14*1da177e4SLinus Torvalds| unnormalized, or denormalized. 15*1da177e4SLinus Torvalds| 16*1da177e4SLinus Torvalds| Output: result in the FP_SCR1 space on the stack. 17*1da177e4SLinus Torvalds| 18*1da177e4SLinus Torvalds| Saves and Modifies: D2-D7,A2,FP2 19*1da177e4SLinus Torvalds| 20*1da177e4SLinus Torvalds| Algorithm: 21*1da177e4SLinus Torvalds| 22*1da177e4SLinus Torvalds| A1. Set RM and size ext; Set SIGMA = sign of input. 23*1da177e4SLinus Torvalds| The k-factor is saved for use in d7. Clear the 24*1da177e4SLinus Torvalds| BINDEC_FLG for separating normalized/denormalized 25*1da177e4SLinus Torvalds| input. If input is unnormalized or denormalized, 26*1da177e4SLinus Torvalds| normalize it. 27*1da177e4SLinus Torvalds| 28*1da177e4SLinus Torvalds| A2. Set X = abs(input). 29*1da177e4SLinus Torvalds| 30*1da177e4SLinus Torvalds| A3. Compute ILOG. 31*1da177e4SLinus Torvalds| ILOG is the log base 10 of the input value. It is 32*1da177e4SLinus Torvalds| approximated by adding e + 0.f when the original 33*1da177e4SLinus Torvalds| value is viewed as 2^^e * 1.f in extended precision. 34*1da177e4SLinus Torvalds| This value is stored in d6. 35*1da177e4SLinus Torvalds| 36*1da177e4SLinus Torvalds| A4. Clr INEX bit. 37*1da177e4SLinus Torvalds| The operation in A3 above may have set INEX2. 38*1da177e4SLinus Torvalds| 39*1da177e4SLinus Torvalds| A5. Set ICTR = 0; 40*1da177e4SLinus Torvalds| ICTR is a flag used in A13. It must be set before the 41*1da177e4SLinus Torvalds| loop entry A6. 42*1da177e4SLinus Torvalds| 43*1da177e4SLinus Torvalds| A6. Calculate LEN. 44*1da177e4SLinus Torvalds| LEN is the number of digits to be displayed. The 45*1da177e4SLinus Torvalds| k-factor can dictate either the total number of digits, 46*1da177e4SLinus Torvalds| if it is a positive number, or the number of digits 47*1da177e4SLinus Torvalds| after the decimal point which are to be included as 48*1da177e4SLinus Torvalds| significant. See the 68882 manual for examples. 49*1da177e4SLinus Torvalds| If LEN is computed to be greater than 17, set OPERR in 50*1da177e4SLinus Torvalds| USER_FPSR. LEN is stored in d4. 51*1da177e4SLinus Torvalds| 52*1da177e4SLinus Torvalds| A7. Calculate SCALE. 53*1da177e4SLinus Torvalds| SCALE is equal to 10^ISCALE, where ISCALE is the number 54*1da177e4SLinus Torvalds| of decimal places needed to insure LEN integer digits 55*1da177e4SLinus Torvalds| in the output before conversion to bcd. LAMBDA is the 56*1da177e4SLinus Torvalds| sign of ISCALE, used in A9. Fp1 contains 57*1da177e4SLinus Torvalds| 10^^(abs(ISCALE)) using a rounding mode which is a 58*1da177e4SLinus Torvalds| function of the original rounding mode and the signs 59*1da177e4SLinus Torvalds| of ISCALE and X. A table is given in the code. 60*1da177e4SLinus Torvalds| 61*1da177e4SLinus Torvalds| A8. Clr INEX; Force RZ. 62*1da177e4SLinus Torvalds| The operation in A3 above may have set INEX2. 63*1da177e4SLinus Torvalds| RZ mode is forced for the scaling operation to insure 64*1da177e4SLinus Torvalds| only one rounding error. The grs bits are collected in 65*1da177e4SLinus Torvalds| the INEX flag for use in A10. 66*1da177e4SLinus Torvalds| 67*1da177e4SLinus Torvalds| A9. Scale X -> Y. 68*1da177e4SLinus Torvalds| The mantissa is scaled to the desired number of 69*1da177e4SLinus Torvalds| significant digits. The excess digits are collected 70*1da177e4SLinus Torvalds| in INEX2. 71*1da177e4SLinus Torvalds| 72*1da177e4SLinus Torvalds| A10. Or in INEX. 73*1da177e4SLinus Torvalds| If INEX is set, round error occurred. This is 74*1da177e4SLinus Torvalds| compensated for by 'or-ing' in the INEX2 flag to 75*1da177e4SLinus Torvalds| the lsb of Y. 76*1da177e4SLinus Torvalds| 77*1da177e4SLinus Torvalds| A11. Restore original FPCR; set size ext. 78*1da177e4SLinus Torvalds| Perform FINT operation in the user's rounding mode. 79*1da177e4SLinus Torvalds| Keep the size to extended. 80*1da177e4SLinus Torvalds| 81*1da177e4SLinus Torvalds| A12. Calculate YINT = FINT(Y) according to user's rounding 82*1da177e4SLinus Torvalds| mode. The FPSP routine sintd0 is used. The output 83*1da177e4SLinus Torvalds| is in fp0. 84*1da177e4SLinus Torvalds| 85*1da177e4SLinus Torvalds| A13. Check for LEN digits. 86*1da177e4SLinus Torvalds| If the int operation results in more than LEN digits, 87*1da177e4SLinus Torvalds| or less than LEN -1 digits, adjust ILOG and repeat from 88*1da177e4SLinus Torvalds| A6. This test occurs only on the first pass. If the 89*1da177e4SLinus Torvalds| result is exactly 10^LEN, decrement ILOG and divide 90*1da177e4SLinus Torvalds| the mantissa by 10. 91*1da177e4SLinus Torvalds| 92*1da177e4SLinus Torvalds| A14. Convert the mantissa to bcd. 93*1da177e4SLinus Torvalds| The binstr routine is used to convert the LEN digit 94*1da177e4SLinus Torvalds| mantissa to bcd in memory. The input to binstr is 95*1da177e4SLinus Torvalds| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 96*1da177e4SLinus Torvalds| such that the decimal point is to the left of bit 63. 97*1da177e4SLinus Torvalds| The bcd digits are stored in the correct position in 98*1da177e4SLinus Torvalds| the final string area in memory. 99*1da177e4SLinus Torvalds| 100*1da177e4SLinus Torvalds| A15. Convert the exponent to bcd. 101*1da177e4SLinus Torvalds| As in A14 above, the exp is converted to bcd and the 102*1da177e4SLinus Torvalds| digits are stored in the final string. 103*1da177e4SLinus Torvalds| Test the length of the final exponent string. If the 104*1da177e4SLinus Torvalds| length is 4, set operr. 105*1da177e4SLinus Torvalds| 106*1da177e4SLinus Torvalds| A16. Write sign bits to final string. 107*1da177e4SLinus Torvalds| 108*1da177e4SLinus Torvalds| Implementation Notes: 109*1da177e4SLinus Torvalds| 110*1da177e4SLinus Torvalds| The registers are used as follows: 111*1da177e4SLinus Torvalds| 112*1da177e4SLinus Torvalds| d0: scratch; LEN input to binstr 113*1da177e4SLinus Torvalds| d1: scratch 114*1da177e4SLinus Torvalds| d2: upper 32-bits of mantissa for binstr 115*1da177e4SLinus Torvalds| d3: scratch;lower 32-bits of mantissa for binstr 116*1da177e4SLinus Torvalds| d4: LEN 117*1da177e4SLinus Torvalds| d5: LAMBDA/ICTR 118*1da177e4SLinus Torvalds| d6: ILOG 119*1da177e4SLinus Torvalds| d7: k-factor 120*1da177e4SLinus Torvalds| a0: ptr for original operand/final result 121*1da177e4SLinus Torvalds| a1: scratch pointer 122*1da177e4SLinus Torvalds| a2: pointer to FP_X; abs(original value) in ext 123*1da177e4SLinus Torvalds| fp0: scratch 124*1da177e4SLinus Torvalds| fp1: scratch 125*1da177e4SLinus Torvalds| fp2: scratch 126*1da177e4SLinus Torvalds| F_SCR1: 127*1da177e4SLinus Torvalds| F_SCR2: 128*1da177e4SLinus Torvalds| L_SCR1: 129*1da177e4SLinus Torvalds| L_SCR2: 130*1da177e4SLinus Torvalds 131*1da177e4SLinus Torvalds| Copyright (C) Motorola, Inc. 1990 132*1da177e4SLinus Torvalds| All Rights Reserved 133*1da177e4SLinus Torvalds| 134*1da177e4SLinus Torvalds| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA 135*1da177e4SLinus Torvalds| The copyright notice above does not evidence any 136*1da177e4SLinus Torvalds| actual or intended publication of such source code. 137*1da177e4SLinus Torvalds 138*1da177e4SLinus Torvalds|BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package 139*1da177e4SLinus Torvalds 140*1da177e4SLinus Torvalds#include "fpsp.h" 141*1da177e4SLinus Torvalds 142*1da177e4SLinus Torvalds |section 8 143*1da177e4SLinus Torvalds 144*1da177e4SLinus Torvalds| Constants in extended precision 145*1da177e4SLinus TorvaldsLOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 146*1da177e4SLinus TorvaldsLOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 147*1da177e4SLinus Torvalds 148*1da177e4SLinus Torvalds| Constants in single precision 149*1da177e4SLinus TorvaldsFONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 150*1da177e4SLinus TorvaldsFTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 151*1da177e4SLinus TorvaldsFTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 152*1da177e4SLinus TorvaldsF4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 153*1da177e4SLinus Torvalds 154*1da177e4SLinus TorvaldsRBDTBL: .byte 0,0,0,0 155*1da177e4SLinus Torvalds .byte 3,3,2,2 156*1da177e4SLinus Torvalds .byte 3,2,2,3 157*1da177e4SLinus Torvalds .byte 2,3,3,2 158*1da177e4SLinus Torvalds 159*1da177e4SLinus Torvalds |xref binstr 160*1da177e4SLinus Torvalds |xref sintdo 161*1da177e4SLinus Torvalds |xref ptenrn,ptenrm,ptenrp 162*1da177e4SLinus Torvalds 163*1da177e4SLinus Torvalds .global bindec 164*1da177e4SLinus Torvalds .global sc_mul 165*1da177e4SLinus Torvaldsbindec: 166*1da177e4SLinus Torvalds moveml %d2-%d7/%a2,-(%a7) 167*1da177e4SLinus Torvalds fmovemx %fp0-%fp2,-(%a7) 168*1da177e4SLinus Torvalds 169*1da177e4SLinus Torvalds| A1. Set RM and size ext. Set SIGMA = sign input; 170*1da177e4SLinus Torvalds| The k-factor is saved for use in d7. Clear BINDEC_FLG for 171*1da177e4SLinus Torvalds| separating normalized/denormalized input. If the input 172*1da177e4SLinus Torvalds| is a denormalized number, set the BINDEC_FLG memory word 173*1da177e4SLinus Torvalds| to signal denorm. If the input is unnormalized, normalize 174*1da177e4SLinus Torvalds| the input and test for denormalized result. 175*1da177e4SLinus Torvalds| 176*1da177e4SLinus Torvalds fmovel #rm_mode,%FPCR |set RM and ext 177*1da177e4SLinus Torvalds movel (%a0),L_SCR2(%a6) |save exponent for sign check 178*1da177e4SLinus Torvalds movel %d0,%d7 |move k-factor to d7 179*1da177e4SLinus Torvalds clrb BINDEC_FLG(%a6) |clr norm/denorm flag 180*1da177e4SLinus Torvalds movew STAG(%a6),%d0 |get stag 181*1da177e4SLinus Torvalds andiw #0xe000,%d0 |isolate stag bits 182*1da177e4SLinus Torvalds beq A2_str |if zero, input is norm 183*1da177e4SLinus Torvalds| 184*1da177e4SLinus Torvalds| Normalize the denorm 185*1da177e4SLinus Torvalds| 186*1da177e4SLinus Torvaldsun_de_norm: 187*1da177e4SLinus Torvalds movew (%a0),%d0 188*1da177e4SLinus Torvalds andiw #0x7fff,%d0 |strip sign of normalized exp 189*1da177e4SLinus Torvalds movel 4(%a0),%d1 190*1da177e4SLinus Torvalds movel 8(%a0),%d2 191*1da177e4SLinus Torvaldsnorm_loop: 192*1da177e4SLinus Torvalds subw #1,%d0 193*1da177e4SLinus Torvalds lsll #1,%d2 194*1da177e4SLinus Torvalds roxll #1,%d1 195*1da177e4SLinus Torvalds tstl %d1 196*1da177e4SLinus Torvalds bges norm_loop 197*1da177e4SLinus Torvalds| 198*1da177e4SLinus Torvalds| Test if the normalized input is denormalized 199*1da177e4SLinus Torvalds| 200*1da177e4SLinus Torvalds tstw %d0 201*1da177e4SLinus Torvalds bgts pos_exp |if greater than zero, it is a norm 202*1da177e4SLinus Torvalds st BINDEC_FLG(%a6) |set flag for denorm 203*1da177e4SLinus Torvaldspos_exp: 204*1da177e4SLinus Torvalds andiw #0x7fff,%d0 |strip sign of normalized exp 205*1da177e4SLinus Torvalds movew %d0,(%a0) 206*1da177e4SLinus Torvalds movel %d1,4(%a0) 207*1da177e4SLinus Torvalds movel %d2,8(%a0) 208*1da177e4SLinus Torvalds 209*1da177e4SLinus Torvalds| A2. Set X = abs(input). 210*1da177e4SLinus Torvalds| 211*1da177e4SLinus TorvaldsA2_str: 212*1da177e4SLinus Torvalds movel (%a0),FP_SCR2(%a6) | move input to work space 213*1da177e4SLinus Torvalds movel 4(%a0),FP_SCR2+4(%a6) | move input to work space 214*1da177e4SLinus Torvalds movel 8(%a0),FP_SCR2+8(%a6) | move input to work space 215*1da177e4SLinus Torvalds andil #0x7fffffff,FP_SCR2(%a6) |create abs(X) 216*1da177e4SLinus Torvalds 217*1da177e4SLinus Torvalds| A3. Compute ILOG. 218*1da177e4SLinus Torvalds| ILOG is the log base 10 of the input value. It is approx- 219*1da177e4SLinus Torvalds| imated by adding e + 0.f when the original value is viewed 220*1da177e4SLinus Torvalds| as 2^^e * 1.f in extended precision. This value is stored 221*1da177e4SLinus Torvalds| in d6. 222*1da177e4SLinus Torvalds| 223*1da177e4SLinus Torvalds| Register usage: 224*1da177e4SLinus Torvalds| Input/Output 225*1da177e4SLinus Torvalds| d0: k-factor/exponent 226*1da177e4SLinus Torvalds| d2: x/x 227*1da177e4SLinus Torvalds| d3: x/x 228*1da177e4SLinus Torvalds| d4: x/x 229*1da177e4SLinus Torvalds| d5: x/x 230*1da177e4SLinus Torvalds| d6: x/ILOG 231*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 232*1da177e4SLinus Torvalds| a0: ptr for original operand/final result 233*1da177e4SLinus Torvalds| a1: x/x 234*1da177e4SLinus Torvalds| a2: x/x 235*1da177e4SLinus Torvalds| fp0: x/float(ILOG) 236*1da177e4SLinus Torvalds| fp1: x/x 237*1da177e4SLinus Torvalds| fp2: x/x 238*1da177e4SLinus Torvalds| F_SCR1:x/x 239*1da177e4SLinus Torvalds| F_SCR2:Abs(X)/Abs(X) with $3fff exponent 240*1da177e4SLinus Torvalds| L_SCR1:x/x 241*1da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 242*1da177e4SLinus Torvalds 243*1da177e4SLinus Torvalds tstb BINDEC_FLG(%a6) |check for denorm 244*1da177e4SLinus Torvalds beqs A3_cont |if clr, continue with norm 245*1da177e4SLinus Torvalds movel #-4933,%d6 |force ILOG = -4933 246*1da177e4SLinus Torvalds bras A4_str 247*1da177e4SLinus TorvaldsA3_cont: 248*1da177e4SLinus Torvalds movew FP_SCR2(%a6),%d0 |move exp to d0 249*1da177e4SLinus Torvalds movew #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff 250*1da177e4SLinus Torvalds fmovex FP_SCR2(%a6),%fp0 |now fp0 has 1.f 251*1da177e4SLinus Torvalds subw #0x3fff,%d0 |strip off bias 252*1da177e4SLinus Torvalds faddw %d0,%fp0 |add in exp 253*1da177e4SLinus Torvalds fsubs FONE,%fp0 |subtract off 1.0 254*1da177e4SLinus Torvalds fbge pos_res |if pos, branch 255*1da177e4SLinus Torvalds fmulx LOG2UP1,%fp0 |if neg, mul by LOG2UP1 256*1da177e4SLinus Torvalds fmovel %fp0,%d6 |put ILOG in d6 as a lword 257*1da177e4SLinus Torvalds bras A4_str |go move out ILOG 258*1da177e4SLinus Torvaldspos_res: 259*1da177e4SLinus Torvalds fmulx LOG2,%fp0 |if pos, mul by LOG2 260*1da177e4SLinus Torvalds fmovel %fp0,%d6 |put ILOG in d6 as a lword 261*1da177e4SLinus Torvalds 262*1da177e4SLinus Torvalds 263*1da177e4SLinus Torvalds| A4. Clr INEX bit. 264*1da177e4SLinus Torvalds| The operation in A3 above may have set INEX2. 265*1da177e4SLinus Torvalds 266*1da177e4SLinus TorvaldsA4_str: 267*1da177e4SLinus Torvalds fmovel #0,%FPSR |zero all of fpsr - nothing needed 268*1da177e4SLinus Torvalds 269*1da177e4SLinus Torvalds 270*1da177e4SLinus Torvalds| A5. Set ICTR = 0; 271*1da177e4SLinus Torvalds| ICTR is a flag used in A13. It must be set before the 272*1da177e4SLinus Torvalds| loop entry A6. The lower word of d5 is used for ICTR. 273*1da177e4SLinus Torvalds 274*1da177e4SLinus Torvalds clrw %d5 |clear ICTR 275*1da177e4SLinus Torvalds 276*1da177e4SLinus Torvalds 277*1da177e4SLinus Torvalds| A6. Calculate LEN. 278*1da177e4SLinus Torvalds| LEN is the number of digits to be displayed. The k-factor 279*1da177e4SLinus Torvalds| can dictate either the total number of digits, if it is 280*1da177e4SLinus Torvalds| a positive number, or the number of digits after the 281*1da177e4SLinus Torvalds| original decimal point which are to be included as 282*1da177e4SLinus Torvalds| significant. See the 68882 manual for examples. 283*1da177e4SLinus Torvalds| If LEN is computed to be greater than 17, set OPERR in 284*1da177e4SLinus Torvalds| USER_FPSR. LEN is stored in d4. 285*1da177e4SLinus Torvalds| 286*1da177e4SLinus Torvalds| Register usage: 287*1da177e4SLinus Torvalds| Input/Output 288*1da177e4SLinus Torvalds| d0: exponent/Unchanged 289*1da177e4SLinus Torvalds| d2: x/x/scratch 290*1da177e4SLinus Torvalds| d3: x/x 291*1da177e4SLinus Torvalds| d4: exc picture/LEN 292*1da177e4SLinus Torvalds| d5: ICTR/Unchanged 293*1da177e4SLinus Torvalds| d6: ILOG/Unchanged 294*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 295*1da177e4SLinus Torvalds| a0: ptr for original operand/final result 296*1da177e4SLinus Torvalds| a1: x/x 297*1da177e4SLinus Torvalds| a2: x/x 298*1da177e4SLinus Torvalds| fp0: float(ILOG)/Unchanged 299*1da177e4SLinus Torvalds| fp1: x/x 300*1da177e4SLinus Torvalds| fp2: x/x 301*1da177e4SLinus Torvalds| F_SCR1:x/x 302*1da177e4SLinus Torvalds| F_SCR2:Abs(X) with $3fff exponent/Unchanged 303*1da177e4SLinus Torvalds| L_SCR1:x/x 304*1da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 305*1da177e4SLinus Torvalds 306*1da177e4SLinus TorvaldsA6_str: 307*1da177e4SLinus Torvalds tstl %d7 |branch on sign of k 308*1da177e4SLinus Torvalds bles k_neg |if k <= 0, LEN = ILOG + 1 - k 309*1da177e4SLinus Torvalds movel %d7,%d4 |if k > 0, LEN = k 310*1da177e4SLinus Torvalds bras len_ck |skip to LEN check 311*1da177e4SLinus Torvaldsk_neg: 312*1da177e4SLinus Torvalds movel %d6,%d4 |first load ILOG to d4 313*1da177e4SLinus Torvalds subl %d7,%d4 |subtract off k 314*1da177e4SLinus Torvalds addql #1,%d4 |add in the 1 315*1da177e4SLinus Torvaldslen_ck: 316*1da177e4SLinus Torvalds tstl %d4 |LEN check: branch on sign of LEN 317*1da177e4SLinus Torvalds bles LEN_ng |if neg, set LEN = 1 318*1da177e4SLinus Torvalds cmpl #17,%d4 |test if LEN > 17 319*1da177e4SLinus Torvalds bles A7_str |if not, forget it 320*1da177e4SLinus Torvalds movel #17,%d4 |set max LEN = 17 321*1da177e4SLinus Torvalds tstl %d7 |if negative, never set OPERR 322*1da177e4SLinus Torvalds bles A7_str |if positive, continue 323*1da177e4SLinus Torvalds orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 324*1da177e4SLinus Torvalds bras A7_str |finished here 325*1da177e4SLinus TorvaldsLEN_ng: 326*1da177e4SLinus Torvalds moveql #1,%d4 |min LEN is 1 327*1da177e4SLinus Torvalds 328*1da177e4SLinus Torvalds 329*1da177e4SLinus Torvalds| A7. Calculate SCALE. 330*1da177e4SLinus Torvalds| SCALE is equal to 10^ISCALE, where ISCALE is the number 331*1da177e4SLinus Torvalds| of decimal places needed to insure LEN integer digits 332*1da177e4SLinus Torvalds| in the output before conversion to bcd. LAMBDA is the sign 333*1da177e4SLinus Torvalds| of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using 334*1da177e4SLinus Torvalds| the rounding mode as given in the following table (see 335*1da177e4SLinus Torvalds| Coonen, p. 7.23 as ref.; however, the SCALE variable is 336*1da177e4SLinus Torvalds| of opposite sign in bindec.sa from Coonen). 337*1da177e4SLinus Torvalds| 338*1da177e4SLinus Torvalds| Initial USE 339*1da177e4SLinus Torvalds| FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] 340*1da177e4SLinus Torvalds| ---------------------------------------------- 341*1da177e4SLinus Torvalds| RN 00 0 0 00/0 RN 342*1da177e4SLinus Torvalds| RN 00 0 1 00/0 RN 343*1da177e4SLinus Torvalds| RN 00 1 0 00/0 RN 344*1da177e4SLinus Torvalds| RN 00 1 1 00/0 RN 345*1da177e4SLinus Torvalds| RZ 01 0 0 11/3 RP 346*1da177e4SLinus Torvalds| RZ 01 0 1 11/3 RP 347*1da177e4SLinus Torvalds| RZ 01 1 0 10/2 RM 348*1da177e4SLinus Torvalds| RZ 01 1 1 10/2 RM 349*1da177e4SLinus Torvalds| RM 10 0 0 11/3 RP 350*1da177e4SLinus Torvalds| RM 10 0 1 10/2 RM 351*1da177e4SLinus Torvalds| RM 10 1 0 10/2 RM 352*1da177e4SLinus Torvalds| RM 10 1 1 11/3 RP 353*1da177e4SLinus Torvalds| RP 11 0 0 10/2 RM 354*1da177e4SLinus Torvalds| RP 11 0 1 11/3 RP 355*1da177e4SLinus Torvalds| RP 11 1 0 11/3 RP 356*1da177e4SLinus Torvalds| RP 11 1 1 10/2 RM 357*1da177e4SLinus Torvalds| 358*1da177e4SLinus Torvalds| Register usage: 359*1da177e4SLinus Torvalds| Input/Output 360*1da177e4SLinus Torvalds| d0: exponent/scratch - final is 0 361*1da177e4SLinus Torvalds| d2: x/0 or 24 for A9 362*1da177e4SLinus Torvalds| d3: x/scratch - offset ptr into PTENRM array 363*1da177e4SLinus Torvalds| d4: LEN/Unchanged 364*1da177e4SLinus Torvalds| d5: 0/ICTR:LAMBDA 365*1da177e4SLinus Torvalds| d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) 366*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 367*1da177e4SLinus Torvalds| a0: ptr for original operand/final result 368*1da177e4SLinus Torvalds| a1: x/ptr to PTENRM array 369*1da177e4SLinus Torvalds| a2: x/x 370*1da177e4SLinus Torvalds| fp0: float(ILOG)/Unchanged 371*1da177e4SLinus Torvalds| fp1: x/10^ISCALE 372*1da177e4SLinus Torvalds| fp2: x/x 373*1da177e4SLinus Torvalds| F_SCR1:x/x 374*1da177e4SLinus Torvalds| F_SCR2:Abs(X) with $3fff exponent/Unchanged 375*1da177e4SLinus Torvalds| L_SCR1:x/x 376*1da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 377*1da177e4SLinus Torvalds 378*1da177e4SLinus TorvaldsA7_str: 379*1da177e4SLinus Torvalds tstl %d7 |test sign of k 380*1da177e4SLinus Torvalds bgts k_pos |if pos and > 0, skip this 381*1da177e4SLinus Torvalds cmpl %d6,%d7 |test k - ILOG 382*1da177e4SLinus Torvalds blts k_pos |if ILOG >= k, skip this 383*1da177e4SLinus Torvalds movel %d7,%d6 |if ((k<0) & (ILOG < k)) ILOG = k 384*1da177e4SLinus Torvaldsk_pos: 385*1da177e4SLinus Torvalds movel %d6,%d0 |calc ILOG + 1 - LEN in d0 386*1da177e4SLinus Torvalds addql #1,%d0 |add the 1 387*1da177e4SLinus Torvalds subl %d4,%d0 |sub off LEN 388*1da177e4SLinus Torvalds swap %d5 |use upper word of d5 for LAMBDA 389*1da177e4SLinus Torvalds clrw %d5 |set it zero initially 390*1da177e4SLinus Torvalds clrw %d2 |set up d2 for very small case 391*1da177e4SLinus Torvalds tstl %d0 |test sign of ISCALE 392*1da177e4SLinus Torvalds bges iscale |if pos, skip next inst 393*1da177e4SLinus Torvalds addqw #1,%d5 |if neg, set LAMBDA true 394*1da177e4SLinus Torvalds cmpl #0xffffecd4,%d0 |test iscale <= -4908 395*1da177e4SLinus Torvalds bgts no_inf |if false, skip rest 396*1da177e4SLinus Torvalds addil #24,%d0 |add in 24 to iscale 397*1da177e4SLinus Torvalds movel #24,%d2 |put 24 in d2 for A9 398*1da177e4SLinus Torvaldsno_inf: 399*1da177e4SLinus Torvalds negl %d0 |and take abs of ISCALE 400*1da177e4SLinus Torvaldsiscale: 401*1da177e4SLinus Torvalds fmoves FONE,%fp1 |init fp1 to 1 402*1da177e4SLinus Torvalds bfextu USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits 403*1da177e4SLinus Torvalds lslw #1,%d1 |put them in bits 2:1 404*1da177e4SLinus Torvalds addw %d5,%d1 |add in LAMBDA 405*1da177e4SLinus Torvalds lslw #1,%d1 |put them in bits 3:1 406*1da177e4SLinus Torvalds tstl L_SCR2(%a6) |test sign of original x 407*1da177e4SLinus Torvalds bges x_pos |if pos, don't set bit 0 408*1da177e4SLinus Torvalds addql #1,%d1 |if neg, set bit 0 409*1da177e4SLinus Torvaldsx_pos: 410*1da177e4SLinus Torvalds leal RBDTBL,%a2 |load rbdtbl base 411*1da177e4SLinus Torvalds moveb (%a2,%d1),%d3 |load d3 with new rmode 412*1da177e4SLinus Torvalds lsll #4,%d3 |put bits in proper position 413*1da177e4SLinus Torvalds fmovel %d3,%fpcr |load bits into fpu 414*1da177e4SLinus Torvalds lsrl #4,%d3 |put bits in proper position 415*1da177e4SLinus Torvalds tstb %d3 |decode new rmode for pten table 416*1da177e4SLinus Torvalds bnes not_rn |if zero, it is RN 417*1da177e4SLinus Torvalds leal PTENRN,%a1 |load a1 with RN table base 418*1da177e4SLinus Torvalds bras rmode |exit decode 419*1da177e4SLinus Torvaldsnot_rn: 420*1da177e4SLinus Torvalds lsrb #1,%d3 |get lsb in carry 421*1da177e4SLinus Torvalds bccs not_rp |if carry clear, it is RM 422*1da177e4SLinus Torvalds leal PTENRP,%a1 |load a1 with RP table base 423*1da177e4SLinus Torvalds bras rmode |exit decode 424*1da177e4SLinus Torvaldsnot_rp: 425*1da177e4SLinus Torvalds leal PTENRM,%a1 |load a1 with RM table base 426*1da177e4SLinus Torvaldsrmode: 427*1da177e4SLinus Torvalds clrl %d3 |clr table index 428*1da177e4SLinus Torvaldse_loop: 429*1da177e4SLinus Torvalds lsrl #1,%d0 |shift next bit into carry 430*1da177e4SLinus Torvalds bccs e_next |if zero, skip the mul 431*1da177e4SLinus Torvalds fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 432*1da177e4SLinus Torvaldse_next: 433*1da177e4SLinus Torvalds addl #12,%d3 |inc d3 to next pwrten table entry 434*1da177e4SLinus Torvalds tstl %d0 |test if ISCALE is zero 435*1da177e4SLinus Torvalds bnes e_loop |if not, loop 436*1da177e4SLinus Torvalds 437*1da177e4SLinus Torvalds 438*1da177e4SLinus Torvalds| A8. Clr INEX; Force RZ. 439*1da177e4SLinus Torvalds| The operation in A3 above may have set INEX2. 440*1da177e4SLinus Torvalds| RZ mode is forced for the scaling operation to insure 441*1da177e4SLinus Torvalds| only one rounding error. The grs bits are collected in 442*1da177e4SLinus Torvalds| the INEX flag for use in A10. 443*1da177e4SLinus Torvalds| 444*1da177e4SLinus Torvalds| Register usage: 445*1da177e4SLinus Torvalds| Input/Output 446*1da177e4SLinus Torvalds 447*1da177e4SLinus Torvalds fmovel #0,%FPSR |clr INEX 448*1da177e4SLinus Torvalds fmovel #rz_mode,%FPCR |set RZ rounding mode 449*1da177e4SLinus Torvalds 450*1da177e4SLinus Torvalds 451*1da177e4SLinus Torvalds| A9. Scale X -> Y. 452*1da177e4SLinus Torvalds| The mantissa is scaled to the desired number of significant 453*1da177e4SLinus Torvalds| digits. The excess digits are collected in INEX2. If mul, 454*1da177e4SLinus Torvalds| Check d2 for excess 10 exponential value. If not zero, 455*1da177e4SLinus Torvalds| the iscale value would have caused the pwrten calculation 456*1da177e4SLinus Torvalds| to overflow. Only a negative iscale can cause this, so 457*1da177e4SLinus Torvalds| multiply by 10^(d2), which is now only allowed to be 24, 458*1da177e4SLinus Torvalds| with a multiply by 10^8 and 10^16, which is exact since 459*1da177e4SLinus Torvalds| 10^24 is exact. If the input was denormalized, we must 460*1da177e4SLinus Torvalds| create a busy stack frame with the mul command and the 461*1da177e4SLinus Torvalds| two operands, and allow the fpu to complete the multiply. 462*1da177e4SLinus Torvalds| 463*1da177e4SLinus Torvalds| Register usage: 464*1da177e4SLinus Torvalds| Input/Output 465*1da177e4SLinus Torvalds| d0: FPCR with RZ mode/Unchanged 466*1da177e4SLinus Torvalds| d2: 0 or 24/unchanged 467*1da177e4SLinus Torvalds| d3: x/x 468*1da177e4SLinus Torvalds| d4: LEN/Unchanged 469*1da177e4SLinus Torvalds| d5: ICTR:LAMBDA 470*1da177e4SLinus Torvalds| d6: ILOG/Unchanged 471*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 472*1da177e4SLinus Torvalds| a0: ptr for original operand/final result 473*1da177e4SLinus Torvalds| a1: ptr to PTENRM array/Unchanged 474*1da177e4SLinus Torvalds| a2: x/x 475*1da177e4SLinus Torvalds| fp0: float(ILOG)/X adjusted for SCALE (Y) 476*1da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 477*1da177e4SLinus Torvalds| fp2: x/x 478*1da177e4SLinus Torvalds| F_SCR1:x/x 479*1da177e4SLinus Torvalds| F_SCR2:Abs(X) with $3fff exponent/Unchanged 480*1da177e4SLinus Torvalds| L_SCR1:x/x 481*1da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 482*1da177e4SLinus Torvalds 483*1da177e4SLinus TorvaldsA9_str: 484*1da177e4SLinus Torvalds fmovex (%a0),%fp0 |load X from memory 485*1da177e4SLinus Torvalds fabsx %fp0 |use abs(X) 486*1da177e4SLinus Torvalds tstw %d5 |LAMBDA is in lower word of d5 487*1da177e4SLinus Torvalds bne sc_mul |if neg (LAMBDA = 1), scale by mul 488*1da177e4SLinus Torvalds fdivx %fp1,%fp0 |calculate X / SCALE -> Y to fp0 489*1da177e4SLinus Torvalds bras A10_st |branch to A10 490*1da177e4SLinus Torvalds 491*1da177e4SLinus Torvaldssc_mul: 492*1da177e4SLinus Torvalds tstb BINDEC_FLG(%a6) |check for denorm 493*1da177e4SLinus Torvalds beqs A9_norm |if norm, continue with mul 494*1da177e4SLinus Torvalds fmovemx %fp1-%fp1,-(%a7) |load ETEMP with 10^ISCALE 495*1da177e4SLinus Torvalds movel 8(%a0),-(%a7) |load FPTEMP with input arg 496*1da177e4SLinus Torvalds movel 4(%a0),-(%a7) 497*1da177e4SLinus Torvalds movel (%a0),-(%a7) 498*1da177e4SLinus Torvalds movel #18,%d3 |load count for busy stack 499*1da177e4SLinus TorvaldsA9_loop: 500*1da177e4SLinus Torvalds clrl -(%a7) |clear lword on stack 501*1da177e4SLinus Torvalds dbf %d3,A9_loop 502*1da177e4SLinus Torvalds moveb VER_TMP(%a6),(%a7) |write current version number 503*1da177e4SLinus Torvalds moveb #BUSY_SIZE-4,1(%a7) |write current busy size 504*1da177e4SLinus Torvalds moveb #0x10,0x44(%a7) |set fcefpte[15] bit 505*1da177e4SLinus Torvalds movew #0x0023,0x40(%a7) |load cmdreg1b with mul command 506*1da177e4SLinus Torvalds moveb #0xfe,0x8(%a7) |load all 1s to cu savepc 507*1da177e4SLinus Torvalds frestore (%a7)+ |restore frame to fpu for completion 508*1da177e4SLinus Torvalds fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 509*1da177e4SLinus Torvalds fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 510*1da177e4SLinus Torvalds bras A10_st 511*1da177e4SLinus TorvaldsA9_norm: 512*1da177e4SLinus Torvalds tstw %d2 |test for small exp case 513*1da177e4SLinus Torvalds beqs A9_con |if zero, continue as normal 514*1da177e4SLinus Torvalds fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 515*1da177e4SLinus Torvalds fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 516*1da177e4SLinus TorvaldsA9_con: 517*1da177e4SLinus Torvalds fmulx %fp1,%fp0 |calculate X * SCALE -> Y to fp0 518*1da177e4SLinus Torvalds 519*1da177e4SLinus Torvalds 520*1da177e4SLinus Torvalds| A10. Or in INEX. 521*1da177e4SLinus Torvalds| If INEX is set, round error occurred. This is compensated 522*1da177e4SLinus Torvalds| for by 'or-ing' in the INEX2 flag to the lsb of Y. 523*1da177e4SLinus Torvalds| 524*1da177e4SLinus Torvalds| Register usage: 525*1da177e4SLinus Torvalds| Input/Output 526*1da177e4SLinus Torvalds| d0: FPCR with RZ mode/FPSR with INEX2 isolated 527*1da177e4SLinus Torvalds| d2: x/x 528*1da177e4SLinus Torvalds| d3: x/x 529*1da177e4SLinus Torvalds| d4: LEN/Unchanged 530*1da177e4SLinus Torvalds| d5: ICTR:LAMBDA 531*1da177e4SLinus Torvalds| d6: ILOG/Unchanged 532*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 533*1da177e4SLinus Torvalds| a0: ptr for original operand/final result 534*1da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 535*1da177e4SLinus Torvalds| a2: x/ptr to FP_SCR2(a6) 536*1da177e4SLinus Torvalds| fp0: Y/Y with lsb adjusted 537*1da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 538*1da177e4SLinus Torvalds| fp2: x/x 539*1da177e4SLinus Torvalds 540*1da177e4SLinus TorvaldsA10_st: 541*1da177e4SLinus Torvalds fmovel %FPSR,%d0 |get FPSR 542*1da177e4SLinus Torvalds fmovex %fp0,FP_SCR2(%a6) |move Y to memory 543*1da177e4SLinus Torvalds leal FP_SCR2(%a6),%a2 |load a2 with ptr to FP_SCR2 544*1da177e4SLinus Torvalds btstl #9,%d0 |check if INEX2 set 545*1da177e4SLinus Torvalds beqs A11_st |if clear, skip rest 546*1da177e4SLinus Torvalds oril #1,8(%a2) |or in 1 to lsb of mantissa 547*1da177e4SLinus Torvalds fmovex FP_SCR2(%a6),%fp0 |write adjusted Y back to fpu 548*1da177e4SLinus Torvalds 549*1da177e4SLinus Torvalds 550*1da177e4SLinus Torvalds| A11. Restore original FPCR; set size ext. 551*1da177e4SLinus Torvalds| Perform FINT operation in the user's rounding mode. Keep 552*1da177e4SLinus Torvalds| the size to extended. The sintdo entry point in the sint 553*1da177e4SLinus Torvalds| routine expects the FPCR value to be in USER_FPCR for 554*1da177e4SLinus Torvalds| mode and precision. The original FPCR is saved in L_SCR1. 555*1da177e4SLinus Torvalds 556*1da177e4SLinus TorvaldsA11_st: 557*1da177e4SLinus Torvalds movel USER_FPCR(%a6),L_SCR1(%a6) |save it for later 558*1da177e4SLinus Torvalds andil #0x00000030,USER_FPCR(%a6) |set size to ext, 559*1da177e4SLinus Torvalds| ;block exceptions 560*1da177e4SLinus Torvalds 561*1da177e4SLinus Torvalds 562*1da177e4SLinus Torvalds| A12. Calculate YINT = FINT(Y) according to user's rounding mode. 563*1da177e4SLinus Torvalds| The FPSP routine sintd0 is used. The output is in fp0. 564*1da177e4SLinus Torvalds| 565*1da177e4SLinus Torvalds| Register usage: 566*1da177e4SLinus Torvalds| Input/Output 567*1da177e4SLinus Torvalds| d0: FPSR with AINEX cleared/FPCR with size set to ext 568*1da177e4SLinus Torvalds| d2: x/x/scratch 569*1da177e4SLinus Torvalds| d3: x/x 570*1da177e4SLinus Torvalds| d4: LEN/Unchanged 571*1da177e4SLinus Torvalds| d5: ICTR:LAMBDA/Unchanged 572*1da177e4SLinus Torvalds| d6: ILOG/Unchanged 573*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 574*1da177e4SLinus Torvalds| a0: ptr for original operand/src ptr for sintdo 575*1da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 576*1da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 577*1da177e4SLinus Torvalds| a6: temp pointer to FP_SCR2(a6) - orig value saved and restored 578*1da177e4SLinus Torvalds| fp0: Y/YINT 579*1da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 580*1da177e4SLinus Torvalds| fp2: x/x 581*1da177e4SLinus Torvalds| F_SCR1:x/x 582*1da177e4SLinus Torvalds| F_SCR2:Y adjusted for inex/Y with original exponent 583*1da177e4SLinus Torvalds| L_SCR1:x/original USER_FPCR 584*1da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 585*1da177e4SLinus Torvalds 586*1da177e4SLinus TorvaldsA12_st: 587*1da177e4SLinus Torvalds moveml %d0-%d1/%a0-%a1,-(%a7) |save regs used by sintd0 588*1da177e4SLinus Torvalds movel L_SCR1(%a6),-(%a7) 589*1da177e4SLinus Torvalds movel L_SCR2(%a6),-(%a7) 590*1da177e4SLinus Torvalds leal FP_SCR2(%a6),%a0 |a0 is ptr to F_SCR2(a6) 591*1da177e4SLinus Torvalds fmovex %fp0,(%a0) |move Y to memory at FP_SCR2(a6) 592*1da177e4SLinus Torvalds tstl L_SCR2(%a6) |test sign of original operand 593*1da177e4SLinus Torvalds bges do_fint |if pos, use Y 594*1da177e4SLinus Torvalds orl #0x80000000,(%a0) |if neg, use -Y 595*1da177e4SLinus Torvaldsdo_fint: 596*1da177e4SLinus Torvalds movel USER_FPSR(%a6),-(%a7) 597*1da177e4SLinus Torvalds bsr sintdo |sint routine returns int in fp0 598*1da177e4SLinus Torvalds moveb (%a7),USER_FPSR(%a6) 599*1da177e4SLinus Torvalds addl #4,%a7 600*1da177e4SLinus Torvalds movel (%a7)+,L_SCR2(%a6) 601*1da177e4SLinus Torvalds movel (%a7)+,L_SCR1(%a6) 602*1da177e4SLinus Torvalds moveml (%a7)+,%d0-%d1/%a0-%a1 |restore regs used by sint 603*1da177e4SLinus Torvalds movel L_SCR2(%a6),FP_SCR2(%a6) |restore original exponent 604*1da177e4SLinus Torvalds movel L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR 605*1da177e4SLinus Torvalds 606*1da177e4SLinus Torvalds 607*1da177e4SLinus Torvalds| A13. Check for LEN digits. 608*1da177e4SLinus Torvalds| If the int operation results in more than LEN digits, 609*1da177e4SLinus Torvalds| or less than LEN -1 digits, adjust ILOG and repeat from 610*1da177e4SLinus Torvalds| A6. This test occurs only on the first pass. If the 611*1da177e4SLinus Torvalds| result is exactly 10^LEN, decrement ILOG and divide 612*1da177e4SLinus Torvalds| the mantissa by 10. The calculation of 10^LEN cannot 613*1da177e4SLinus Torvalds| be inexact, since all powers of ten upto 10^27 are exact 614*1da177e4SLinus Torvalds| in extended precision, so the use of a previous power-of-ten 615*1da177e4SLinus Torvalds| table will introduce no error. 616*1da177e4SLinus Torvalds| 617*1da177e4SLinus Torvalds| 618*1da177e4SLinus Torvalds| Register usage: 619*1da177e4SLinus Torvalds| Input/Output 620*1da177e4SLinus Torvalds| d0: FPCR with size set to ext/scratch final = 0 621*1da177e4SLinus Torvalds| d2: x/x 622*1da177e4SLinus Torvalds| d3: x/scratch final = x 623*1da177e4SLinus Torvalds| d4: LEN/LEN adjusted 624*1da177e4SLinus Torvalds| d5: ICTR:LAMBDA/LAMBDA:ICTR 625*1da177e4SLinus Torvalds| d6: ILOG/ILOG adjusted 626*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 627*1da177e4SLinus Torvalds| a0: pointer into memory for packed bcd string formation 628*1da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 629*1da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 630*1da177e4SLinus Torvalds| fp0: int portion of Y/abs(YINT) adjusted 631*1da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 632*1da177e4SLinus Torvalds| fp2: x/10^LEN 633*1da177e4SLinus Torvalds| F_SCR1:x/x 634*1da177e4SLinus Torvalds| F_SCR2:Y with original exponent/Unchanged 635*1da177e4SLinus Torvalds| L_SCR1:original USER_FPCR/Unchanged 636*1da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 637*1da177e4SLinus Torvalds 638*1da177e4SLinus TorvaldsA13_st: 639*1da177e4SLinus Torvalds swap %d5 |put ICTR in lower word of d5 640*1da177e4SLinus Torvalds tstw %d5 |check if ICTR = 0 641*1da177e4SLinus Torvalds bne not_zr |if non-zero, go to second test 642*1da177e4SLinus Torvalds| 643*1da177e4SLinus Torvalds| Compute 10^(LEN-1) 644*1da177e4SLinus Torvalds| 645*1da177e4SLinus Torvalds fmoves FONE,%fp2 |init fp2 to 1.0 646*1da177e4SLinus Torvalds movel %d4,%d0 |put LEN in d0 647*1da177e4SLinus Torvalds subql #1,%d0 |d0 = LEN -1 648*1da177e4SLinus Torvalds clrl %d3 |clr table index 649*1da177e4SLinus Torvaldsl_loop: 650*1da177e4SLinus Torvalds lsrl #1,%d0 |shift next bit into carry 651*1da177e4SLinus Torvalds bccs l_next |if zero, skip the mul 652*1da177e4SLinus Torvalds fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 653*1da177e4SLinus Torvaldsl_next: 654*1da177e4SLinus Torvalds addl #12,%d3 |inc d3 to next pwrten table entry 655*1da177e4SLinus Torvalds tstl %d0 |test if LEN is zero 656*1da177e4SLinus Torvalds bnes l_loop |if not, loop 657*1da177e4SLinus Torvalds| 658*1da177e4SLinus Torvalds| 10^LEN-1 is computed for this test and A14. If the input was 659*1da177e4SLinus Torvalds| denormalized, check only the case in which YINT > 10^LEN. 660*1da177e4SLinus Torvalds| 661*1da177e4SLinus Torvalds tstb BINDEC_FLG(%a6) |check if input was norm 662*1da177e4SLinus Torvalds beqs A13_con |if norm, continue with checking 663*1da177e4SLinus Torvalds fabsx %fp0 |take abs of YINT 664*1da177e4SLinus Torvalds bra test_2 665*1da177e4SLinus Torvalds| 666*1da177e4SLinus Torvalds| Compare abs(YINT) to 10^(LEN-1) and 10^LEN 667*1da177e4SLinus Torvalds| 668*1da177e4SLinus TorvaldsA13_con: 669*1da177e4SLinus Torvalds fabsx %fp0 |take abs of YINT 670*1da177e4SLinus Torvalds fcmpx %fp2,%fp0 |compare abs(YINT) with 10^(LEN-1) 671*1da177e4SLinus Torvalds fbge test_2 |if greater, do next test 672*1da177e4SLinus Torvalds subql #1,%d6 |subtract 1 from ILOG 673*1da177e4SLinus Torvalds movew #1,%d5 |set ICTR 674*1da177e4SLinus Torvalds fmovel #rm_mode,%FPCR |set rmode to RM 675*1da177e4SLinus Torvalds fmuls FTEN,%fp2 |compute 10^LEN 676*1da177e4SLinus Torvalds bra A6_str |return to A6 and recompute YINT 677*1da177e4SLinus Torvaldstest_2: 678*1da177e4SLinus Torvalds fmuls FTEN,%fp2 |compute 10^LEN 679*1da177e4SLinus Torvalds fcmpx %fp2,%fp0 |compare abs(YINT) with 10^LEN 680*1da177e4SLinus Torvalds fblt A14_st |if less, all is ok, go to A14 681*1da177e4SLinus Torvalds fbgt fix_ex |if greater, fix and redo 682*1da177e4SLinus Torvalds fdivs FTEN,%fp0 |if equal, divide by 10 683*1da177e4SLinus Torvalds addql #1,%d6 | and inc ILOG 684*1da177e4SLinus Torvalds bras A14_st | and continue elsewhere 685*1da177e4SLinus Torvaldsfix_ex: 686*1da177e4SLinus Torvalds addql #1,%d6 |increment ILOG by 1 687*1da177e4SLinus Torvalds movew #1,%d5 |set ICTR 688*1da177e4SLinus Torvalds fmovel #rm_mode,%FPCR |set rmode to RM 689*1da177e4SLinus Torvalds bra A6_str |return to A6 and recompute YINT 690*1da177e4SLinus Torvalds| 691*1da177e4SLinus Torvalds| Since ICTR <> 0, we have already been through one adjustment, 692*1da177e4SLinus Torvalds| and shouldn't have another; this is to check if abs(YINT) = 10^LEN 693*1da177e4SLinus Torvalds| 10^LEN is again computed using whatever table is in a1 since the 694*1da177e4SLinus Torvalds| value calculated cannot be inexact. 695*1da177e4SLinus Torvalds| 696*1da177e4SLinus Torvaldsnot_zr: 697*1da177e4SLinus Torvalds fmoves FONE,%fp2 |init fp2 to 1.0 698*1da177e4SLinus Torvalds movel %d4,%d0 |put LEN in d0 699*1da177e4SLinus Torvalds clrl %d3 |clr table index 700*1da177e4SLinus Torvaldsz_loop: 701*1da177e4SLinus Torvalds lsrl #1,%d0 |shift next bit into carry 702*1da177e4SLinus Torvalds bccs z_next |if zero, skip the mul 703*1da177e4SLinus Torvalds fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 704*1da177e4SLinus Torvaldsz_next: 705*1da177e4SLinus Torvalds addl #12,%d3 |inc d3 to next pwrten table entry 706*1da177e4SLinus Torvalds tstl %d0 |test if LEN is zero 707*1da177e4SLinus Torvalds bnes z_loop |if not, loop 708*1da177e4SLinus Torvalds fabsx %fp0 |get abs(YINT) 709*1da177e4SLinus Torvalds fcmpx %fp2,%fp0 |check if abs(YINT) = 10^LEN 710*1da177e4SLinus Torvalds fbne A14_st |if not, skip this 711*1da177e4SLinus Torvalds fdivs FTEN,%fp0 |divide abs(YINT) by 10 712*1da177e4SLinus Torvalds addql #1,%d6 |and inc ILOG by 1 713*1da177e4SLinus Torvalds addql #1,%d4 | and inc LEN 714*1da177e4SLinus Torvalds fmuls FTEN,%fp2 | if LEN++, the get 10^^LEN 715*1da177e4SLinus Torvalds 716*1da177e4SLinus Torvalds 717*1da177e4SLinus Torvalds| A14. Convert the mantissa to bcd. 718*1da177e4SLinus Torvalds| The binstr routine is used to convert the LEN digit 719*1da177e4SLinus Torvalds| mantissa to bcd in memory. The input to binstr is 720*1da177e4SLinus Torvalds| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 721*1da177e4SLinus Torvalds| such that the decimal point is to the left of bit 63. 722*1da177e4SLinus Torvalds| The bcd digits are stored in the correct position in 723*1da177e4SLinus Torvalds| the final string area in memory. 724*1da177e4SLinus Torvalds| 725*1da177e4SLinus Torvalds| 726*1da177e4SLinus Torvalds| Register usage: 727*1da177e4SLinus Torvalds| Input/Output 728*1da177e4SLinus Torvalds| d0: x/LEN call to binstr - final is 0 729*1da177e4SLinus Torvalds| d1: x/0 730*1da177e4SLinus Torvalds| d2: x/ms 32-bits of mant of abs(YINT) 731*1da177e4SLinus Torvalds| d3: x/ls 32-bits of mant of abs(YINT) 732*1da177e4SLinus Torvalds| d4: LEN/Unchanged 733*1da177e4SLinus Torvalds| d5: ICTR:LAMBDA/LAMBDA:ICTR 734*1da177e4SLinus Torvalds| d6: ILOG 735*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 736*1da177e4SLinus Torvalds| a0: pointer into memory for packed bcd string formation 737*1da177e4SLinus Torvalds| /ptr to first mantissa byte in result string 738*1da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 739*1da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 740*1da177e4SLinus Torvalds| fp0: int portion of Y/abs(YINT) adjusted 741*1da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 742*1da177e4SLinus Torvalds| fp2: 10^LEN/Unchanged 743*1da177e4SLinus Torvalds| F_SCR1:x/Work area for final result 744*1da177e4SLinus Torvalds| F_SCR2:Y with original exponent/Unchanged 745*1da177e4SLinus Torvalds| L_SCR1:original USER_FPCR/Unchanged 746*1da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 747*1da177e4SLinus Torvalds 748*1da177e4SLinus TorvaldsA14_st: 749*1da177e4SLinus Torvalds fmovel #rz_mode,%FPCR |force rz for conversion 750*1da177e4SLinus Torvalds fdivx %fp2,%fp0 |divide abs(YINT) by 10^LEN 751*1da177e4SLinus Torvalds leal FP_SCR1(%a6),%a0 752*1da177e4SLinus Torvalds fmovex %fp0,(%a0) |move abs(YINT)/10^LEN to memory 753*1da177e4SLinus Torvalds movel 4(%a0),%d2 |move 2nd word of FP_RES to d2 754*1da177e4SLinus Torvalds movel 8(%a0),%d3 |move 3rd word of FP_RES to d3 755*1da177e4SLinus Torvalds clrl 4(%a0) |zero word 2 of FP_RES 756*1da177e4SLinus Torvalds clrl 8(%a0) |zero word 3 of FP_RES 757*1da177e4SLinus Torvalds movel (%a0),%d0 |move exponent to d0 758*1da177e4SLinus Torvalds swap %d0 |put exponent in lower word 759*1da177e4SLinus Torvalds beqs no_sft |if zero, don't shift 760*1da177e4SLinus Torvalds subil #0x3ffd,%d0 |sub bias less 2 to make fract 761*1da177e4SLinus Torvalds tstl %d0 |check if > 1 762*1da177e4SLinus Torvalds bgts no_sft |if so, don't shift 763*1da177e4SLinus Torvalds negl %d0 |make exp positive 764*1da177e4SLinus Torvaldsm_loop: 765*1da177e4SLinus Torvalds lsrl #1,%d2 |shift d2:d3 right, add 0s 766*1da177e4SLinus Torvalds roxrl #1,%d3 |the number of places 767*1da177e4SLinus Torvalds dbf %d0,m_loop |given in d0 768*1da177e4SLinus Torvaldsno_sft: 769*1da177e4SLinus Torvalds tstl %d2 |check for mantissa of zero 770*1da177e4SLinus Torvalds bnes no_zr |if not, go on 771*1da177e4SLinus Torvalds tstl %d3 |continue zero check 772*1da177e4SLinus Torvalds beqs zer_m |if zero, go directly to binstr 773*1da177e4SLinus Torvaldsno_zr: 774*1da177e4SLinus Torvalds clrl %d1 |put zero in d1 for addx 775*1da177e4SLinus Torvalds addil #0x00000080,%d3 |inc at bit 7 776*1da177e4SLinus Torvalds addxl %d1,%d2 |continue inc 777*1da177e4SLinus Torvalds andil #0xffffff80,%d3 |strip off lsb not used by 882 778*1da177e4SLinus Torvaldszer_m: 779*1da177e4SLinus Torvalds movel %d4,%d0 |put LEN in d0 for binstr call 780*1da177e4SLinus Torvalds addql #3,%a0 |a0 points to M16 byte in result 781*1da177e4SLinus Torvalds bsr binstr |call binstr to convert mant 782*1da177e4SLinus Torvalds 783*1da177e4SLinus Torvalds 784*1da177e4SLinus Torvalds| A15. Convert the exponent to bcd. 785*1da177e4SLinus Torvalds| As in A14 above, the exp is converted to bcd and the 786*1da177e4SLinus Torvalds| digits are stored in the final string. 787*1da177e4SLinus Torvalds| 788*1da177e4SLinus Torvalds| Digits are stored in L_SCR1(a6) on return from BINDEC as: 789*1da177e4SLinus Torvalds| 790*1da177e4SLinus Torvalds| 32 16 15 0 791*1da177e4SLinus Torvalds| ----------------------------------------- 792*1da177e4SLinus Torvalds| | 0 | e3 | e2 | e1 | e4 | X | X | X | 793*1da177e4SLinus Torvalds| ----------------------------------------- 794*1da177e4SLinus Torvalds| 795*1da177e4SLinus Torvalds| And are moved into their proper places in FP_SCR1. If digit e4 796*1da177e4SLinus Torvalds| is non-zero, OPERR is signaled. In all cases, all 4 digits are 797*1da177e4SLinus Torvalds| written as specified in the 881/882 manual for packed decimal. 798*1da177e4SLinus Torvalds| 799*1da177e4SLinus Torvalds| Register usage: 800*1da177e4SLinus Torvalds| Input/Output 801*1da177e4SLinus Torvalds| d0: x/LEN call to binstr - final is 0 802*1da177e4SLinus Torvalds| d1: x/scratch (0);shift count for final exponent packing 803*1da177e4SLinus Torvalds| d2: x/ms 32-bits of exp fraction/scratch 804*1da177e4SLinus Torvalds| d3: x/ls 32-bits of exp fraction 805*1da177e4SLinus Torvalds| d4: LEN/Unchanged 806*1da177e4SLinus Torvalds| d5: ICTR:LAMBDA/LAMBDA:ICTR 807*1da177e4SLinus Torvalds| d6: ILOG 808*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 809*1da177e4SLinus Torvalds| a0: ptr to result string/ptr to L_SCR1(a6) 810*1da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 811*1da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 812*1da177e4SLinus Torvalds| fp0: abs(YINT) adjusted/float(ILOG) 813*1da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 814*1da177e4SLinus Torvalds| fp2: 10^LEN/Unchanged 815*1da177e4SLinus Torvalds| F_SCR1:Work area for final result/BCD result 816*1da177e4SLinus Torvalds| F_SCR2:Y with original exponent/ILOG/10^4 817*1da177e4SLinus Torvalds| L_SCR1:original USER_FPCR/Exponent digits on return from binstr 818*1da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 819*1da177e4SLinus Torvalds 820*1da177e4SLinus TorvaldsA15_st: 821*1da177e4SLinus Torvalds tstb BINDEC_FLG(%a6) |check for denorm 822*1da177e4SLinus Torvalds beqs not_denorm 823*1da177e4SLinus Torvalds ftstx %fp0 |test for zero 824*1da177e4SLinus Torvalds fbeq den_zero |if zero, use k-factor or 4933 825*1da177e4SLinus Torvalds fmovel %d6,%fp0 |float ILOG 826*1da177e4SLinus Torvalds fabsx %fp0 |get abs of ILOG 827*1da177e4SLinus Torvalds bras convrt 828*1da177e4SLinus Torvaldsden_zero: 829*1da177e4SLinus Torvalds tstl %d7 |check sign of the k-factor 830*1da177e4SLinus Torvalds blts use_ilog |if negative, use ILOG 831*1da177e4SLinus Torvalds fmoves F4933,%fp0 |force exponent to 4933 832*1da177e4SLinus Torvalds bras convrt |do it 833*1da177e4SLinus Torvaldsuse_ilog: 834*1da177e4SLinus Torvalds fmovel %d6,%fp0 |float ILOG 835*1da177e4SLinus Torvalds fabsx %fp0 |get abs of ILOG 836*1da177e4SLinus Torvalds bras convrt 837*1da177e4SLinus Torvaldsnot_denorm: 838*1da177e4SLinus Torvalds ftstx %fp0 |test for zero 839*1da177e4SLinus Torvalds fbne not_zero |if zero, force exponent 840*1da177e4SLinus Torvalds fmoves FONE,%fp0 |force exponent to 1 841*1da177e4SLinus Torvalds bras convrt |do it 842*1da177e4SLinus Torvaldsnot_zero: 843*1da177e4SLinus Torvalds fmovel %d6,%fp0 |float ILOG 844*1da177e4SLinus Torvalds fabsx %fp0 |get abs of ILOG 845*1da177e4SLinus Torvaldsconvrt: 846*1da177e4SLinus Torvalds fdivx 24(%a1),%fp0 |compute ILOG/10^4 847*1da177e4SLinus Torvalds fmovex %fp0,FP_SCR2(%a6) |store fp0 in memory 848*1da177e4SLinus Torvalds movel 4(%a2),%d2 |move word 2 to d2 849*1da177e4SLinus Torvalds movel 8(%a2),%d3 |move word 3 to d3 850*1da177e4SLinus Torvalds movew (%a2),%d0 |move exp to d0 851*1da177e4SLinus Torvalds beqs x_loop_fin |if zero, skip the shift 852*1da177e4SLinus Torvalds subiw #0x3ffd,%d0 |subtract off bias 853*1da177e4SLinus Torvalds negw %d0 |make exp positive 854*1da177e4SLinus Torvaldsx_loop: 855*1da177e4SLinus Torvalds lsrl #1,%d2 |shift d2:d3 right 856*1da177e4SLinus Torvalds roxrl #1,%d3 |the number of places 857*1da177e4SLinus Torvalds dbf %d0,x_loop |given in d0 858*1da177e4SLinus Torvaldsx_loop_fin: 859*1da177e4SLinus Torvalds clrl %d1 |put zero in d1 for addx 860*1da177e4SLinus Torvalds addil #0x00000080,%d3 |inc at bit 6 861*1da177e4SLinus Torvalds addxl %d1,%d2 |continue inc 862*1da177e4SLinus Torvalds andil #0xffffff80,%d3 |strip off lsb not used by 882 863*1da177e4SLinus Torvalds movel #4,%d0 |put 4 in d0 for binstr call 864*1da177e4SLinus Torvalds leal L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits 865*1da177e4SLinus Torvalds bsr binstr |call binstr to convert exp 866*1da177e4SLinus Torvalds movel L_SCR1(%a6),%d0 |load L_SCR1 lword to d0 867*1da177e4SLinus Torvalds movel #12,%d1 |use d1 for shift count 868*1da177e4SLinus Torvalds lsrl %d1,%d0 |shift d0 right by 12 869*1da177e4SLinus Torvalds bfins %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1 870*1da177e4SLinus Torvalds lsrl %d1,%d0 |shift d0 right by 12 871*1da177e4SLinus Torvalds bfins %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1 872*1da177e4SLinus Torvalds tstb %d0 |check if e4 is zero 873*1da177e4SLinus Torvalds beqs A16_st |if zero, skip rest 874*1da177e4SLinus Torvalds orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 875*1da177e4SLinus Torvalds 876*1da177e4SLinus Torvalds 877*1da177e4SLinus Torvalds| A16. Write sign bits to final string. 878*1da177e4SLinus Torvalds| Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). 879*1da177e4SLinus Torvalds| 880*1da177e4SLinus Torvalds| Register usage: 881*1da177e4SLinus Torvalds| Input/Output 882*1da177e4SLinus Torvalds| d0: x/scratch - final is x 883*1da177e4SLinus Torvalds| d2: x/x 884*1da177e4SLinus Torvalds| d3: x/x 885*1da177e4SLinus Torvalds| d4: LEN/Unchanged 886*1da177e4SLinus Torvalds| d5: ICTR:LAMBDA/LAMBDA:ICTR 887*1da177e4SLinus Torvalds| d6: ILOG/ILOG adjusted 888*1da177e4SLinus Torvalds| d7: k-factor/Unchanged 889*1da177e4SLinus Torvalds| a0: ptr to L_SCR1(a6)/Unchanged 890*1da177e4SLinus Torvalds| a1: ptr to PTENxx array/Unchanged 891*1da177e4SLinus Torvalds| a2: ptr to FP_SCR2(a6)/Unchanged 892*1da177e4SLinus Torvalds| fp0: float(ILOG)/Unchanged 893*1da177e4SLinus Torvalds| fp1: 10^ISCALE/Unchanged 894*1da177e4SLinus Torvalds| fp2: 10^LEN/Unchanged 895*1da177e4SLinus Torvalds| F_SCR1:BCD result with correct signs 896*1da177e4SLinus Torvalds| F_SCR2:ILOG/10^4 897*1da177e4SLinus Torvalds| L_SCR1:Exponent digits on return from binstr 898*1da177e4SLinus Torvalds| L_SCR2:first word of X packed/Unchanged 899*1da177e4SLinus Torvalds 900*1da177e4SLinus TorvaldsA16_st: 901*1da177e4SLinus Torvalds clrl %d0 |clr d0 for collection of signs 902*1da177e4SLinus Torvalds andib #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1 903*1da177e4SLinus Torvalds tstl L_SCR2(%a6) |check sign of original mantissa 904*1da177e4SLinus Torvalds bges mant_p |if pos, don't set SM 905*1da177e4SLinus Torvalds moveql #2,%d0 |move 2 in to d0 for SM 906*1da177e4SLinus Torvaldsmant_p: 907*1da177e4SLinus Torvalds tstl %d6 |check sign of ILOG 908*1da177e4SLinus Torvalds bges wr_sgn |if pos, don't set SE 909*1da177e4SLinus Torvalds addql #1,%d0 |set bit 0 in d0 for SE 910*1da177e4SLinus Torvaldswr_sgn: 911*1da177e4SLinus Torvalds bfins %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1 912*1da177e4SLinus Torvalds 913*1da177e4SLinus Torvalds| Clean up and restore all registers used. 914*1da177e4SLinus Torvalds 915*1da177e4SLinus Torvalds fmovel #0,%FPSR |clear possible inex2/ainex bits 916*1da177e4SLinus Torvalds fmovemx (%a7)+,%fp0-%fp2 917*1da177e4SLinus Torvalds moveml (%a7)+,%d2-%d7/%a2 918*1da177e4SLinus Torvalds rts 919*1da177e4SLinus Torvalds 920*1da177e4SLinus Torvalds |end 921